import os import torch import gradio as gr from huggingface_hub import InferenceClient from model import predict_params, AudioDataset from interfaz import estilo, my_theme token = os.getenv("HF_TOKEN") client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct", token=token) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_class, id2label_class = predict_params(model_path="A-POR-LOS-8000/distilhubert-finetuned-mixed-data", dataset_path="A-POR-LOS-8000/data/mixed_data", filter_white_noise=True) model_mon, id2label_mon = predict_params(model_path="A-POR-LOS-8000/distilhubert-finetuned-cry-detector", dataset_path="A-POR-LOS-8000/data/baby_cry_detection", filter_white_noise=False) def call(audiopath, model, dataset_path, filter_white_noise): model.to(device) model.eval() audio_dataset = AudioDataset(dataset_path, {}, filter_white_noise,) processed_audio = audio_dataset.preprocess_audio(audiopath) inputs = {"input_values": processed_audio.to(device).unsqueeze(0)} with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits return logits def predict(audio_path_pred): with torch.no_grad(): logits = call(audio_path_pred, model=model_class, dataset_path="A-POR-LOS-8000/data/mixed_data", filter_white_noise=True) predicted_class_ids_class = torch.argmax(logits, dim=-1).item() label_class = id2label_class[predicted_class_ids_class] label_mapping = {0: 'Hambre', 1: 'Problemas para respirar', 2: 'Dolor', 3: 'Cansancio/Incomodidad'} label_class = label_mapping.get(predicted_class_ids_class, label_class) return label_class def predict_stream(audio_path_stream): with torch.no_grad(): logits = call(audio_path_stream, model=model_mon, dataset_path="A-POR-LOS-8000/data/baby_cry_detection", filter_white_noise=False) probabilities = torch.nn.functional.softmax(logits, dim=-1) crying_probabilities = probabilities[:, 1] avg_crying_probability = crying_probabilities.mean()*100 if avg_crying_probability < 15: label_class = predict(audio_path_stream) return "Está llorando por:", f"{label_class}. Probabilidad: {avg_crying_probability:.1f}%" else: return "No está llorando.", f"Probabilidad: {avg_crying_probability:.1f}%" def decibelios(audio_path_stream): with torch.no_grad(): logits = call(audio_path_stream, model=model_mon, dataset_path="A-POR-LOS-8000/data/baby_cry_detection", filter_white_noise=False) rms = torch.sqrt(torch.mean(torch.square(logits))) db_level = 20 * torch.log10(rms + 1e-6).item() return db_level def mostrar_decibelios(audio_path_stream, visual_threshold): db_level = decibelios(audio_path_stream) if db_level < visual_threshold: return f"Prediciendo. Decibelios: {db_level:.2f}" elif db_level > visual_threshold: return "No detectamos ruido..." def predict_stream_decib(audio_path_stream, visual_threshold): db_level = decibelios(audio_path_stream) if db_level < visual_threshold: llorando, probabilidad = predict_stream(audio_path_stream) return f"{llorando} {probabilidad}" else: return "" def chatbot_config(message, history: list[tuple[str, str]]): system_message = "You are a Chatbot specialized in baby health and care." max_tokens = 512 temperature = 0.7 top_p = 0.95 messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message_response in client.chat_completion(messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p): token = message_response.choices[0].delta.content response += token yield response def cambiar_pestaña(): return gr.update(visible=False), gr.update(visible=True) with gr.Blocks(theme=my_theme) as demo: estilo() with gr.Column(visible=True) as chatbot: gr.Markdown("

Asistente

") gr.ChatInterface( chatbot_config # TODO: Mirar argumentos ) gr.Markdown("Este chatbot no sustituye a un profesional de la salud. Ante cualquier preocupación o duda, consulta con tu pediatra.") with gr.Row(): with gr.Column(): gr.Markdown("

Predictor

") boton_predictor = gr.Button("Prueba el predictor") gr.Markdown("

Descubre por qué llora tu bebé

") with gr.Column(): gr.Markdown("

Monitor

") boton_monitor = gr.Button("Prueba el monitor") gr.Markdown("

Monitoriza si tu hijo está llorando y por qué, sin levantarte del sofá

") with gr.Column(visible=False) as pag_predictor: gr.Markdown("

Predictor

") audio_input = gr.Audio( min_length=1.0, format="wav", label="Baby recorder", type="filepath", ) gr.Button("¿Por qué llora?").click( predict, inputs=audio_input, outputs=gr.Textbox(label="Tu bebé llora por:") ) gr.Button("Volver a la pantalla inicial").click(cambiar_pestaña, outputs=[pag_predictor, chatbot]) with gr.Column(visible=False) as pag_monitor: gr.Markdown("

Monitor

") audio_stream = gr.Audio( format="wav", label="Baby recorder", type="filepath", streaming=True ) threshold_db = gr.Slider( minimum=0, maximum=100, step=1, value=30, label="Umbral de dB para activar la predicción" ) audio_stream.stream( mostrar_decibelios, inputs=[audio_stream, threshold_db], outputs=gr.Textbox(value="Esperando...", label="Estado") ) audio_stream.stream( predict_stream_decib, inputs=[audio_stream, threshold_db], outputs=gr.Textbox(value="", label="Tu bebé:") ) gr.Button("Volver a la pantalla inicial").click(cambiar_pestaña, outputs=[pag_monitor, chatbot]) boton_predictor.click(cambiar_pestaña, outputs=[chatbot, pag_predictor]) boton_monitor.click(cambiar_pestaña, outputs=[chatbot, pag_monitor]) demo.launch(share=True)