Spaces:
Running
on
Zero
Running
on
Zero
Update custom_pipeline.py
Browse files- custom_pipeline.py +148 -50
custom_pipeline.py
CHANGED
@@ -1,8 +1,16 @@
|
|
1 |
-
import torch
|
2 |
import numpy as np
|
3 |
-
|
4 |
-
from
|
5 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# Constants for shift calculation
|
8 |
BASE_SEQ_LEN = 256
|
@@ -19,7 +27,7 @@ def calculate_timestep_shift(image_seq_len: int) -> float:
|
|
19 |
return mu
|
20 |
|
21 |
def prepare_timesteps(
|
22 |
-
scheduler
|
23 |
num_inference_steps: Optional[int] = None,
|
24 |
device: Optional[Union[str, torch.device]] = None,
|
25 |
timesteps: Optional[List[int]] = None,
|
@@ -41,20 +49,23 @@ def prepare_timesteps(
|
|
41 |
num_inference_steps = len(timesteps)
|
42 |
return timesteps, num_inference_steps
|
43 |
|
44 |
-
# FLUX pipeline
|
45 |
-
class
|
46 |
"""
|
47 |
-
|
48 |
-
|
|
|
49 |
"""
|
50 |
@torch.inference_mode()
|
51 |
-
def
|
52 |
self,
|
53 |
prompt: Union[str, List[str]] = None,
|
54 |
prompt_2: Optional[Union[str, List[str]]] = None,
|
|
|
|
|
55 |
height: Optional[int] = None,
|
56 |
width: Optional[int] = None,
|
57 |
-
num_inference_steps: int =
|
58 |
timesteps: List[int] = None,
|
59 |
guidance_scale: float = 3.5,
|
60 |
num_images_per_prompt: Optional[int] = 1,
|
@@ -62,16 +73,21 @@ class FLUXPipelineWithIntermediateOutputs(FluxPipeline):
|
|
62 |
latents: Optional[torch.FloatTensor] = None,
|
63 |
prompt_embeds: Optional[torch.FloatTensor] = None,
|
64 |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
|
65 |
output_type: Optional[str] = "pil",
|
66 |
return_dict: bool = True,
|
67 |
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
68 |
-
|
|
|
|
|
|
|
69 |
):
|
70 |
-
|
71 |
height = height or self.default_sample_size * self.vae_scale_factor
|
72 |
width = width or self.default_sample_size * self.vae_scale_factor
|
73 |
|
74 |
-
# 1. Check inputs
|
75 |
self.check_inputs(
|
76 |
prompt,
|
77 |
prompt_2,
|
@@ -79,6 +95,7 @@ class FLUXPipelineWithIntermediateOutputs(FluxPipeline):
|
|
79 |
width,
|
80 |
prompt_embeds=prompt_embeds,
|
81 |
pooled_prompt_embeds=pooled_prompt_embeds,
|
|
|
82 |
max_sequence_length=max_sequence_length,
|
83 |
)
|
84 |
|
@@ -87,12 +104,23 @@ class FLUXPipelineWithIntermediateOutputs(FluxPipeline):
|
|
87 |
self._interrupt = False
|
88 |
|
89 |
# 2. Define call parameters
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
device = self._execution_device
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
96 |
prompt=prompt,
|
97 |
prompt_2=prompt_2,
|
98 |
prompt_embeds=prompt_embeds,
|
@@ -102,6 +130,21 @@ class FLUXPipelineWithIntermediateOutputs(FluxPipeline):
|
|
102 |
max_sequence_length=max_sequence_length,
|
103 |
lora_scale=lora_scale,
|
104 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
# 4. Prepare latent variables
|
106 |
num_channels_latents = self.transformer.config.in_channels // 4
|
107 |
latents, latent_image_ids = self.prepare_latents(
|
@@ -114,6 +157,7 @@ class FLUXPipelineWithIntermediateOutputs(FluxPipeline):
|
|
114 |
generator,
|
115 |
latents,
|
116 |
)
|
|
|
117 |
# 5. Prepare timesteps
|
118 |
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
119 |
image_seq_len = latents.shape[1]
|
@@ -126,43 +170,97 @@ class FLUXPipelineWithIntermediateOutputs(FluxPipeline):
|
|
126 |
sigmas,
|
127 |
mu=mu,
|
128 |
)
|
|
|
129 |
self._num_timesteps = len(timesteps)
|
130 |
|
131 |
-
# Handle guidance
|
132 |
-
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float16).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
|
133 |
-
|
134 |
# 6. Denoising loop
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
self.maybe_free_model_hooks()
|
160 |
-
torch.cuda.empty_cache()
|
161 |
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
163 |
"""Decodes the given latents into an image."""
|
164 |
-
vae = vae or self.vae
|
165 |
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
166 |
-
latents = (latents / vae.config.scaling_factor) + vae.config.shift_factor
|
167 |
-
image = vae.decode(latents, return_dict=False)[0]
|
168 |
return self.image_processor.postprocess(image, output_type=output_type)[0]
|
|
|
|
|
1 |
import numpy as np
|
2 |
+
import torch
|
3 |
+
from diffusers.pipelines.flux.pipeline_output import FluxPipeline, FluxPipelineOutput
|
4 |
+
from typing import List, Union, Optional, Dict, Any, Callable
|
5 |
+
from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps
|
6 |
+
from diffusers.utils import is_torch_xla_available
|
7 |
+
|
8 |
+
if is_torch_xla_available():
|
9 |
+
import torch_xla.core.xla_model as xm
|
10 |
+
|
11 |
+
XLA_AVAILABLE = True
|
12 |
+
else:
|
13 |
+
XLA_AVAILABLE = False
|
14 |
|
15 |
# Constants for shift calculation
|
16 |
BASE_SEQ_LEN = 256
|
|
|
27 |
return mu
|
28 |
|
29 |
def prepare_timesteps(
|
30 |
+
scheduler,
|
31 |
num_inference_steps: Optional[int] = None,
|
32 |
device: Optional[Union[str, torch.device]] = None,
|
33 |
timesteps: Optional[List[int]] = None,
|
|
|
49 |
num_inference_steps = len(timesteps)
|
50 |
return timesteps, num_inference_steps
|
51 |
|
52 |
+
# FLUX pipeline with CFG and intermediate outputs
|
53 |
+
class FluxWithCFGPipeline(FluxPipeline):
|
54 |
"""
|
55 |
+
Flux pipeline with Classifier-Free Guidance and the ability to yield
|
56 |
+
intermediate images during the denoising process with progressively
|
57 |
+
increasing resolution for faster generation.
|
58 |
"""
|
59 |
@torch.inference_mode()
|
60 |
+
def __call__(
|
61 |
self,
|
62 |
prompt: Union[str, List[str]] = None,
|
63 |
prompt_2: Optional[Union[str, List[str]]] = None,
|
64 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
65 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
66 |
height: Optional[int] = None,
|
67 |
width: Optional[int] = None,
|
68 |
+
num_inference_steps: int = 28,
|
69 |
timesteps: List[int] = None,
|
70 |
guidance_scale: float = 3.5,
|
71 |
num_images_per_prompt: Optional[int] = 1,
|
|
|
73 |
latents: Optional[torch.FloatTensor] = None,
|
74 |
prompt_embeds: Optional[torch.FloatTensor] = None,
|
75 |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
76 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
77 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
78 |
output_type: Optional[str] = "pil",
|
79 |
return_dict: bool = True,
|
80 |
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
81 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
82 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
83 |
+
max_sequence_length: int = 512,
|
84 |
+
yield_intermediates: bool = False, # New parameter for yielding intermediates
|
85 |
):
|
86 |
+
|
87 |
height = height or self.default_sample_size * self.vae_scale_factor
|
88 |
width = width or self.default_sample_size * self.vae_scale_factor
|
89 |
|
90 |
+
# 1. Check inputs. Raise error if not correct
|
91 |
self.check_inputs(
|
92 |
prompt,
|
93 |
prompt_2,
|
|
|
95 |
width,
|
96 |
prompt_embeds=prompt_embeds,
|
97 |
pooled_prompt_embeds=pooled_prompt_embeds,
|
98 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
99 |
max_sequence_length=max_sequence_length,
|
100 |
)
|
101 |
|
|
|
104 |
self._interrupt = False
|
105 |
|
106 |
# 2. Define call parameters
|
107 |
+
if prompt is not None and isinstance(prompt, str):
|
108 |
+
batch_size = 1
|
109 |
+
elif prompt is not None and isinstance(prompt, list):
|
110 |
+
batch_size = len(prompt)
|
111 |
+
else:
|
112 |
+
batch_size = prompt_embeds.shape[0]
|
113 |
+
|
114 |
device = self._execution_device
|
115 |
|
116 |
+
lora_scale = (
|
117 |
+
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
118 |
+
)
|
119 |
+
(
|
120 |
+
prompt_embeds,
|
121 |
+
pooled_prompt_embeds,
|
122 |
+
text_ids,
|
123 |
+
) = self.encode_prompt(
|
124 |
prompt=prompt,
|
125 |
prompt_2=prompt_2,
|
126 |
prompt_embeds=prompt_embeds,
|
|
|
130 |
max_sequence_length=max_sequence_length,
|
131 |
lora_scale=lora_scale,
|
132 |
)
|
133 |
+
(
|
134 |
+
negative_prompt_embeds,
|
135 |
+
negative_pooled_prompt_embeds,
|
136 |
+
negative_text_ids,
|
137 |
+
) = self.encode_prompt(
|
138 |
+
prompt=negative_prompt,
|
139 |
+
prompt_2=negative_prompt_2,
|
140 |
+
prompt_embeds=negative_prompt_embeds,
|
141 |
+
pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
142 |
+
device=device,
|
143 |
+
num_images_per_prompt=num_images_per_prompt,
|
144 |
+
max_sequence_length=max_sequence_length,
|
145 |
+
lora_scale=lora_scale,
|
146 |
+
)
|
147 |
+
|
148 |
# 4. Prepare latent variables
|
149 |
num_channels_latents = self.transformer.config.in_channels // 4
|
150 |
latents, latent_image_ids = self.prepare_latents(
|
|
|
157 |
generator,
|
158 |
latents,
|
159 |
)
|
160 |
+
|
161 |
# 5. Prepare timesteps
|
162 |
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
163 |
image_seq_len = latents.shape[1]
|
|
|
170 |
sigmas,
|
171 |
mu=mu,
|
172 |
)
|
173 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
174 |
self._num_timesteps = len(timesteps)
|
175 |
|
|
|
|
|
|
|
176 |
# 6. Denoising loop
|
177 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
178 |
+
for i, t in enumerate(timesteps):
|
179 |
+
if self.interrupt:
|
180 |
+
continue
|
181 |
+
|
182 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
183 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
184 |
+
|
185 |
+
# handle guidance
|
186 |
+
if self.transformer.config.guidance_embeds:
|
187 |
+
guidance = torch.tensor([guidance_scale], device=device)
|
188 |
+
guidance = guidance.expand(latents.shape[0])
|
189 |
+
else:
|
190 |
+
guidance = None
|
191 |
+
|
192 |
+
noise_pred_text = self.transformer(
|
193 |
+
hidden_states=latents,
|
194 |
+
timestep=timestep / 1000,
|
195 |
+
guidance=guidance,
|
196 |
+
pooled_projections=pooled_prompt_embeds,
|
197 |
+
encoder_hidden_states=prompt_embeds,
|
198 |
+
txt_ids=text_ids,
|
199 |
+
img_ids=latent_image_ids,
|
200 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
201 |
+
return_dict=False,
|
202 |
+
)[0]
|
203 |
+
|
204 |
+
noise_pred_uncond = self.transformer(
|
205 |
+
hidden_states=latents,
|
206 |
+
timestep=timestep / 1000,
|
207 |
+
guidance=guidance,
|
208 |
+
pooled_projections=negative_pooled_prompt_embeds,
|
209 |
+
encoder_hidden_states=negative_prompt_embeds,
|
210 |
+
txt_ids=negative_text_ids,
|
211 |
+
img_ids=latent_image_ids,
|
212 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
213 |
+
return_dict=False,
|
214 |
+
)[0]
|
215 |
+
|
216 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
217 |
+
|
218 |
+
# compute the previous noisy sample x_t -> x_t-1
|
219 |
+
latents_dtype = latents.dtype
|
220 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
221 |
+
|
222 |
+
if latents.dtype != latents_dtype:
|
223 |
+
if torch.backends.mps.is_available():
|
224 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
225 |
+
latents = latents.to(latents_dtype)
|
226 |
+
|
227 |
+
if callback_on_step_end is not None:
|
228 |
+
callback_kwargs = {}
|
229 |
+
for k in callback_on_step_end_tensor_inputs:
|
230 |
+
callback_kwargs[k] = locals()[k]
|
231 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
232 |
+
|
233 |
+
latents = callback_outputs.pop("latents", latents)
|
234 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
235 |
+
|
236 |
+
# call the callback, if provided
|
237 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
238 |
+
progress_bar.update()
|
239 |
+
|
240 |
+
# Yield intermediate images if requested
|
241 |
+
if yield_intermediates:
|
242 |
+
yield self._decode_latents_to_image(latents, height, width, output_type)
|
243 |
+
|
244 |
+
if XLA_AVAILABLE:
|
245 |
+
xm.mark_step()
|
246 |
+
|
247 |
+
# Final image decoding
|
248 |
+
if output_type == "latent":
|
249 |
+
image = latents
|
250 |
+
else:
|
251 |
+
image = self._decode_latents_to_image(latents, height, width, output_type)
|
252 |
+
|
253 |
+
# Offload all models
|
254 |
self.maybe_free_model_hooks()
|
|
|
255 |
|
256 |
+
if not return_dict:
|
257 |
+
return (image,)
|
258 |
+
|
259 |
+
return FluxPipelineOutput(images=image)
|
260 |
+
|
261 |
+
def _decode_latents_to_image(self, latents, height, width, output_type):
|
262 |
"""Decodes the given latents into an image."""
|
|
|
263 |
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
264 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
265 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
266 |
return self.image_processor.postprocess(image, output_type=output_type)[0]
|