AAhad's picture
updated audio model type
61c7b22 verified
import streamlit as st
import time
from transformers import pipeline
from datasets import load_dataset, Audio, Features
st.set_page_config(page_title="🤗 Transformers Library examples",layout="wide")
st.title('🤗 :rainbow[Transformers Library examples]')
# Done
# function for Sentiment Analysis or Text classification model
def sentiment_analysis():
code = '''
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
results = classifier("Transformers library is very helpful.")
'''
st.code(code, language='python')
if st.button("Run Test ", type="primary"):
with st.spinner('Wait for it...'):
time.sleep(5)
classifier = pipeline("sentiment-analysis")
results = classifier("Transformers library is very helpful.")
st.write("Output:")
st.success(results)
st.divider()
st.subheader("Example: Multiple statements analysis")
with st.spinner('Wait for it...'):
time.sleep(5)
code = '''
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
results = classifier([
"This is quick tutorial site.",
"I learnt new topics today.",
"I do not like lengthy tutorials."
])
'''
st.code(code, language='python')
results = classifier([
"This is quick tutorial site.",
"I learnt new topics today.",
"I do not like lengthy tutorials."
])
st.write("Output:")
st.success(results)
# function for Sentiment Analysis or Text classification model
def text_generation():
code = '''
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
results = classifier("Transformers library is very helpful.")
'''
st.code(code, language='python')
if st.button("Run Test ", type="primary"):
with st.spinner('Wait for it...'):
time.sleep(5)
classifier = pipeline("sentiment-analysis")
# function for Sentiment Analysis or Text classification model
def summarization():
code = '''
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
results = classifier("Transformers library is very helpful.")
'''
st.code(code, language='python')
if st.button("Run Test ", type="primary"):
with st.spinner('Wait for it...'):
time.sleep(5)
classifier = pipeline("sentiment-analysis")
# DONE
# function for Image Classification model
def image_classification():
code = '''
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
results = classifier("Transformers library is very helpful.")
'''
st.code(code, language='python')
if st.button("Run Test ", type="primary"):
st.image("./data/dog.jpeg", width=250, use_column_width=100)
with st.spinner('Wait for it...'):
time.sleep(8)
vision_classifier = pipeline(model="google/vit-base-patch16-224")
preds = vision_classifier(images="./data/dog.jpeg")
st.success("Output:")
st.json(preds)
# function for Sentiment Analysis or Text classification model
def image_segmentation():
code = '''
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
results = classifier("Transformers library is very helpful.")
'''
st.code(code, language='python')
if st.button("Run Test ", type="primary"):
with st.spinner('Wait for it...'):
time.sleep(5)
classifier = pipeline("sentiment-analysis")
# function for Sentiment Analysis or Text classification model
def object_detection():
code = '''
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
results = classifier("Transformers library is very helpful.")
'''
st.code(code, language='python')
if st.button("Run Test ", type="primary"):
with st.spinner('Wait for it...'):
time.sleep(5)
classifier = pipeline("sentiment-analysis")
# function for Audio Classification model
def audio_classification():
code = '''
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
results = classifier("Transformers library is very helpful.")
'''
st.code(code, language='python')
if st.button("Run Test ", type="primary"):
with st.spinner('Wait for it...'):
time.sleep(5)
classifier = pipeline("sentiment-analysis")
# function forAutomatic Speech Recognition model
def automatic_speech_recognition():
code = '''
from transformers import pipeline
classifier = pipeline("automatic-speech-recognition")
results = transcriber("./data/mlk.flac")
'''
st.code(code, language='python')
if st.button("Run Test ", type="primary"):
speech_recognizer = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h")
dataset = load_dataset("PolyAI/minds14", name="en-US", split="train")
dataset = dataset.cast_column("audio", Audio(sampling_rate=speech_recognizer.feature_extractor.sampling_rate))
result = speech_recognizer(dataset[:4]["audio"])
with st.spinner('Wait for it...'):
time.sleep(5)
st.write("Output:")
st.success([d["text"] for d in result])
# function for Image Captioningn model
def image_captioning():
code = '''
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
results = classifier("Transformers library is very helpful.")
'''
st.code(code, language='python')
if st.button("Run Test ", type="primary"):
with st.spinner('Wait for it...'):
time.sleep(5)
classifier = pipeline("sentiment-analysis")
# function for Mask Filling model
def mask_filling():
code = '''
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
results = classifier("Transformers library is very helpful.")
'''
st.code(code, language='python')
if st.button("Run Test ", type="primary"):
with st.spinner('Wait for it...'):
time.sleep(5)
classifier = pipeline("sentiment-analysis")
# function for Document Question Answering model
def document_question_answering():
code = '''
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
results = classifier("Transformers library is very helpful.")
'''
st.code(code, language='python')
with st.spinner('Wait for it...'):
time.sleep(5)
# function for Named Entity Recognition model
def named_entity_recognition():
code = '''
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
results = classifier("Transformers library is very helpful.")
'''
st.code(code, language='python')
if st.button("Run Test ", type="primary"):
with st.spinner('Wait for it...'):
time.sleep(5)
classifier = pipeline("sentiment-analysis")
# function for translation model
def translation():
code = '''
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
results = classifier("Transformers library is very helpful.")
'''
st.code(code, language='python')
if st.button("Run Test ", type="primary"):
with st.spinner('Wait for it...'):
time.sleep(5)
classifier = pipeline("sentiment-analysis")
col1, col2 = st.columns(2)
'''
- `"audio-classification"`: will return a [`AudioClassificationPipeline`].
- `"automatic-speech-recognition"`: will return a [`AutomaticSpeechRecognitionPipeline`].
- `"conversational"`: will return a [`ConversationalPipeline`].
- `"depth-estimation"`: will return a [`DepthEstimationPipeline`].
- `"document-question-answering"`: will return a [`DocumentQuestionAnsweringPipeline`].
- `"feature-extraction"`: will return a [`FeatureExtractionPipeline`].
- `"fill-mask"`: will return a [`FillMaskPipeline`]:.
- `"image-classification"`: will return a [`ImageClassificationPipeline`].
- `"image-feature-extraction"`: will return an [`ImageFeatureExtractionPipeline`].
- `"image-segmentation"`: will return a [`ImageSegmentationPipeline`].
- `"image-to-image"`: will return a [`ImageToImagePipeline`].
- `"image-to-text"`: will return a [`ImageToTextPipeline`].
- `"mask-generation"`: will return a [`MaskGenerationPipeline`].
- `"object-detection"`: will return a [`ObjectDetectionPipeline`].
- `"question-answering"`: will return a [`QuestionAnsweringPipeline`].
- `"summarization"`: will return a [`SummarizationPipeline`].
- `"table-question-answering"`: will return a [`TableQuestionAnsweringPipeline`].
- `"text2text-generation"`: will return a [`Text2TextGenerationPipeline`].
- `"text-classification"` (alias `"sentiment-analysis"` available): will return a
[`TextClassificationPipeline`].
- `"text-generation"`: will return a [`TextGenerationPipeline`]:.
- `"text-to-audio"` (alias `"text-to-speech"` available): will return a [`TextToAudioPipeline`]:.
- `"token-classification"` (alias `"ner"` available): will return a [`TokenClassificationPipeline`].
- `"translation"`: will return a [`TranslationPipeline`].
- `"translation_xx_to_yy"`: will return a [`TranslationPipeline`].
- `"video-classification"`: will return a [`VideoClassificationPipeline`].
- `"visual-question-answering"`: will return a [`VisualQuestionAnsweringPipeline`].
- `"zero-shot-classification"`: will return a [`ZeroShotClassificationPipeline`].
- `"zero-shot-image-classification"`: will return a [`ZeroShotImageClassificationPipeline`].
- `"zero-shot-audio-classification"`: will return a [`ZeroShotAudioClassificationPipeline`].
- `"zero-shot-object-detection"`: will return a [`ZeroShotObjectDetectionPipeline`].
'''
with col1:
taskType = st.radio(
"Select a type of task to perform",
[
"Sentiment Analysis or Text classification",
"Text Generation",
"Summarization",
"Image Classification",
"Image Segmentation",
"Object Detection",
"Audio Classification",
"Automatic Speech Recognition",
"Visual Question Answering",
"Document Question Answering",
"Image Captioning",
"Mask Filling",
"Named Entity Recognition",
"Translation"
],
captions = [
"**pipeline(task=“sentiment-analysis”)**",
"pipeline(task=“text-generation”)",
"pipeline(task=“summarization”)",
"pipeline(task=“image-classification”)",
"pipeline(task=“image-segmentation”)",
"pipeline(task=“object-detection”)",
"pipeline(task=“audio-classification”)",
"pipeline(task=“automatic-speech-recognition”)",
"pipeline(task=“vqa”)",
"pipeline(task=“document-question-answering”)",
"pipeline(task=“image-to-text”)"
"Mask Filling",
"Named Entity Recognition",
"Translation"
], index=0)
with col2:
st.subheader(f"Example: {taskType}")
if taskType == "Sentiment Analysis or Text classification":
sentiment_analysis()
if taskType == "Text Generation":
text_generation()
if taskType == "Summarization":
summarization()
if taskType == "Image Classification":
image_classification()
if taskType == "Image Segmentation":
image_segmentation()
if taskType == "Object Detection":
object_detection()
if taskType == "Audio Classification":
audio_classification()
if taskType == "Automatic Speech Recognition":
automatic_speech_recognition()
if taskType == "Document Question Answering":
document_question_answering()
if taskType == "Image Captioning":
image_captioning()
if taskType == "Mask Filling":
mask_filling()
if taskType == "Named Entity Recognition":
named_entity_recognition()
if taskType == "Translation":
translation()