Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
import os | |
inp_text = os.environ.get("inp_text") | |
inp_wav_dir = os.environ.get("inp_wav_dir") | |
exp_name = os.environ.get("exp_name") | |
i_part = os.environ.get("i_part") | |
all_parts = os.environ.get("all_parts") | |
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ.get("_CUDA_VISIBLE_DEVICES") | |
opt_dir = os.environ.get("opt_dir") | |
bert_pretrained_dir = os.environ.get("bert_pretrained_dir") | |
is_half = eval(os.environ.get("is_half", "True")) | |
import sys, numpy as np, traceback, pdb | |
import os.path | |
from glob import glob | |
from tqdm import tqdm | |
from text.cleaner import clean_text | |
import torch | |
from transformers import AutoModelForMaskedLM, AutoTokenizer | |
import numpy as np | |
# inp_text=sys.argv[1] | |
# inp_wav_dir=sys.argv[2] | |
# exp_name=sys.argv[3] | |
# i_part=sys.argv[4] | |
# all_parts=sys.argv[5] | |
# os.environ["CUDA_VISIBLE_DEVICES"]=sys.argv[6]#i_gpu | |
# opt_dir="/data/docker/liujing04/gpt-vits/fine_tune_dataset/%s"%exp_name | |
# bert_pretrained_dir="/data/docker/liujing04/bert-vits2/Bert-VITS2-master20231106/bert/chinese-roberta-wwm-ext-large" | |
from time import time as ttime | |
import shutil | |
def my_save(fea,path):#####fix issue: torch.save doesn't support chinese path | |
dir=os.path.dirname(path) | |
name=os.path.basename(path) | |
# tmp_path="%s/%s%s.pth"%(dir,ttime(),i_part) | |
tmp_path="%s%s.pth"%(ttime(),i_part) | |
torch.save(fea,tmp_path) | |
shutil.move(tmp_path,"%s/%s"%(dir,name)) | |
txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part) | |
if os.path.exists(txt_path) == False: | |
bert_dir = "%s/3-bert" % (opt_dir) | |
os.makedirs(opt_dir, exist_ok=True) | |
os.makedirs(bert_dir, exist_ok=True) | |
if torch.cuda.is_available(): | |
device = "cuda:0" | |
# elif torch.backends.mps.is_available(): | |
# device = "mps" | |
else: | |
device = "cpu" | |
tokenizer = AutoTokenizer.from_pretrained(bert_pretrained_dir) | |
bert_model = AutoModelForMaskedLM.from_pretrained(bert_pretrained_dir) | |
if is_half == True: | |
bert_model = bert_model.half().to(device) | |
else: | |
bert_model = bert_model.to(device) | |
def get_bert_feature(text, word2ph): | |
with torch.no_grad(): | |
inputs = tokenizer(text, return_tensors="pt") | |
for i in inputs: | |
inputs[i] = inputs[i].to(device) | |
res = bert_model(**inputs, output_hidden_states=True) | |
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] | |
assert len(word2ph) == len(text) | |
phone_level_feature = [] | |
for i in range(len(word2ph)): | |
repeat_feature = res[i].repeat(word2ph[i], 1) | |
phone_level_feature.append(repeat_feature) | |
phone_level_feature = torch.cat(phone_level_feature, dim=0) | |
return phone_level_feature.T | |
def process(data, res): | |
for name, text, lan in data: | |
try: | |
name = os.path.basename(name) | |
phones, word2ph, norm_text = clean_text( | |
text.replace("%", "-").replace("¥", ","), lan | |
) | |
path_bert = "%s/%s.pt" % (bert_dir, name) | |
if os.path.exists(path_bert) == False and lan == "zh": | |
bert_feature = get_bert_feature(norm_text, word2ph) | |
assert bert_feature.shape[-1] == len(phones) | |
# torch.save(bert_feature, path_bert) | |
my_save(bert_feature, path_bert) | |
phones = " ".join(phones) | |
# res.append([name,phones]) | |
res.append([name, phones, word2ph, norm_text]) | |
except: | |
print(name, text, traceback.format_exc()) | |
todo = [] | |
res = [] | |
with open(inp_text, "r", encoding="utf8") as f: | |
lines = f.read().strip("\n").split("\n") | |
language_v1_to_language_v2 = { | |
"ZH": "zh", | |
"zh": "zh", | |
"JP": "ja", | |
"jp": "ja", | |
"JA": "ja", | |
"ja": "ja", | |
"EN": "en", | |
"en": "en", | |
"En": "en", | |
} | |
for line in lines[int(i_part) :: int(all_parts)]: | |
try: | |
wav_name, spk_name, language, text = line.split("|") | |
# todo.append([name,text,"zh"]) | |
if language in language_v1_to_language_v2.keys(): | |
todo.append( | |
[wav_name, text, language_v1_to_language_v2.get(language, language)] | |
) | |
else: | |
print(f"\033[33m[Waring] The {language = } of {wav_name} is not supported for training.\033[0m") | |
except: | |
print(line, traceback.format_exc()) | |
process(todo, res) | |
opt = [] | |
for name, phones, word2ph, norm_text in res: | |
opt.append("%s\t%s\t%s\t%s" % (name, phones, word2ph, norm_text)) | |
with open(txt_path, "w", encoding="utf8") as f: | |
f.write("\n".join(opt) + "\n") | |