Erythrocyte3803
Add application file
e90f765
# -*- coding: utf-8 -*-
import os
inp_text = os.environ.get("inp_text")
inp_wav_dir = os.environ.get("inp_wav_dir")
exp_name = os.environ.get("exp_name")
i_part = os.environ.get("i_part")
all_parts = os.environ.get("all_parts")
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ.get("_CUDA_VISIBLE_DEVICES")
opt_dir = os.environ.get("opt_dir")
bert_pretrained_dir = os.environ.get("bert_pretrained_dir")
is_half = eval(os.environ.get("is_half", "True"))
import sys, numpy as np, traceback, pdb
import os.path
from glob import glob
from tqdm import tqdm
from text.cleaner import clean_text
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
import numpy as np
# inp_text=sys.argv[1]
# inp_wav_dir=sys.argv[2]
# exp_name=sys.argv[3]
# i_part=sys.argv[4]
# all_parts=sys.argv[5]
# os.environ["CUDA_VISIBLE_DEVICES"]=sys.argv[6]#i_gpu
# opt_dir="/data/docker/liujing04/gpt-vits/fine_tune_dataset/%s"%exp_name
# bert_pretrained_dir="/data/docker/liujing04/bert-vits2/Bert-VITS2-master20231106/bert/chinese-roberta-wwm-ext-large"
from time import time as ttime
import shutil
def my_save(fea,path):#####fix issue: torch.save doesn't support chinese path
dir=os.path.dirname(path)
name=os.path.basename(path)
# tmp_path="%s/%s%s.pth"%(dir,ttime(),i_part)
tmp_path="%s%s.pth"%(ttime(),i_part)
torch.save(fea,tmp_path)
shutil.move(tmp_path,"%s/%s"%(dir,name))
txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part)
if os.path.exists(txt_path) == False:
bert_dir = "%s/3-bert" % (opt_dir)
os.makedirs(opt_dir, exist_ok=True)
os.makedirs(bert_dir, exist_ok=True)
if torch.cuda.is_available():
device = "cuda:0"
# elif torch.backends.mps.is_available():
# device = "mps"
else:
device = "cpu"
tokenizer = AutoTokenizer.from_pretrained(bert_pretrained_dir)
bert_model = AutoModelForMaskedLM.from_pretrained(bert_pretrained_dir)
if is_half == True:
bert_model = bert_model.half().to(device)
else:
bert_model = bert_model.to(device)
def get_bert_feature(text, word2ph):
with torch.no_grad():
inputs = tokenizer(text, return_tensors="pt")
for i in inputs:
inputs[i] = inputs[i].to(device)
res = bert_model(**inputs, output_hidden_states=True)
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
assert len(word2ph) == len(text)
phone_level_feature = []
for i in range(len(word2ph)):
repeat_feature = res[i].repeat(word2ph[i], 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
return phone_level_feature.T
def process(data, res):
for name, text, lan in data:
try:
name = os.path.basename(name)
phones, word2ph, norm_text = clean_text(
text.replace("%", "-").replace("¥", ","), lan
)
path_bert = "%s/%s.pt" % (bert_dir, name)
if os.path.exists(path_bert) == False and lan == "zh":
bert_feature = get_bert_feature(norm_text, word2ph)
assert bert_feature.shape[-1] == len(phones)
# torch.save(bert_feature, path_bert)
my_save(bert_feature, path_bert)
phones = " ".join(phones)
# res.append([name,phones])
res.append([name, phones, word2ph, norm_text])
except:
print(name, text, traceback.format_exc())
todo = []
res = []
with open(inp_text, "r", encoding="utf8") as f:
lines = f.read().strip("\n").split("\n")
language_v1_to_language_v2 = {
"ZH": "zh",
"zh": "zh",
"JP": "ja",
"jp": "ja",
"JA": "ja",
"ja": "ja",
"EN": "en",
"en": "en",
"En": "en",
}
for line in lines[int(i_part) :: int(all_parts)]:
try:
wav_name, spk_name, language, text = line.split("|")
# todo.append([name,text,"zh"])
if language in language_v1_to_language_v2.keys():
todo.append(
[wav_name, text, language_v1_to_language_v2.get(language, language)]
)
else:
print(f"\033[33m[Waring] The {language = } of {wav_name} is not supported for training.\033[0m")
except:
print(line, traceback.format_exc())
process(todo, res)
opt = []
for name, phones, word2ph, norm_text in res:
opt.append("%s\t%s\t%s\t%s" % (name, phones, word2ph, norm_text))
with open(txt_path, "w", encoding="utf8") as f:
f.write("\n".join(opt) + "\n")