File size: 16,042 Bytes
4d01f09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
from __future__ import annotations
import gradio as gr
import os
import cv2
import numpy as np
from PIL import Image
from moviepy.editor import *
from share_btn import community_icon_html, loading_icon_html, share_js

import pathlib
import shlex
import subprocess

if os.getenv('SYSTEM') == 'spaces':
    with open('patch') as f:
        subprocess.run(shlex.split('patch -p1'), stdin=f, cwd='ControlNet')

base_url = 'https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/'

names = [
    'body_pose_model.pth',
    'dpt_hybrid-midas-501f0c75.pt',
    'hand_pose_model.pth',
    'mlsd_large_512_fp32.pth',
    'mlsd_tiny_512_fp32.pth',
    'network-bsds500.pth',
    'upernet_global_small.pth',
]

for name in names:
    command = f'wget https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/{name} -O {name}'
    out_path = pathlib.Path(f'ControlNet/annotator/ckpts/{name}')
    if out_path.exists():
        continue
    subprocess.run(shlex.split(command), cwd='ControlNet/annotator/ckpts/')

from model import (DEFAULT_BASE_MODEL_FILENAME, DEFAULT_BASE_MODEL_REPO,
                   DEFAULT_BASE_MODEL_URL, Model)

model = Model()


def controlnet(i, prompt, control_task, seed_in, ddim_steps, scale, low_threshold, high_threshold, value_threshold, distance_threshold, bg_threshold):
    img= Image.open(i)
    np_img = np.array(img)
    
    a_prompt = "best quality, extremely detailed"
    n_prompt = "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality"
    num_samples = 1
    image_resolution = 512
    detect_resolution = 512
    eta = 0.0
    #low_threshold = 100
    #high_threshold = 200
    #value_threshold = 0.1
    #distance_threshold = 0.1
    #bg_threshold = 0.4
    
    if control_task == 'Canny':
        result = model.process_canny(np_img, prompt, a_prompt, n_prompt, num_samples,
                image_resolution, ddim_steps, scale, seed_in, eta, low_threshold, high_threshold)
    elif control_task == 'Depth':
        result = model.process_depth(np_img, prompt, a_prompt, n_prompt, num_samples,
            image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta)
    elif control_task == 'Hed':
        result = model.process_hed(np_img, prompt, a_prompt, n_prompt, num_samples,
            image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta)
    elif control_task == 'Hough':
        result = model.process_hough(np_img, prompt, a_prompt, n_prompt, num_samples,
            image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta, value_threshold,
                      distance_threshold)
    elif control_task == 'Normal':
        result = model.process_normal(np_img, prompt, a_prompt, n_prompt, num_samples,
            image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta, bg_threshold)
    elif control_task == 'Pose':
        result = model.process_pose(np_img, prompt, a_prompt, n_prompt, num_samples,
            image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta)
    elif control_task == 'Scribble':
        result = model.process_scribble(np_img, prompt, a_prompt, n_prompt, num_samples,
            image_resolution, ddim_steps, scale, seed_in, eta)
    elif control_task == 'Seg':
        result = model.process_seg(np_img, prompt, a_prompt, n_prompt, num_samples,
            image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta)
    
    #print(result[0])
    processor_im = Image.fromarray(result[0])
    processor_im.save("process_" + control_task + "_" + str(i) + ".jpeg")
    im = Image.fromarray(result[1])
    im.save("your_file" + str(i) + ".jpeg")
    return "your_file" + str(i) + ".jpeg", "process_" + control_task + "_" + str(i) + ".jpeg"

def change_task_options(task):
    if task == "Canny" :
        return canny_opt.update(visible=True), hough_opt.update(visible=False), normal_opt.update(visible=False)
    elif task == "Hough" :
        return canny_opt.update(visible=False),hough_opt.update(visible=True), normal_opt.update(visible=False)
    elif task == "Normal" :
        return canny_opt.update(visible=False),hough_opt.update(visible=False), normal_opt.update(visible=True)
    else :
        return canny_opt.update(visible=False),hough_opt.update(visible=False), normal_opt.update(visible=False)

def get_frames(video_in):
    frames = []
    #resize the video
    clip = VideoFileClip(video_in)
    
    #check fps
    if clip.fps > 30:
        print("vide rate is over 30, resetting to 30")
        clip_resized = clip.resize(height=512)
        clip_resized.write_videofile("video_resized.mp4", fps=30)
    else:
        print("video rate is OK")
        clip_resized = clip.resize(height=512)
        clip_resized.write_videofile("video_resized.mp4", fps=clip.fps)
    
    print("video resized to 512 height")
    
    # Opens the Video file with CV2
    cap= cv2.VideoCapture("video_resized.mp4")
    
    fps = cap.get(cv2.CAP_PROP_FPS)
    print("video fps: " + str(fps))
    i=0
    while(cap.isOpened()):
        ret, frame = cap.read()
        if ret == False:
            break
        cv2.imwrite('kang'+str(i)+'.jpg',frame)
        frames.append('kang'+str(i)+'.jpg')
        i+=1
    
    cap.release()
    cv2.destroyAllWindows()
    print("broke the video into frames")
    
    return frames, fps


def convert(gif):
    if gif != None:
        clip = VideoFileClip(gif.name)
        clip.write_videofile("my_gif_video.mp4")
        return "my_gif_video.mp4"
    else:
        pass


def create_video(frames, fps, type):
    print("building video result")
    clip = ImageSequenceClip(frames, fps=fps)
    clip.write_videofile(type + "_result.mp4", fps=fps)
    
    return type + "_result.mp4"


def infer(prompt,video_in, control_task, seed_in, trim_value, ddim_steps, scale, low_threshold, high_threshold, value_threshold, distance_threshold, bg_threshold, gif_import):
    print(f"""
    β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
    {prompt}
    β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”""")
    
    # 1. break video into frames and get FPS
    break_vid = get_frames(video_in)
    frames_list= break_vid[0]
    fps = break_vid[1]
    n_frame = int(trim_value*fps)
    
    if n_frame >= len(frames_list):
        print("video is shorter than the cut value")
        n_frame = len(frames_list)
    
    # 2. prepare frames result arrays
    processor_result_frames = []
    result_frames = []
    print("set stop frames to: " + str(n_frame))
    
    for i in frames_list[0:int(n_frame)]:
        controlnet_img = controlnet(i, prompt,control_task, seed_in, ddim_steps, scale,  low_threshold, high_threshold, value_threshold, distance_threshold, bg_threshold)
        #images = controlnet_img[0]
        #rgb_im = images[0].convert("RGB")
  
        # exporting the image
        #rgb_im.save(f"result_img-{i}.jpg")
        processor_result_frames.append(controlnet_img[1])
        result_frames.append(controlnet_img[0])
        print("frame " + i + "/" + str(n_frame) + ": done;")

    processor_vid = create_video(processor_result_frames, fps, "processor")
    final_vid = create_video(result_frames, fps, "final")

    files = [processor_vid, final_vid]
    if gif_import != None:
        final_gif = VideoFileClip(final_vid)
        final_gif.write_gif("final_result.gif")
        final_gif = "final_result.gif"

        files.append(final_gif)
    print("finished !")
    
    return final_vid, gr.Accordion.update(visible=True), gr.Video.update(value=processor_vid, visible=True), gr.File.update(value=files, visible=True), gr.Group.update(visible=True)


def clean():
    return gr.Accordion.update(visible=False),gr.Video.update(value=None, visible=False), gr.Video.update(value=None), gr.File.update(value=None, visible=False), gr.Group.update(visible=False)

title = """
    <div style="text-align: center; max-width: 700px; margin: 0 auto;">
        <div
        style="
            display: inline-flex;
            align-items: center;
            gap: 0.8rem;
            font-size: 1.75rem;
        "
        >
        <h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
            ControlNet Video
        </h1>
        </div>
        <p style="margin-bottom: 10px; font-size: 94%">
        Apply ControlNet to a video 
        </p>
    </div>
"""

article = """
    
    <div class="footer">
        <p>
        Follow <a href="https://twitter.com/fffiloni" target="_blank">Sylvain Filoni</a> for future updates πŸ€—
        </p>
    </div>
    <div id="may-like-container" style="display: flex;justify-content: center;flex-direction: column;align-items: center;margin-bottom: 30px;">
        <p>You may also like: </p>
        <div id="may-like-content" style="display:flex;flex-wrap: wrap;align-items:center;height:20px;">
            
            <svg height="20" width="148" style="margin-left:4px;margin-bottom: 6px;">       
                 <a href="https://huggingface.co/spaces/fffiloni/Pix2Pix-Video" target="_blank">
                    <image href="https://img.shields.io/badge/πŸ€— Spaces-Pix2Pix_Video-blue" src="https://img.shields.io/badge/πŸ€— Spaces-Pix2Pix_Video-blue.png" height="20"/>
                 </a>
            </svg>
            
        </div>
    
    </div>
    
"""

with gr.Blocks(css='style.css') as demo:
    with gr.Column(elem_id="col-container"):
        gr.HTML(title)
        gr.HTML("""
                <a style="display:inline-block" href="https://huggingface.co/spaces/fffiloni/ControlNet-Video?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a> 
                """, elem_id="duplicate-container")
        with gr.Row():
            with gr.Column():
                video_inp = gr.Video(label="Video source", source="upload", type="filepath", elem_id="input-vid")
                video_out = gr.Video(label="ControlNet video result", elem_id="video-output")
                
                with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
                    community_icon = gr.HTML(community_icon_html)
                    loading_icon = gr.HTML(loading_icon_html)
                    share_button = gr.Button("Share to community", elem_id="share-btn")
                
                with gr.Accordion("Detailed results", visible=False) as detailed_result:
                    prep_video_out = gr.Video(label="Preprocessor video result", visible=False, elem_id="prep-video-output")
                    files = gr.File(label="Files can be downloaded ;)", visible=False)
                
            with gr.Column():
                #status = gr.Textbox()
                
                prompt = gr.Textbox(label="Prompt", placeholder="enter prompt", show_label=True, elem_id="prompt-in")
                
                with gr.Row():
                    control_task = gr.Dropdown(label="Control Task", choices=["Canny", "Depth", "Hed", "Hough", "Normal", "Pose", "Scribble", "Seg"], value="Pose", multiselect=False, elem_id="controltask-in")
                    seed_inp = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, value=123456, elem_id="seed-in")
                
                with gr.Row():
                    trim_in = gr.Slider(label="Cut video at (s)", minimun=1, maximum=5, step=1, value=1)
                
                with gr.Accordion("Advanced Options", open=False):
                    with gr.Tab("Diffusion Settings"):
                        with gr.Row(visible=False) as canny_opt:
                            low_threshold = gr.Slider(label='Canny low threshold', minimum=1, maximum=255, value=100, step=1)
                            high_threshold = gr.Slider(label='Canny high threshold', minimum=1, maximum=255, value=200, step=1)
                        
                        with gr.Row(visible=False) as hough_opt:
                            value_threshold = gr.Slider(label='Hough value threshold (MLSD)', minimum=0.01, maximum=2.0, value=0.1, step=0.01)
                            distance_threshold = gr.Slider(label='Hough distance threshold (MLSD)', minimum=0.01, maximum=20.0, value=0.1, step=0.01)
                        
                        with gr.Row(visible=False) as normal_opt:
                            bg_threshold = gr.Slider(label='Normal background threshold', minimum=0.0, maximum=1.0, value=0.4, step=0.01)
                        
                        ddim_steps = gr.Slider(label='Steps', minimum=1, maximum=100, value=20, step=1)
                        scale = gr.Slider(label='Guidance Scale', minimum=0.1, maximum=30.0, value=9.0, step=0.1)
                    
                    with gr.Tab("GIF import"):
                        gif_import = gr.File(label="import a GIF instead", file_types=['.gif'])
                        gif_import.change(convert, gif_import, video_inp, queue=False)

                    with gr.Tab("Custom Model"):
                        current_base_model = gr.Text(label='Current base model',
                                             value=DEFAULT_BASE_MODEL_URL)
                        with gr.Row():
                            with gr.Column():
                                base_model_repo = gr.Text(label='Base model repo',
                                                      max_lines=1,
                                                      placeholder=DEFAULT_BASE_MODEL_REPO,
                                                      interactive=True)
                                base_model_filename = gr.Text(
                                     label='Base model file',
                                     max_lines=1,
                                     placeholder=DEFAULT_BASE_MODEL_FILENAME,
                                     interactive=True)
                            change_base_model_button = gr.Button('Change base model')
                        
                        gr.HTML(
                            '''<p>You can use other base models by specifying the repository name and filename.<br />
                                  The base model must be compatible with Stable Diffusion v1.5.</p>''')
                
                        change_base_model_button.click(fn=model.set_base_model,
                                                       inputs=[
                                                           base_model_repo,
                                                           base_model_filename,
                                                       ],
                                                       outputs=current_base_model, queue=False)
                
                submit_btn = gr.Button("Generate ControlNet video")
        
        inputs = [prompt,video_inp,control_task, seed_inp, trim_in, ddim_steps, scale, low_threshold, high_threshold, value_threshold, distance_threshold, bg_threshold, gif_import]
        outputs = [video_out, detailed_result, prep_video_out, files, share_group]
        #outputs = [status]
        
        
        gr.HTML(article)
    control_task.change(change_task_options, inputs=[control_task], outputs=[canny_opt, hough_opt, normal_opt], queue=False)
    submit_btn.click(clean, inputs=[], outputs=[detailed_result, prep_video_out, video_out, files, share_group], queue=False)
    submit_btn.click(infer, inputs, outputs)
    share_button.click(None, [], [], _js=share_js)

    
    
demo.queue(max_size=12).launch()