Spaces:
Build error
Build error
Upload 2 files
Browse files- app.py +104 -21
- inference.py +69 -37
app.py
CHANGED
@@ -1,8 +1,35 @@
|
|
1 |
import os
|
|
|
|
|
2 |
import gradio as gr
|
3 |
from inference import run_inference
|
4 |
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
|
8 |
with gr.Blocks() as demo:
|
@@ -19,7 +46,7 @@ with gr.Blocks() as demo:
|
|
19 |
# select device
|
20 |
device = gr.Dropdown(["cpu", "cuda"], value='cpu', label="Select Device")
|
21 |
|
22 |
-
# parameters
|
23 |
with gr.Accordion(label='Parameters', open=False):
|
24 |
with gr.Row():
|
25 |
points_per_side = gr.Number(value=32, label="points_per_side", precision=0,
|
@@ -45,11 +72,21 @@ with gr.Blocks() as demo:
|
|
45 |
info='''The box IoU cutoff used by non-maximal suppression to filter duplicate
|
46 |
masks between different crops.''')
|
47 |
|
48 |
-
#
|
49 |
with gr.Tab(label='Image'):
|
50 |
with gr.Row().style(equal_height=True):
|
51 |
with gr.Column():
|
|
|
|
|
52 |
input_image = gr.Image(type="numpy")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
text = gr.Textbox(label='Text prompt(optional)', info=
|
54 |
'If you type words, the OWL-ViT model will be used to detect the objects in the image, '
|
55 |
'and the boxes will be feed into SAM model to predict mask. Please use English.',
|
@@ -57,28 +94,26 @@ with gr.Blocks() as demo:
|
|
57 |
owl_vit_threshold = gr.Slider(value=0.1, minimum=0, maximum=1.0, step=0.01, label="OWL ViT Object Detection threshold",
|
58 |
info='''A small threshold will generate more objects, but may causing OOM.
|
59 |
A big threshold may not detect objects, resulting in an error ''')
|
|
|
60 |
button = gr.Button("Auto!")
|
|
|
61 |
with gr.Tab(label='Image+Mask'):
|
62 |
output_image = gr.Image(type='numpy')
|
|
|
63 |
with gr.Tab(label='Mask'):
|
64 |
output_mask = gr.Image(type='numpy')
|
|
|
|
|
65 |
|
66 |
-
gr.Examples(
|
67 |
-
examples=
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
os.path.join(os.path.dirname(__file__), "./images/4.jpg"),
|
73 |
-
os.path.join(os.path.dirname(__file__), "./images/5.jpg"),
|
74 |
-
os.path.join(os.path.dirname(__file__), "./images/6.jpg"),
|
75 |
-
os.path.join(os.path.dirname(__file__), "./images/7.jpg"),
|
76 |
-
os.path.join(os.path.dirname(__file__), "./images/8.jpg"),
|
77 |
-
],
|
78 |
-
inputs=input_image,
|
79 |
-
outputs=output_image,
|
80 |
)
|
81 |
-
|
|
|
82 |
with gr.Tab(label='Video'):
|
83 |
with gr.Row().style(equal_height=True):
|
84 |
with gr.Column():
|
@@ -90,17 +125,65 @@ with gr.Blocks() as demo:
|
|
90 |
**Note:** processing video will take a long time, please upload a short video.
|
91 |
''')
|
92 |
gr.Examples(
|
93 |
-
examples=
|
94 |
-
os.path.join(os.path.dirname(__file__), "./images/video2.mp4")
|
95 |
-
],
|
96 |
inputs=input_video,
|
97 |
outputs=output_video
|
98 |
)
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
# button image
|
101 |
button.click(run_inference, inputs=[device, model_type, points_per_side, pred_iou_thresh, stability_score_thresh,
|
102 |
min_mask_region_area, stability_score_offset, box_nms_thresh, crop_n_layers,
|
103 |
-
crop_nms_thresh, owl_vit_threshold,
|
104 |
outputs=[output_image, output_mask])
|
105 |
# button video
|
106 |
button_video.click(run_inference, inputs=[device, model_type, points_per_side, pred_iou_thresh, stability_score_thresh,
|
|
|
1 |
import os
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
import gradio as gr
|
5 |
from inference import run_inference
|
6 |
|
7 |
|
8 |
+
# points color and marker
|
9 |
+
colors = [(255, 0, 0), (0, 255, 0)]
|
10 |
+
markers = [1, 5]
|
11 |
+
|
12 |
+
# image examples
|
13 |
+
# in each list, the first element is image path,
|
14 |
+
# the second is id (used for original_image State),
|
15 |
+
# the third is an empty list (used for selected_points State)
|
16 |
+
image_examples = [
|
17 |
+
[os.path.join(os.path.dirname(__file__), "./images/53960-scaled.jpg"), 0, []],
|
18 |
+
[os.path.join(os.path.dirname(__file__), "./images/2388455-scaled.jpg"), 1, []],
|
19 |
+
[os.path.join(os.path.dirname(__file__), "./images/1.jpg"),2,[]],
|
20 |
+
[os.path.join(os.path.dirname(__file__), "./images/2.jpg"),3,[]],
|
21 |
+
[os.path.join(os.path.dirname(__file__), "./images/3.jpg"),4,[]],
|
22 |
+
[os.path.join(os.path.dirname(__file__), "./images/4.jpg"),5,[]],
|
23 |
+
[os.path.join(os.path.dirname(__file__), "./images/5.jpg"),6,[]],
|
24 |
+
[os.path.join(os.path.dirname(__file__), "./images/6.jpg"),7,[]],
|
25 |
+
[os.path.join(os.path.dirname(__file__), "./images/7.jpg"),8,[]],
|
26 |
+
[os.path.join(os.path.dirname(__file__), "./images/8.jpg"),9,[]]
|
27 |
+
]
|
28 |
+
# video examples
|
29 |
+
video_examples = [
|
30 |
+
os.path.join(os.path.dirname(__file__), "./images/video1.mp4"),
|
31 |
+
os.path.join(os.path.dirname(__file__), "./images/video2.mp4")
|
32 |
+
]
|
33 |
|
34 |
|
35 |
with gr.Blocks() as demo:
|
|
|
46 |
# select device
|
47 |
device = gr.Dropdown(["cpu", "cuda"], value='cpu', label="Select Device")
|
48 |
|
49 |
+
# SAM parameters
|
50 |
with gr.Accordion(label='Parameters', open=False):
|
51 |
with gr.Row():
|
52 |
points_per_side = gr.Number(value=32, label="points_per_side", precision=0,
|
|
|
72 |
info='''The box IoU cutoff used by non-maximal suppression to filter duplicate
|
73 |
masks between different crops.''')
|
74 |
|
75 |
+
# Segment image
|
76 |
with gr.Tab(label='Image'):
|
77 |
with gr.Row().style(equal_height=True):
|
78 |
with gr.Column():
|
79 |
+
# input image
|
80 |
+
original_image = gr.State(value=None) # store original image without points, default None
|
81 |
input_image = gr.Image(type="numpy")
|
82 |
+
# point prompt
|
83 |
+
with gr.Column():
|
84 |
+
selected_points = gr.State([]) # store points
|
85 |
+
with gr.Row():
|
86 |
+
gr.Markdown('You can click on the image to select points prompt. Default: foreground_point.')
|
87 |
+
undo_button = gr.Button('Undo point')
|
88 |
+
radio = gr.Radio(['foreground_point', 'background_point'], label='point labels')
|
89 |
+
# text prompt to generate box prompt
|
90 |
text = gr.Textbox(label='Text prompt(optional)', info=
|
91 |
'If you type words, the OWL-ViT model will be used to detect the objects in the image, '
|
92 |
'and the boxes will be feed into SAM model to predict mask. Please use English.',
|
|
|
94 |
owl_vit_threshold = gr.Slider(value=0.1, minimum=0, maximum=1.0, step=0.01, label="OWL ViT Object Detection threshold",
|
95 |
info='''A small threshold will generate more objects, but may causing OOM.
|
96 |
A big threshold may not detect objects, resulting in an error ''')
|
97 |
+
# run button
|
98 |
button = gr.Button("Auto!")
|
99 |
+
# show the image with mask
|
100 |
with gr.Tab(label='Image+Mask'):
|
101 |
output_image = gr.Image(type='numpy')
|
102 |
+
# show only mask
|
103 |
with gr.Tab(label='Mask'):
|
104 |
output_mask = gr.Image(type='numpy')
|
105 |
+
def process_example(img, ori_img, sel_p):
|
106 |
+
return ori_img, []
|
107 |
|
108 |
+
example = gr.Examples(
|
109 |
+
examples=image_examples,
|
110 |
+
inputs=[input_image, original_image, selected_points],
|
111 |
+
outputs=[original_image, selected_points],
|
112 |
+
fn=process_example,
|
113 |
+
run_on_click=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
)
|
115 |
+
|
116 |
+
# Segment video
|
117 |
with gr.Tab(label='Video'):
|
118 |
with gr.Row().style(equal_height=True):
|
119 |
with gr.Column():
|
|
|
125 |
**Note:** processing video will take a long time, please upload a short video.
|
126 |
''')
|
127 |
gr.Examples(
|
128 |
+
examples=video_examples,
|
|
|
|
|
129 |
inputs=input_video,
|
130 |
outputs=output_video
|
131 |
)
|
132 |
|
133 |
+
# once user upload an image, the original image is stored in `original_image`
|
134 |
+
def store_img(img):
|
135 |
+
return img, [] # when new image is uploaded, `selected_points` should be empty
|
136 |
+
input_image.upload(
|
137 |
+
store_img,
|
138 |
+
[input_image],
|
139 |
+
[original_image, selected_points]
|
140 |
+
)
|
141 |
+
|
142 |
+
# user click the image to get points, and show the points on the image
|
143 |
+
def get_point(img, sel_pix, point_type, evt: gr.SelectData):
|
144 |
+
if point_type == 'foreground_point':
|
145 |
+
sel_pix.append((evt.index, 1)) # append the foreground_point
|
146 |
+
elif point_type == 'background_point':
|
147 |
+
sel_pix.append((evt.index, 0)) # append the background_point
|
148 |
+
else:
|
149 |
+
sel_pix.append((evt.index, 1)) # default foreground_point
|
150 |
+
# draw points
|
151 |
+
for point, label in sel_pix:
|
152 |
+
cv2.drawMarker(img, point, colors[label], markerType=markers[label], markerSize=20, thickness=5)
|
153 |
+
if img[..., 0][0, 0] == img[..., 2][0, 0]: # BGR to RGB
|
154 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
155 |
+
return img if isinstance(img, np.ndarray) else np.array(img)
|
156 |
+
input_image.select(
|
157 |
+
get_point,
|
158 |
+
[input_image, selected_points, radio],
|
159 |
+
[input_image],
|
160 |
+
)
|
161 |
+
|
162 |
+
# undo the selected point
|
163 |
+
def undo_points(orig_img, sel_pix):
|
164 |
+
if isinstance(orig_img, int): # if orig_img is int, the image if select from examples
|
165 |
+
temp = cv2.imread(image_examples[orig_img][0])
|
166 |
+
temp = cv2.cvtColor(temp, cv2.COLOR_BGR2RGB)
|
167 |
+
else:
|
168 |
+
temp = orig_img.copy()
|
169 |
+
# draw points
|
170 |
+
if len(sel_pix) != 0:
|
171 |
+
sel_pix.pop()
|
172 |
+
for point, label in sel_pix:
|
173 |
+
cv2.drawMarker(temp, point, colors[label], markerType=markers[label], markerSize=20, thickness=5)
|
174 |
+
if temp[..., 0][0, 0] == temp[..., 2][0, 0]: # BGR to RGB
|
175 |
+
temp = cv2.cvtColor(temp, cv2.COLOR_BGR2RGB)
|
176 |
+
return temp if isinstance(temp, np.ndarray) else np.array(temp)
|
177 |
+
undo_button.click(
|
178 |
+
undo_points,
|
179 |
+
[original_image, selected_points],
|
180 |
+
[input_image]
|
181 |
+
)
|
182 |
+
|
183 |
# button image
|
184 |
button.click(run_inference, inputs=[device, model_type, points_per_side, pred_iou_thresh, stability_score_thresh,
|
185 |
min_mask_region_area, stability_score_offset, box_nms_thresh, crop_n_layers,
|
186 |
+
crop_nms_thresh, owl_vit_threshold, original_image, text, selected_points],
|
187 |
outputs=[output_image, output_mask])
|
188 |
# button video
|
189 |
button_video.click(run_inference, inputs=[device, model_type, points_per_side, pred_iou_thresh, stability_score_thresh,
|
inference.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import cv2
|
2 |
import torch
|
3 |
import numpy as np
|
@@ -13,6 +14,19 @@ models = {
|
|
13 |
'vit_h': './checkpoints/sam_vit_h_4b8939.pth'
|
14 |
}
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
def plot_boxes(img, boxes):
|
18 |
img_pil = Image.fromarray(np.uint8(img * 255)).convert('RGB')
|
@@ -82,44 +96,55 @@ def generator_inference(device, model_type, points_per_side, pred_iou_thresh, st
|
|
82 |
return 'output.mp4'
|
83 |
|
84 |
|
85 |
-
def predictor_inference(device, model_type, input_x, input_text, owl_vit_threshold=0.1):
|
86 |
# sam model
|
87 |
sam = sam_model_registry[model_type](checkpoint=models[model_type]).to(device)
|
88 |
predictor = SamPredictor(sam)
|
89 |
predictor.set_image(input_x) # Process the image to produce an image embedding
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
# predict segmentation according to the boxes
|
120 |
masks, scores, logits = predictor.predict_torch(
|
121 |
-
point_coords=
|
122 |
-
point_labels=
|
123 |
boxes=transformed_boxes, # only one box
|
124 |
multimask_output=False,
|
125 |
)
|
@@ -130,11 +155,13 @@ def predictor_inference(device, model_type, input_x, input_text, owl_vit_thresho
|
|
130 |
for i in range(3):
|
131 |
mask_all[ann[0] == True, i] = color_mask[i]
|
132 |
img = input_x / 255 * 0.3 + mask_all * 0.7
|
133 |
-
|
|
|
134 |
|
135 |
# free the memory
|
136 |
-
|
137 |
-
|
|
|
138 |
del input_text
|
139 |
gc.collect()
|
140 |
torch.cuda.empty_cache()
|
@@ -144,11 +171,16 @@ def predictor_inference(device, model_type, input_x, input_text, owl_vit_thresho
|
|
144 |
|
145 |
def run_inference(device, model_type, points_per_side, pred_iou_thresh, stability_score_thresh, min_mask_region_area,
|
146 |
stability_score_offset, box_nms_thresh, crop_n_layers, crop_nms_thresh, owl_vit_threshold, input_x,
|
147 |
-
input_text):
|
148 |
-
|
149 |
-
if
|
|
|
|
|
|
|
150 |
print('use predictor_inference')
|
151 |
-
|
|
|
|
|
152 |
else:
|
153 |
print('use generator_inference')
|
154 |
return generator_inference(device, model_type, points_per_side, pred_iou_thresh, stability_score_thresh,
|
|
|
1 |
+
import os
|
2 |
import cv2
|
3 |
import torch
|
4 |
import numpy as np
|
|
|
14 |
'vit_h': './checkpoints/sam_vit_h_4b8939.pth'
|
15 |
}
|
16 |
|
17 |
+
image_examples = [
|
18 |
+
[os.path.join(os.path.dirname(__file__), "./images/53960-scaled.jpg"), 0, []],
|
19 |
+
[os.path.join(os.path.dirname(__file__), "./images/2388455-scaled.jpg"), 1, []],
|
20 |
+
[os.path.join(os.path.dirname(__file__), "./images/1.jpg"),2,[]],
|
21 |
+
[os.path.join(os.path.dirname(__file__), "./images/2.jpg"),3,[]],
|
22 |
+
[os.path.join(os.path.dirname(__file__), "./images/3.jpg"),4,[]],
|
23 |
+
[os.path.join(os.path.dirname(__file__), "./images/4.jpg"),5,[]],
|
24 |
+
[os.path.join(os.path.dirname(__file__), "./images/5.jpg"),6,[]],
|
25 |
+
[os.path.join(os.path.dirname(__file__), "./images/6.jpg"),7,[]],
|
26 |
+
[os.path.join(os.path.dirname(__file__), "./images/7.jpg"),8,[]],
|
27 |
+
[os.path.join(os.path.dirname(__file__), "./images/8.jpg"),9,[]]
|
28 |
+
]
|
29 |
+
|
30 |
|
31 |
def plot_boxes(img, boxes):
|
32 |
img_pil = Image.fromarray(np.uint8(img * 255)).convert('RGB')
|
|
|
96 |
return 'output.mp4'
|
97 |
|
98 |
|
99 |
+
def predictor_inference(device, model_type, input_x, input_text, selected_points, owl_vit_threshold=0.1):
|
100 |
# sam model
|
101 |
sam = sam_model_registry[model_type](checkpoint=models[model_type]).to(device)
|
102 |
predictor = SamPredictor(sam)
|
103 |
predictor.set_image(input_x) # Process the image to produce an image embedding
|
104 |
|
105 |
+
if input_text != '':
|
106 |
+
# split input text
|
107 |
+
input_text = [input_text.split(',')]
|
108 |
+
print(input_text)
|
109 |
+
# OWL-ViT model
|
110 |
+
processor = OwlViTProcessor.from_pretrained('./checkpoints/models--google--owlvit-base-patch32')
|
111 |
+
owlvit_model = OwlViTForObjectDetection.from_pretrained("./checkpoints/models--google--owlvit-base-patch32").to(device)
|
112 |
+
# get outputs
|
113 |
+
input_text = processor(text=input_text, images=input_x, return_tensors="pt").to(device)
|
114 |
+
outputs = owlvit_model(**input_text)
|
115 |
+
target_size = torch.Tensor([input_x.shape[:2]]).to(device)
|
116 |
+
results = processor.post_process_object_detection(outputs=outputs, target_sizes=target_size,
|
117 |
+
threshold=owl_vit_threshold)
|
118 |
+
|
119 |
+
# get the box with best score
|
120 |
+
scores = torch.sigmoid(outputs.logits)
|
121 |
+
# best_scores, best_idxs = torch.topk(scores, k=1, dim=1)
|
122 |
+
# best_idxs = best_idxs.squeeze(1).tolist()
|
123 |
+
|
124 |
+
i = 0 # Retrieve predictions for the first image for the corresponding text queries
|
125 |
+
boxes_tensor = results[i]["boxes"] # [best_idxs]
|
126 |
+
boxes = boxes_tensor.cpu().detach().numpy()
|
127 |
+
# boxes = boxes[np.newaxis, :, :]
|
128 |
+
transformed_boxes = predictor.transform.apply_boxes_torch(torch.Tensor(boxes).to(device),
|
129 |
+
input_x.shape[:2]) # apply transform to original boxes
|
130 |
+
# transformed_boxes = transformed_boxes.unsqueeze(0)
|
131 |
+
print(transformed_boxes.size(), boxes.shape)
|
132 |
+
else:
|
133 |
+
transformed_boxes = None
|
134 |
+
|
135 |
+
# points
|
136 |
+
if len(selected_points) != 0:
|
137 |
+
points = torch.Tensor([p for p, _ in selected_points]).to(device).unsqueeze(1)
|
138 |
+
labels = torch.Tensor([int(l) for _, l in selected_points]).to(device).unsqueeze(1)
|
139 |
+
transformed_points = predictor.transform.apply_coords_torch(points, input_x.shape[:2])
|
140 |
+
print(points.size(), transformed_points.size(), labels.size(), input_x.shape, points)
|
141 |
+
else:
|
142 |
+
transformed_points, labels = None, None
|
143 |
|
144 |
# predict segmentation according to the boxes
|
145 |
masks, scores, logits = predictor.predict_torch(
|
146 |
+
point_coords=transformed_points,
|
147 |
+
point_labels=labels,
|
148 |
boxes=transformed_boxes, # only one box
|
149 |
multimask_output=False,
|
150 |
)
|
|
|
155 |
for i in range(3):
|
156 |
mask_all[ann[0] == True, i] = color_mask[i]
|
157 |
img = input_x / 255 * 0.3 + mask_all * 0.7
|
158 |
+
if input_text != '':
|
159 |
+
img = plot_boxes(img, boxes_tensor) # image + mask + boxes
|
160 |
|
161 |
# free the memory
|
162 |
+
if input_text != '':
|
163 |
+
owlvit_model.cpu()
|
164 |
+
del owlvit_model
|
165 |
del input_text
|
166 |
gc.collect()
|
167 |
torch.cuda.empty_cache()
|
|
|
171 |
|
172 |
def run_inference(device, model_type, points_per_side, pred_iou_thresh, stability_score_thresh, min_mask_region_area,
|
173 |
stability_score_offset, box_nms_thresh, crop_n_layers, crop_nms_thresh, owl_vit_threshold, input_x,
|
174 |
+
input_text, selected_points):
|
175 |
+
# if input_x is int, the image is selected from examples
|
176 |
+
if isinstance(input_x, int):
|
177 |
+
input_x = cv2.imread(image_examples[input_x][0])
|
178 |
+
input_x = cv2.cvtColor(input_x, cv2.COLOR_BGR2RGB)
|
179 |
+
if (input_text != '' and not isinstance(input_x, str)) or len(selected_points) != 0: # user input text or points
|
180 |
print('use predictor_inference')
|
181 |
+
print('prompt text: ', input_text)
|
182 |
+
print('prompt points length: ', len(selected_points))
|
183 |
+
return predictor_inference(device, model_type, input_x, input_text, selected_points, owl_vit_threshold)
|
184 |
else:
|
185 |
print('use generator_inference')
|
186 |
return generator_inference(device, model_type, points_per_side, pred_iou_thresh, stability_score_thresh,
|