import os import torch import gradio as gr from huggingface_hub import InferenceClient from model import predict_params, AudioDataset import torchaudio # TODO: Que no diga lo de que no hay 1s_normal al predecir token = os.getenv("HF_TOKEN") client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct", token=token) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_class, id2label_class = predict_params( model_path="A-POR-LOS-8000/distilhubert-finetuned-mixed-data", dataset_path="data/mixed_data", filter_white_noise=True, undersample_normal=True ) model_mon, id2label_mon = predict_params( model_path="A-POR-LOS-8000/distilhubert-finetuned-cry-detector", dataset_path="data/baby_cry_detection", filter_white_noise=False, undersample_normal=False ) def call(audiopath, model, dataset_path, filter_white_noise, undersample_normal=False): model.to(device) model.eval() audio_dataset = AudioDataset(dataset_path, {}, filter_white_noise, undersample_normal) processed_audio = audio_dataset.preprocess_audio(audiopath) inputs = {"input_values": processed_audio.to(device).unsqueeze(0)} with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits return logits def predict(audio_path_pred): with torch.no_grad(): logits = call(audio_path_pred, model=model_class, dataset_path="data/mixed_data", filter_white_noise=True, undersample_normal=False) predicted_class_ids_class = torch.argmax(logits, dim=-1).item() label_class = id2label_class[predicted_class_ids_class] label_mapping = {0: 'Cansancio/Incomodidad', 1: 'Dolor', 2: 'Hambre', 3: 'Problemas para respirar'} label_class = label_mapping.get(predicted_class_ids_class, label_class) return label_class def predict_stream(audio_path_stream): with torch.no_grad(): logits = call(audio_path_stream, model=model_mon, dataset_path="data/baby_cry_detection", filter_white_noise=False, undersample_normal=False) probabilities = torch.nn.functional.softmax(logits, dim=-1) crying_probabilities = probabilities[:, 1] avg_crying_probability = crying_probabilities.mean()*100 if avg_crying_probability < 15: label_class = predict(audio_path_stream) return f"Está llorando por: {label_class}" else: return "No está llorando" def decibelios(audio_path_stream): waveform, sample_rate = torchaudio.load(audio_path_stream) rms = torch.sqrt(torch.mean(torch.square(waveform))) db_level = 20 * torch.log10(rms + 1e-6).item() min_db = -80 max_db = 0 scaled_db_level = (db_level - min_db) / (max_db - min_db) normalized_db_level = scaled_db_level * 100 return normalized_db_level def mostrar_decibelios(audio_path_stream, visual_threshold): db_level = decibelios(audio_path_stream) if db_level > visual_threshold: return f"Prediciendo... Decibelios: {db_level:.2f}" elif db_level < visual_threshold: return f"Esperando... Decibelios: {db_level:.2f}" def predict_stream_decib(audio_path_stream, visual_threshold): db_level = decibelios(audio_path_stream) if db_level > visual_threshold: llorando, probabilidad = predict_stream(audio_path_stream) return f"{llorando}" else: return "" def chatbot_config(message, history: list[tuple[str, str]]): system_message = "You are a Chatbot specialized in baby health and care." max_tokens = 512 temperature = 0.5 top_p = 0.95 messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message_response in client.chat_completion(messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p): token = message_response.choices[0].delta.content response += token yield response def cambiar_pestaña(): return gr.update(visible=False), gr.update(visible=True) my_theme = gr.themes.Soft( primary_hue="emerald", secondary_hue="green", neutral_hue="slate", text_size="sm", spacing_size="sm", font=[gr.themes.GoogleFont('Nunito'), 'ui-sans-serif', 'system-ui', 'sans-serif'], font_mono=[gr.themes.GoogleFont('Nunito'), 'ui-monospace', 'Consolas', 'monospace'], ).set( body_background_fill='*neutral_50', body_text_color='*neutral_600', body_text_size='*text_sm', embed_radius='*radius_md', shadow_drop='*shadow_spread', shadow_spread='*button_shadow_active' ) with gr.Blocks(theme=my_theme) as demo: with gr.Column(visible=True) as inicial: gr.HTML( """

Iremia

El mejor aliado para el bienestar de tu bebé

""" ) gr.Markdown( "

¿Qué es Iremia?

" "

Iremia es un proyecto llevado a cabo por un grupo de estudiantes interesados en el desarrollo de modelos de inteligencia artificial, enfocados específicamente en casos de uso relevantes para ayudar a cuidar a los más pequeños de la casa.

" "

Nuestra misión

" "

Sabemos que la paternidad puede suponer un gran desafío. Nuestra misión es brindarles a todos los padres unas herramientas de última tecnología que los ayuden a navegar esos primeros meses de vida tan cruciales en el desarrollo de sus pequeños.

" "

¿Qué ofrece Iremia?

" "

Chatbot: Pregunta a nuestro asistente que te ayudará con cualquier duda que tengas sobre el cuidado de tu bebé.

" "

Analizador: Con nuestro modelo de inteligencia artificial somos capaces de predecir por qué tu hijo de menos de 2 años está llorando.

" "

Monitor: Nuestro monitor no es como otros que hay en el mercado, ya que es capaz de reconocer si un sonido es un llanto del bebé o no; y si está llorando, predice automáticamente la causa. Dándote la tranquilidad de saber siempre qué pasa con tu pequeño, ahorrándote tiempo y horas de sueño.

" ) boton_inicial = gr.Button("¡Prueba nuestros modelos!") with gr.Column(visible=False) as chatbot: gr.Markdown("

Asistente

") gr.Markdown("

Pregunta a nuestro asistente cualquier duda que tengas sobre el cuidado de tu bebé

") gr.ChatInterface( chatbot_config, theme=my_theme, retry_btn=None, undo_btn=None, clear_btn="Limpiar 🗑️", autofocus=True, fill_height=True, ) with gr.Row(): with gr.Column(): boton_predictor = gr.Button("Predictor") with gr.Column(): boton_monitor = gr.Button("Monitor") with gr.Column(visible=False) as pag_predictor: gr.Markdown("

Predictor

") gr.Markdown("

Descubre por qué tu bebé está llorando

") audio_input = gr.Audio( min_length=1.0, format="wav", label="Baby recorder", type="filepath", ) gr.Button("¿Por qué llora?").click( predict, inputs=audio_input, outputs=gr.Textbox(label="Tu bebé llora por:") ) gr.Button("Volver").click(cambiar_pestaña, outputs=[pag_predictor, chatbot]) with gr.Column(visible=False) as pag_monitor: gr.Markdown("

Monitor

") gr.Markdown("

Detecta en tiempo real si tu bebé está llorando y por qué

") audio_stream = gr.Audio( format="wav", label="Baby recorder", type="filepath", streaming=True ) threshold_db = gr.Slider( minimum=0, maximum=100, step=1, value=30, label="Umbral de ruido para activar la predicción:" ) audio_stream.stream( mostrar_decibelios, inputs=[audio_stream, threshold_db], outputs=gr.Textbox(value="Esperando...", label="Estado") ) audio_stream.stream( predict_stream_decib, inputs=[audio_stream, threshold_db], outputs=gr.Textbox(value="", label="Tu bebé:") ) gr.Button("Volver").click(cambiar_pestaña, outputs=[pag_monitor, chatbot]) boton_inicial.click(cambiar_pestaña, outputs=[inicial, chatbot]) boton_predictor.click(cambiar_pestaña, outputs=[chatbot, pag_predictor]) boton_monitor.click(cambiar_pestaña, outputs=[chatbot, pag_monitor]) demo.launch(share=True)