Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files
pages/1_👀_Technical_Specifications.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from persist import persist, load_widget_state
|
3 |
+
import json
|
4 |
+
import requests
|
5 |
+
#from specific_extraction import extract_it
|
6 |
+
|
7 |
+
|
8 |
+
# global variable_output
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
def get_cached_data():
|
13 |
+
# json.load(open('file_TG263.json'))
|
14 |
+
struct_dict = {"Target":["GTV","CTV","PTV"],"Anatomy":["SpinalCord","BrainStem"]}
|
15 |
+
r = requests.get('https://huggingface.co/api/models-tags-by-type')
|
16 |
+
tags_data = r.json()
|
17 |
+
libraries = [x['id'] for x in tags_data['library']]
|
18 |
+
return struct_dict, libraries
|
19 |
+
|
20 |
+
def main():
|
21 |
+
cs_body()
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
def cs_body():
|
26 |
+
|
27 |
+
struct_dict, libraries = get_cached_data()
|
28 |
+
st.header('Technical Specifications')
|
29 |
+
st.write("Provide an overview of any additional technical specifications for this model")
|
30 |
+
st.markdown('##### Model architecture')
|
31 |
+
st.number_input("Total number of trainable parameters [million]",value=5)
|
32 |
+
left, middle, right = st.columns(3)
|
33 |
+
nlines = int(left.number_input("Input channels", 0, 20, 1))
|
34 |
+
for i in range(nlines):
|
35 |
+
type_input = middle.selectbox(f"Input type # {i}", list(struct_dict.keys()))
|
36 |
+
right.selectbox("Input",struct_dict[type_input], help="From https://aapm.onlinelibrary.wiley.com/doi/pdf/10.1002/acm2.12701")
|
37 |
+
st.text_input("Loss function",placeholder="MSE")
|
38 |
+
st.number_input("Batch size",value=1)
|
39 |
+
left, right = st.columns(2)
|
40 |
+
nlines = int(left.number_input("Patch dimension", 2, 3, 3))
|
41 |
+
# cols = st.columns(ncol)
|
42 |
+
for i in range(nlines):
|
43 |
+
right.number_input(f"Dim [px] # {i}", key=i,value=128)
|
44 |
+
arch_fig = st.file_uploader("Figure of the architecture",type=['png','jpg'])
|
45 |
+
if arch_fig is not None:
|
46 |
+
st.image(arch_fig)
|
47 |
+
|
48 |
+
st.selectbox("Library/Dependencies", libraries,help="The name of the library this model came from (Ex. pytorch, timm, spacy, keras, etc.). This is usually automatically detected in model repos, so it is not required.", key=persist('library_name'))
|
49 |
+
st.text_input("Hardware recommended", placeholder="GPU 20Gb RAM", key=persist("Model_hardware"))
|
50 |
+
st.number_input("Inference time for recommended hardware [seconds]",value=10, key=persist("inference_time"))
|
51 |
+
st.text_area("Installation / Getting started", placeholder="Installation procedure / code to run inference", key=persist("Model_how_to"))
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
if __name__ == '__main__':
|
60 |
+
load_widget_state()
|
61 |
+
main()
|
pages/2_🏋️♀️_Model_training.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from persist import persist, load_widget_state
|
4 |
+
import numpy as np
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
global variable_output
|
7 |
+
|
8 |
+
def main():
|
9 |
+
|
10 |
+
cs_body()
|
11 |
+
|
12 |
+
def convert_csv():
|
13 |
+
d = {'col1': [], 'col2': []}
|
14 |
+
df = pd.DataFrame(data=d, columns=['Age', 'Sex'])
|
15 |
+
return df.to_csv().encode("utf-8")
|
16 |
+
|
17 |
+
def cs_body():
|
18 |
+
|
19 |
+
st.header('Training Data and Methodology')
|
20 |
+
st.write("Provide an overview of the Training Data and Training Procedure for this model")
|
21 |
+
st.markdown('##### Training dataset')
|
22 |
+
left, right = st.columns(2)
|
23 |
+
left.number_input("Training set size",value=100)
|
24 |
+
right.number_input("Validation set size",value=20)
|
25 |
+
st.text("Demographical and clinical characteristics")
|
26 |
+
left, right = st.columns(2, vertical_alignment ="center")
|
27 |
+
left.download_button("Download Template", data=convert_csv(), file_name='file.csv')
|
28 |
+
demo = right.file_uploader("Load template",type=['csv'])
|
29 |
+
if demo is not None:
|
30 |
+
left, right = st.columns(2, vertical_alignment ="center")
|
31 |
+
|
32 |
+
fig, ax = plt.subplots()
|
33 |
+
ax.set_title("Age distribution")
|
34 |
+
ax.hist(np.random.normal(size=500))
|
35 |
+
left.pyplot(fig)
|
36 |
+
|
37 |
+
fig, ax = plt.subplots()
|
38 |
+
ax.pie([45,55],labels=["Men","Women"])
|
39 |
+
right.pyplot(fig)
|
40 |
+
st.text_input("Source",placeholder="Brats challenge/ Clinic ...")
|
41 |
+
st.text("Acquisition date")
|
42 |
+
left, right = st.columns(2)
|
43 |
+
left.date_input("From")
|
44 |
+
right.date_input("To")
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
if __name__ == '__main__':
|
50 |
+
load_widget_state()
|
51 |
+
main()
|
pages/3_🔬_Model_Evaluation.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from persist import persist, load_widget_state
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
from middleMan import apply_view,writingPrompt
|
6 |
+
|
7 |
+
global variable_output
|
8 |
+
|
9 |
+
def main():
|
10 |
+
cs_body()
|
11 |
+
|
12 |
+
|
13 |
+
def cs_body():
|
14 |
+
|
15 |
+
#stateVariable = 'Model_Eval'
|
16 |
+
#help_text ='Detail the Evaluation Results for this model'
|
17 |
+
#col1.header('Model Evaluation')
|
18 |
+
st.markdown('# Evaluation')
|
19 |
+
st.text_area(" This section describes the evaluation protocols and provides the results. ",help="Detail the Evaluation Results for this model")
|
20 |
+
st.markdown('## Testing Data, Factors & Metrics:')
|
21 |
+
left, right = st.columns([2,4])
|
22 |
+
|
23 |
+
#st.markdown('### Model Description')
|
24 |
+
|
25 |
+
|
26 |
+
with left:
|
27 |
+
st.write("\n")
|
28 |
+
st.write("\n")
|
29 |
+
st.markdown('#### Testing Data:')
|
30 |
+
st.write("\n")
|
31 |
+
st.write("\n")
|
32 |
+
st.write("\n")
|
33 |
+
st.write("\n")
|
34 |
+
st.write("\n")
|
35 |
+
st.write("\n")
|
36 |
+
#st.write("\n")
|
37 |
+
st.markdown('#### Factors:')
|
38 |
+
st.write("\n")
|
39 |
+
st.write("\n")
|
40 |
+
st.write("\n")
|
41 |
+
st.write("\n")
|
42 |
+
st.write("\n")
|
43 |
+
st.write("\n")
|
44 |
+
st.markdown('#### Metrics:')
|
45 |
+
st.write("\n")
|
46 |
+
st.write("\n")
|
47 |
+
st.write("\n")
|
48 |
+
st.write("\n")
|
49 |
+
st.write("\n")
|
50 |
+
st.markdown('#### Results:')
|
51 |
+
|
52 |
+
with right:
|
53 |
+
#soutput_jinja = parse_into_jinja_markdown()
|
54 |
+
st.text_area("", help="Ideally this links to a Dataset Card.",key=persist("Testing_Data"))
|
55 |
+
#st.write("\n")
|
56 |
+
st.text_area("",help="What are the foreseeable characteristics that will influence how the model behaves? This includes domain and context, as well as population subgroups.",key=persist("Factors"))
|
57 |
+
st.text_area("", help="What metrics will be used for evaluation in light of tradeoffs between different errors?", key=persist("Metrics"))
|
58 |
+
st.text_area("", key=persist("Model_Results"))
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
if __name__ == '__main__':
|
65 |
+
load_widget_state()
|
66 |
+
main()
|