Spaces:
Build error
Build error
File size: 9,022 Bytes
9bc47e3 c119102 9bc47e3 c119102 9bc47e3 c119102 9bc47e3 c119102 9bc47e3 c119102 9bc47e3 c119102 5ed278d c119102 9bc47e3 c119102 9bc47e3 c119102 9bc47e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import os
import cv2
import sys
import numpy as np
import gradio as gr
from PIL import Image
import matplotlib.pyplot as plt
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
models = {
'vit_b': './checkpoints/sam_vit_b_01ec64.pth',
'vit_l': './checkpoints/sam_vit_l_0b3195.pth',
'vit_h': './checkpoints/sam_vit_h_4b8939.pth'
}
def segment_one(img, mask_generator, seed=None):
if seed is not None:
np.random.seed(seed)
masks = mask_generator.generate(img)
sorted_anns = sorted(masks, key=(lambda x: x['area']), reverse=True)
mask_all = np.ones((img.shape[0], img.shape[1], 3))
for ann in sorted_anns:
m = ann['segmentation']
color_mask = np.random.random((1, 3)).tolist()[0]
for i in range(3):
mask_all[m == True, i] = color_mask[i]
result = img / 255 * 0.3 + mask_all * 0.7
return result, mask_all
def inference(device, model_type, points_per_side, pred_iou_thresh, stability_score_thresh, min_mask_region_area,
stability_score_offset, box_nms_thresh, crop_n_layers, crop_nms_thresh, input_x, progress=gr.Progress()):
# sam model
sam = sam_model_registry[model_type](checkpoint=models[model_type]).to(device)
mask_generator = SamAutomaticMaskGenerator(
sam,
points_per_side=points_per_side,
pred_iou_thresh=pred_iou_thresh,
stability_score_thresh=stability_score_thresh,
stability_score_offset=stability_score_offset,
box_nms_thresh=box_nms_thresh,
crop_n_layers=crop_n_layers,
crop_nms_thresh=crop_nms_thresh,
crop_overlap_ratio=512 / 1500,
crop_n_points_downscale_factor=1,
point_grids=None,
min_mask_region_area=min_mask_region_area,
output_mode='binary_mask'
)
# input is image, type: numpy
if type(input_x) == np.ndarray:
result, mask_all = segment_one(input_x, mask_generator)
return result, mask_all
elif isinstance(input_x, str): # input is video, type: path (str)
cap = cv2.VideoCapture(input_x) # read video
frames_num = cap.get(cv2.CAP_PROP_FRAME_COUNT)
W, H = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
print(fps)
out = cv2.VideoWriter("output.mp4", cv2.VideoWriter_fourcc('x', '2', '6', '4'), fps, (W, H), isColor=True)
for _ in progress.tqdm(range(int(frames_num)), desc='Processing video ({} frames, size {}x{})'.format(int(frames_num), W, H)):
ret, frame = cap.read() # read a frame
result, mask_all = segment_one(frame, mask_generator, seed=2023)
result = (result * 255).astype(np.uint8)
out.write(result)
out.release()
cap.release()
return 'output.mp4'
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown(
'''# Segment Anything!π
The Segment Anything Model (SAM) produces high quality object masks from input prompts such as points or boxes, and it can be used to generate masks for all objects in an image. It has been trained on a dataset of 11 million images and 1.1 billion masks, and has strong zero-shot performance on a variety of segmentation tasks.
[**Official Project**](https://segment-anything.com/)
'''
)
with gr.Row():
# select model
model_type = gr.Dropdown(["vit_b", "vit_l", "vit_h"], value='vit_b', label="Select Model")
# select device
device = gr.Dropdown(["cpu", "cuda"], value='cuda', label="Select Device")
# εζ°
with gr.Accordion(label='Parameters', open=False):
with gr.Row():
points_per_side = gr.Number(value=32, label="points_per_side", precision=0,
info='''The number of points to be sampled along one side of the image. The total
number of points is points_per_side**2.''')
pred_iou_thresh = gr.Slider(value=0.88, minimum=0, maximum=1.0, step=0.01, label="pred_iou_thresh",
info='''A filtering threshold in [0,1], using the model's predicted mask quality.''')
stability_score_thresh = gr.Slider(value=0.95, minimum=0, maximum=1.0, step=0.01, label="stability_score_thresh",
info='''A filtering threshold in [0,1], using the stability of the mask under
changes to the cutoff used to binarize the model's mask predictions.''')
min_mask_region_area = gr.Number(value=0, label="min_mask_region_area", precision=0,
info='''If >0, postprocessing will be applied to remove disconnected regions
and holes in masks with area smaller than min_mask_region_area.''')
with gr.Row():
stability_score_offset = gr.Number(value=1, label="stability_score_offset",
info='''The amount to shift the cutoff when calculated the stability score.''')
box_nms_thresh = gr.Slider(value=0.7, minimum=0, maximum=1.0, step=0.01, label="box_nms_thresh",
info='''The box IoU cutoff used by non-maximal ression to filter duplicate masks.''')
crop_n_layers = gr.Number(value=0, label="crop_n_layers", precision=0,
info='''If >0, mask prediction will be run again on crops of the image.
Sets the number of layers to run, where each layer has 2**i_layer number of image crops.''')
crop_nms_thresh = gr.Slider(value=0.7, minimum=0, maximum=1.0, step=0.01, label="crop_nms_thresh",
info='''The box IoU cutoff used by non-maximal suppression to filter duplicate
masks between different crops.''')
# Show image
with gr.Tab(label='Image'):
with gr.Row().style(equal_height=True):
with gr.Column():
input_image = gr.Image(type="numpy")
with gr.Row():
button = gr.Button("Auto!")
with gr.Tab(label='Image+Mask'):
output_image = gr.Image(type='numpy')
with gr.Tab(label='Mask'):
output_mask = gr.Image(type='numpy')
gr.Examples(
examples=[os.path.join(os.path.dirname(__file__), "./images/53960-scaled.jpg"),
os.path.join(os.path.dirname(__file__), "./images/2388455-scaled.jpg"),
os.path.join(os.path.dirname(__file__), "./images/1.jpg"),
os.path.join(os.path.dirname(__file__), "./images/2.jpg"),
os.path.join(os.path.dirname(__file__), "./images/3.jpg"),
os.path.join(os.path.dirname(__file__), "./images/4.jpg"),
os.path.join(os.path.dirname(__file__), "./images/5.jpg"),
os.path.join(os.path.dirname(__file__), "./images/6.jpg"),
os.path.join(os.path.dirname(__file__), "./images/7.jpg"),
os.path.join(os.path.dirname(__file__), "./images/8.jpg"),
],
inputs=input_image,
outputs=output_image,
)
# Show video
with gr.Tab(label='Video'):
with gr.Row().style(equal_height=True):
with gr.Column():
input_video = gr.Video()
with gr.Row():
button_video = gr.Button("Auto!")
output_video = gr.Video(format='mp4')
gr.Markdown('''
**Note:** processing video will take a long time, please upload a short video.
''')
gr.Examples(
examples=[os.path.join(os.path.dirname(__file__), "./images/video1.mp4"),
os.path.join(os.path.dirname(__file__), "./images/video2.mp4")
],
inputs=input_video,
outputs=output_video
)
# button image
button.click(inference, inputs=[device, model_type, points_per_side, pred_iou_thresh, stability_score_thresh,
min_mask_region_area, stability_score_offset, box_nms_thresh, crop_n_layers,
crop_nms_thresh, input_image],
outputs=[output_image, output_mask])
# button video
button_video.click(inference, inputs=[device, model_type, points_per_side, pred_iou_thresh, stability_score_thresh,
min_mask_region_area, stability_score_offset, box_nms_thresh, crop_n_layers,
crop_nms_thresh, input_video],
outputs=[output_video])
demo.queue().launch(debug=True, enable_queue=True)
|