Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
from persist import persist, load_widget_state | |
import numpy as np | |
import matplotlib.pyplot as plt | |
global variable_output | |
def main(): | |
cs_body() | |
def convert_csv(): | |
d = {'col1': [], 'col2': []} | |
df = pd.DataFrame(data=d, columns=['Age', 'Sex']) | |
return df.to_csv().encode("utf-8") | |
def cs_body(): | |
st.header('Training Data and Methodology') | |
st.write("Provide an overview of the Training Data and Training Procedure for this model") | |
st.markdown('##### Training dataset') | |
left, right = st.columns(2) | |
left.number_input("Training set size",value=100) | |
right.number_input("Validation set size",value=20) | |
st.text("Demographical and clinical characteristics") | |
left, right = st.columns(2)#, vertical_alignment ="center") | |
left.download_button("Download Template", data=convert_csv(), file_name='file.csv') | |
demo = right.file_uploader("Load template",type=['csv']) | |
if demo is not None: | |
left, right = st.columns(2)#, vertical_alignment ="center") | |
fig, ax = plt.subplots() | |
ax.set_title("Age distribution") | |
ax.hist(np.random.normal(loc=40,scale=4.0,size=500)) | |
age = left.pyplot(fig) | |
fig, ax = plt.subplots() | |
ax.pie([45,55],labels=["Men","Women"]) | |
right.pyplot(fig) | |
st.text_input("Source",placeholder="Brats challenge/ Clinic ...") | |
st.text("Acquisition date") | |
left, right = st.columns(2) | |
left.date_input("From") | |
right.date_input("To") | |
if __name__ == '__main__': | |
load_widget_state() | |
main() |