File size: 6,312 Bytes
9bc47e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3c1db2
9bc47e3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
import cv2
import sys
import numpy as np
import gradio as gr
from PIL import Image
import matplotlib.pyplot as plt
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator


models = {
    'vit_b': './checkpoints/sam_vit_b_01ec64.pth',
    'vit_l': './checkpoints/sam_vit_l_0b3195.pth',
    'vit_h': './checkpoints/sam_vit_h_4b8939.pth'
}

def inference(device, model_type, input_img, points_per_side, pred_iou_thresh, stability_score_thresh, min_mask_region_area,
              stability_score_offset, box_nms_thresh, crop_n_layers, crop_nms_thresh):
    sam = sam_model_registry[model_type](checkpoint=models[model_type]).to(device)
    mask_generator = SamAutomaticMaskGenerator(
        sam,
        points_per_side=points_per_side,
        pred_iou_thresh=pred_iou_thresh,
        stability_score_thresh=stability_score_thresh,
        stability_score_offset=stability_score_offset,
        box_nms_thresh=box_nms_thresh,
        crop_n_layers=crop_n_layers,
        crop_nms_thresh=crop_nms_thresh,
        crop_overlap_ratio=512 / 1500,
        crop_n_points_downscale_factor=1,
        point_grids=None,
        min_mask_region_area=min_mask_region_area,
        output_mode='binary_mask'
    )

    masks = mask_generator.generate(input_img)
    sorted_anns = sorted(masks, key=(lambda x: x['area']), reverse=True)

    mask_all = np.ones((input_img.shape[0], input_img.shape[1], 3))
    for ann in sorted_anns:
        m = ann['segmentation']
        color_mask = np.random.random((1, 3)).tolist()[0]
        for i in range(3):
            mask_all[m==True, i] = color_mask[i]
    result = input_img / 255 * 0.3 + mask_all * 0.7

    return result, mask_all



with gr.Blocks() as demo:
    with gr.Row():
        gr.Markdown(
            '''# Segment Anything!🚀
            分割一切!CV的GPT-3时刻!
            [**官方网址**](https://segment-anything.com/)
            '''
        )
        with gr.Row():
            # 选择模型类型
            model_type = gr.Dropdown(["vit_b", "vit_l", "vit_h"], value='vit_b', label="选择模型")
            # 选择device
            device = gr.Dropdown(["cpu", "cuda"], value='cuda', label="选择你的硬件")

    # 参数
    with gr.Accordion(label='参数调整', open=False):
        with gr.Row():
            points_per_side = gr.Number(value=32, label="points_per_side", precision=0,
                                        info='''The number of points to be sampled along one side of the image. The total 
                                        number of points is points_per_side**2.''')
            pred_iou_thresh = gr.Slider(value=0.88, minimum=0, maximum=1.0, step=0.01, label="pred_iou_thresh",
                                        info='''A filtering threshold in [0,1], using the model's predicted mask quality.''')
            stability_score_thresh = gr.Slider(value=0.95, minimum=0, maximum=1.0, step=0.01, label="stability_score_thresh",
                                               info='''A filtering threshold in [0,1], using the stability of the mask under 
                                               changes to the cutoff used to binarize the model's mask predictions.''')
            min_mask_region_area = gr.Number(value=0, label="min_mask_region_area", precision=0,
                                             info='''If >0, postprocessing will be applied to remove disconnected regions 
                                             and holes in masks with area smaller than min_mask_region_area.''')
        with gr.Row():
            stability_score_offset = gr.Number(value=1, label="stability_score_offset",
                                               info='''The amount to shift the cutoff when calculated the stability score.''')
            box_nms_thresh = gr.Slider(value=0.7, minimum=0, maximum=1.0, step=0.01, label="box_nms_thresh",
                                       info='''The box IoU cutoff used by non-maximal ression to filter duplicate masks.''')
            crop_n_layers = gr.Number(value=0, label="crop_n_layers", precision=0,
                                      info='''If >0, mask prediction will be run again on crops of the image. 
                                      Sets the number of layers to run, where each layer has 2**i_layer number of image crops.''')
            crop_nms_thresh = gr.Slider(value=0.7, minimum=0, maximum=1.0, step=0.01, label="crop_nms_thresh",
                                        info='''The box IoU cutoff used by non-maximal suppression to filter duplicate 
                                        masks between different crops.''')

    # 显示图片
    with gr.Row().style(equal_height=True):
        with gr.Column():
            input_image = gr.Image(type="numpy")
            with gr.Row():
                button = gr.Button("Auto!")
        with gr.Tab(label='原图+mask'):
            image_output = gr.Image(type='numpy')
        with gr.Tab(label='Mask'):
            mask_output = gr.Image(type='numpy')

    gr.Examples(
        examples=[os.path.join(os.path.dirname(__file__), "./images/53960-scaled.jpg"),
                  os.path.join(os.path.dirname(__file__), "./images/2388455-scaled.jpg"),
                  os.path.join(os.path.dirname(__file__), "./images/1.jpg"),
                  os.path.join(os.path.dirname(__file__), "./images/2.jpg"),
                  os.path.join(os.path.dirname(__file__), "./images/3.jpg"),
                  os.path.join(os.path.dirname(__file__), "./images/4.jpg"),
                  os.path.join(os.path.dirname(__file__), "./images/5.jpg"),
                  os.path.join(os.path.dirname(__file__), "./images/6.jpg"),
                  os.path.join(os.path.dirname(__file__), "./images/7.jpg"),
                  os.path.join(os.path.dirname(__file__), "./images/8.jpg"),
                  ],
        inputs=input_image,
        outputs=image_output,
    )


    # 按钮交互
    button.click(inference, inputs=[device, model_type, input_image, points_per_side, pred_iou_thresh,
                                stability_score_thresh, min_mask_region_area, stability_score_offset, box_nms_thresh,
                                crop_n_layers, crop_nms_thresh],
             outputs=[image_output, mask_output])



demo.launch()