File size: 5,531 Bytes
8121fee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import json
from tqdm import tqdm
import logging
import pickle
from collections import Counter
import re
import fire

class Vocabulary(object):
    """Simple vocabulary wrapper."""
    def __init__(self):
        self.word2idx = {}
        self.idx2word = {}
        self.idx = 0

    def add_word(self, word):
        if not word in self.word2idx:
            self.word2idx[word] = self.idx
            self.idx2word[self.idx] = word
            self.idx += 1

    def __call__(self, word):
        if not word in self.word2idx:
            return self.word2idx["<unk>"]
        return self.word2idx[word]

    def __len__(self):
        return len(self.word2idx)


def build_vocab(input_json: str,
                output_json: str,
                threshold: int,
                keep_punctuation: bool,
                host_address: str,
                character_level: bool = False,
                retokenize: bool = True,
                zh: bool = True ):
    """Build vocabulary from csv file with a given threshold to drop all counts < threshold

    Args:
        input_json(string): Preprossessed json file. Structure like this: 
            {
              'audios': [
                {
                  'audio_id': 'xxx',
                  'captions': [
                    { 
                      'caption': 'xxx',
                      'cap_id': 'xxx'
                    }
                  ]
                },
                ...
              ]
            }
        threshold (int): Threshold to drop all words with counts < threshold
        keep_punctuation (bool): Includes or excludes punctuation.

    Returns:
        vocab (Vocab): Object with the processed vocabulary
"""
    data = json.load(open(input_json, "r"))["audios"]
    counter = Counter()
    if retokenize:
        pretokenized = False
    else:
        pretokenized = "tokens" in data[0]["captions"][0]
    
    if zh:
        from nltk.parse.corenlp import CoreNLPParser
        from zhon.hanzi import punctuation
        if not pretokenized:
            parser = CoreNLPParser(host_address)
        for audio_idx in tqdm(range(len(data)), leave=False, ascii=True):
            for cap_idx in range(len(data[audio_idx]["captions"])):
                if pretokenized:
                    tokens = data[audio_idx]["captions"][cap_idx]["tokens"].split()
                else:
                    caption = data[audio_idx]["captions"][cap_idx]["caption"]
                    # Remove all punctuations
                    if not keep_punctuation:
                        caption = re.sub("[{}]".format(punctuation), "", caption)
                    if character_level:
                        tokens = list(caption)
                    else:
                        tokens = list(parser.tokenize(caption))
                    data[audio_idx]["captions"][cap_idx]["tokens"] = " ".join(tokens)
                counter.update(tokens)
    else:
        if pretokenized:
            for audio_idx in tqdm(range(len(data)), leave=False, ascii=True):
                for cap_idx in range(len(data[audio_idx]["captions"])):
                    tokens = data[audio_idx]["captions"][cap_idx]["tokens"].split()
                    counter.update(tokens)
        else:
            import spacy
            tokenizer = spacy.load("en_core_web_sm", disable=["parser", "ner"])
            for audio_idx in tqdm(range(len(data)), leave=False, ascii=True):
                captions = data[audio_idx]["captions"]
                for cap_idx in range(len(captions)):
                    caption = captions[cap_idx]["caption"]
                    doc = tokenizer(caption)
                    tokens = " ".join([str(token).lower() for token in doc])
                    data[audio_idx]["captions"][cap_idx]["tokens"] = tokens
                    counter.update(tokens.split(" "))

    if not pretokenized:
        if output_json is None:
            json.dump({ "audios": data }, open(input_json, "w"),
                      indent=4, ensure_ascii=not zh)
        else:
            json.dump({ "audios": data }, open(output_json, "w"),
                      indent=4, ensure_ascii=not zh)

    words = [word for word, cnt in counter.items() if cnt >= threshold]

    # Create a vocab wrapper and add some special tokens.
    vocab = Vocabulary()
    vocab.add_word("<pad>")
    vocab.add_word("<start>")
    vocab.add_word("<end>")
    vocab.add_word("<unk>")

    # Add the words to the vocabulary.
    for word in words:
        vocab.add_word(word)
    return vocab

def process(input_json: str,
            output_file: str,
            output_json: str = None,
            threshold: int = 1,
            keep_punctuation: bool = False,
            character_level: bool = False,
            retokenize: bool = False,
            host_address: str = "http://localhost:9000",
            zh: bool = True):
    logfmt = "%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
    logging.basicConfig(level=logging.INFO, format=logfmt)
    logging.info("Build Vocab")
    vocabulary = build_vocab(
        input_json=input_json, output_json=output_json, threshold=threshold,
        keep_punctuation=keep_punctuation, host_address=host_address,
        character_level=character_level, retokenize=retokenize, zh=zh)
    pickle.dump(vocabulary, open(output_file, "wb"))
    logging.info("Total vocabulary size: {}".format(len(vocabulary)))
    logging.info("Saved vocab to '{}'".format(output_file))


if __name__ == '__main__':
    fire.Fire(process)