File size: 11,447 Bytes
9206300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
from collections import defaultdict
import torch
import torch.nn.functional as F


def make_positions(tensor, padding_idx):
    """Replace non-padding symbols with their position numbers.

    Position numbers begin at padding_idx+1. Padding symbols are ignored.
    """
    # The series of casts and type-conversions here are carefully
    # balanced to both work with ONNX export and XLA. In particular XLA
    # prefers ints, cumsum defaults to output longs, and ONNX doesn't know
    # how to handle the dtype kwarg in cumsum.
    mask = tensor.ne(padding_idx).int()
    return (
                   torch.cumsum(mask, dim=1).type_as(mask) * mask
           ).long() + padding_idx


def softmax(x, dim):
    return F.softmax(x, dim=dim, dtype=torch.float32)


def sequence_mask(lengths, maxlen, dtype=torch.bool):
    if maxlen is None:
        maxlen = lengths.max()
    mask = ~(torch.ones((len(lengths), maxlen)).to(lengths.device).cumsum(dim=1).t() > lengths).t()
    mask.type(dtype)
    return mask


def weights_nonzero_speech(target):
    # target : B x T x mel
    # Assign weight 1.0 to all labels except for padding (id=0).
    dim = target.size(-1)
    return target.abs().sum(-1, keepdim=True).ne(0).float().repeat(1, 1, dim)


INCREMENTAL_STATE_INSTANCE_ID = defaultdict(lambda: 0)


def _get_full_incremental_state_key(module_instance, key):
    module_name = module_instance.__class__.__name__

    # assign a unique ID to each module instance, so that incremental state is
    # not shared across module instances
    if not hasattr(module_instance, '_instance_id'):
        INCREMENTAL_STATE_INSTANCE_ID[module_name] += 1
        module_instance._instance_id = INCREMENTAL_STATE_INSTANCE_ID[module_name]

    return '{}.{}.{}'.format(module_name, module_instance._instance_id, key)


def get_incremental_state(module, incremental_state, key):
    """Helper for getting incremental state for an nn.Module."""
    full_key = _get_full_incremental_state_key(module, key)
    if incremental_state is None or full_key not in incremental_state:
        return None
    return incremental_state[full_key]


def set_incremental_state(module, incremental_state, key, value):
    """Helper for setting incremental state for an nn.Module."""
    if incremental_state is not None:
        full_key = _get_full_incremental_state_key(module, key)
        incremental_state[full_key] = value


def fill_with_neg_inf(t):
    """FP16-compatible function that fills a tensor with -inf."""
    return t.float().fill_(float('-inf')).type_as(t)


def fill_with_neg_inf2(t):
    """FP16-compatible function that fills a tensor with -inf."""
    return t.float().fill_(-1e8).type_as(t)


def select_attn(attn_logits, type='best'):
    """

    :param attn_logits: [n_layers, B, n_head, T_sp, T_txt]
    :return:
    """
    encdec_attn = torch.stack(attn_logits, 0).transpose(1, 2)
    # [n_layers * n_head, B, T_sp, T_txt]
    encdec_attn = (encdec_attn.reshape([-1, *encdec_attn.shape[2:]])).softmax(-1)
    if type == 'best':
        indices = encdec_attn.max(-1).values.sum(-1).argmax(0)
        encdec_attn = encdec_attn.gather(
            0, indices[None, :, None, None].repeat(1, 1, encdec_attn.size(-2), encdec_attn.size(-1)))[0]
        return encdec_attn
    elif type == 'mean':
        return encdec_attn.mean(0)


def make_pad_mask(lengths, xs=None, length_dim=-1):
    """Make mask tensor containing indices of padded part.
    Args:
        lengths (LongTensor or List): Batch of lengths (B,).
        xs (Tensor, optional): The reference tensor.
            If set, masks will be the same shape as this tensor.
        length_dim (int, optional): Dimension indicator of the above tensor.
            See the example.
    Returns:
        Tensor: Mask tensor containing indices of padded part.
                dtype=torch.uint8 in PyTorch 1.2-
                dtype=torch.bool in PyTorch 1.2+ (including 1.2)
    Examples:
        With only lengths.
        >>> lengths = [5, 3, 2]
        >>> make_non_pad_mask(lengths)
        masks = [[0, 0, 0, 0 ,0],
                 [0, 0, 0, 1, 1],
                 [0, 0, 1, 1, 1]]
        With the reference tensor.
        >>> xs = torch.zeros((3, 2, 4))
        >>> make_pad_mask(lengths, xs)
        tensor([[[0, 0, 0, 0],
                 [0, 0, 0, 0]],
                [[0, 0, 0, 1],
                 [0, 0, 0, 1]],
                [[0, 0, 1, 1],
                 [0, 0, 1, 1]]], dtype=torch.uint8)
        >>> xs = torch.zeros((3, 2, 6))
        >>> make_pad_mask(lengths, xs)
        tensor([[[0, 0, 0, 0, 0, 1],
                 [0, 0, 0, 0, 0, 1]],
                [[0, 0, 0, 1, 1, 1],
                 [0, 0, 0, 1, 1, 1]],
                [[0, 0, 1, 1, 1, 1],
                 [0, 0, 1, 1, 1, 1]]], dtype=torch.uint8)
        With the reference tensor and dimension indicator.
        >>> xs = torch.zeros((3, 6, 6))
        >>> make_pad_mask(lengths, xs, 1)
        tensor([[[0, 0, 0, 0, 0, 0],
                 [0, 0, 0, 0, 0, 0],
                 [0, 0, 0, 0, 0, 0],
                 [0, 0, 0, 0, 0, 0],
                 [0, 0, 0, 0, 0, 0],
                 [1, 1, 1, 1, 1, 1]],
                [[0, 0, 0, 0, 0, 0],
                 [0, 0, 0, 0, 0, 0],
                 [0, 0, 0, 0, 0, 0],
                 [1, 1, 1, 1, 1, 1],
                 [1, 1, 1, 1, 1, 1],
                 [1, 1, 1, 1, 1, 1]],
                [[0, 0, 0, 0, 0, 0],
                 [0, 0, 0, 0, 0, 0],
                 [1, 1, 1, 1, 1, 1],
                 [1, 1, 1, 1, 1, 1],
                 [1, 1, 1, 1, 1, 1],
                 [1, 1, 1, 1, 1, 1]]], dtype=torch.uint8)
        >>> make_pad_mask(lengths, xs, 2)
        tensor([[[0, 0, 0, 0, 0, 1],
                 [0, 0, 0, 0, 0, 1],
                 [0, 0, 0, 0, 0, 1],
                 [0, 0, 0, 0, 0, 1],
                 [0, 0, 0, 0, 0, 1],
                 [0, 0, 0, 0, 0, 1]],
                [[0, 0, 0, 1, 1, 1],
                 [0, 0, 0, 1, 1, 1],
                 [0, 0, 0, 1, 1, 1],
                 [0, 0, 0, 1, 1, 1],
                 [0, 0, 0, 1, 1, 1],
                 [0, 0, 0, 1, 1, 1]],
                [[0, 0, 1, 1, 1, 1],
                 [0, 0, 1, 1, 1, 1],
                 [0, 0, 1, 1, 1, 1],
                 [0, 0, 1, 1, 1, 1],
                 [0, 0, 1, 1, 1, 1],
                 [0, 0, 1, 1, 1, 1]]], dtype=torch.uint8)
    """
    if length_dim == 0:
        raise ValueError("length_dim cannot be 0: {}".format(length_dim))

    if not isinstance(lengths, list):
        lengths = lengths.tolist()
    bs = int(len(lengths))
    if xs is None:
        maxlen = int(max(lengths))
    else:
        maxlen = xs.size(length_dim)

    seq_range = torch.arange(0, maxlen, dtype=torch.int64)
    seq_range_expand = seq_range.unsqueeze(0).expand(bs, maxlen)
    seq_length_expand = seq_range_expand.new(lengths).unsqueeze(-1)
    mask = seq_range_expand >= seq_length_expand

    if xs is not None:
        assert xs.size(0) == bs, (xs.size(0), bs)

        if length_dim < 0:
            length_dim = xs.dim() + length_dim
        # ind = (:, None, ..., None, :, , None, ..., None)
        ind = tuple(
            slice(None) if i in (0, length_dim) else None for i in range(xs.dim())
        )
        mask = mask[ind].expand_as(xs).to(xs.device)
    return mask


def make_non_pad_mask(lengths, xs=None, length_dim=-1):
    """Make mask tensor containing indices of non-padded part.
    Args:
        lengths (LongTensor or List): Batch of lengths (B,).
        xs (Tensor, optional): The reference tensor.
            If set, masks will be the same shape as this tensor.
        length_dim (int, optional): Dimension indicator of the above tensor.
            See the example.
    Returns:
        ByteTensor: mask tensor containing indices of padded part.
                    dtype=torch.uint8 in PyTorch 1.2-
                    dtype=torch.bool in PyTorch 1.2+ (including 1.2)
    Examples:
        With only lengths.
        >>> lengths = [5, 3, 2]
        >>> make_non_pad_mask(lengths)
        masks = [[1, 1, 1, 1 ,1],
                 [1, 1, 1, 0, 0],
                 [1, 1, 0, 0, 0]]
        With the reference tensor.
        >>> xs = torch.zeros((3, 2, 4))
        >>> make_non_pad_mask(lengths, xs)
        tensor([[[1, 1, 1, 1],
                 [1, 1, 1, 1]],
                [[1, 1, 1, 0],
                 [1, 1, 1, 0]],
                [[1, 1, 0, 0],
                 [1, 1, 0, 0]]], dtype=torch.uint8)
        >>> xs = torch.zeros((3, 2, 6))
        >>> make_non_pad_mask(lengths, xs)
        tensor([[[1, 1, 1, 1, 1, 0],
                 [1, 1, 1, 1, 1, 0]],
                [[1, 1, 1, 0, 0, 0],
                 [1, 1, 1, 0, 0, 0]],
                [[1, 1, 0, 0, 0, 0],
                 [1, 1, 0, 0, 0, 0]]], dtype=torch.uint8)
        With the reference tensor and dimension indicator.
        >>> xs = torch.zeros((3, 6, 6))
        >>> make_non_pad_mask(lengths, xs, 1)
        tensor([[[1, 1, 1, 1, 1, 1],
                 [1, 1, 1, 1, 1, 1],
                 [1, 1, 1, 1, 1, 1],
                 [1, 1, 1, 1, 1, 1],
                 [1, 1, 1, 1, 1, 1],
                 [0, 0, 0, 0, 0, 0]],
                [[1, 1, 1, 1, 1, 1],
                 [1, 1, 1, 1, 1, 1],
                 [1, 1, 1, 1, 1, 1],
                 [0, 0, 0, 0, 0, 0],
                 [0, 0, 0, 0, 0, 0],
                 [0, 0, 0, 0, 0, 0]],
                [[1, 1, 1, 1, 1, 1],
                 [1, 1, 1, 1, 1, 1],
                 [0, 0, 0, 0, 0, 0],
                 [0, 0, 0, 0, 0, 0],
                 [0, 0, 0, 0, 0, 0],
                 [0, 0, 0, 0, 0, 0]]], dtype=torch.uint8)
        >>> make_non_pad_mask(lengths, xs, 2)
        tensor([[[1, 1, 1, 1, 1, 0],
                 [1, 1, 1, 1, 1, 0],
                 [1, 1, 1, 1, 1, 0],
                 [1, 1, 1, 1, 1, 0],
                 [1, 1, 1, 1, 1, 0],
                 [1, 1, 1, 1, 1, 0]],
                [[1, 1, 1, 0, 0, 0],
                 [1, 1, 1, 0, 0, 0],
                 [1, 1, 1, 0, 0, 0],
                 [1, 1, 1, 0, 0, 0],
                 [1, 1, 1, 0, 0, 0],
                 [1, 1, 1, 0, 0, 0]],
                [[1, 1, 0, 0, 0, 0],
                 [1, 1, 0, 0, 0, 0],
                 [1, 1, 0, 0, 0, 0],
                 [1, 1, 0, 0, 0, 0],
                 [1, 1, 0, 0, 0, 0],
                 [1, 1, 0, 0, 0, 0]]], dtype=torch.uint8)
    """
    return ~make_pad_mask(lengths, xs, length_dim)


def get_mask_from_lengths(lengths):
    max_len = torch.max(lengths).item()
    ids = torch.arange(0, max_len).to(lengths.device)
    mask = (ids < lengths.unsqueeze(1)).bool()
    return mask


def group_hidden_by_segs(h, seg_ids, max_len):
    """

    :param h: [B, T, H]
    :param seg_ids: [B, T]
    :return: h_ph: [B, T_ph, H]
    """
    B, T, H = h.shape
    h_gby_segs = h.new_zeros([B, max_len + 1, H]).scatter_add_(1, seg_ids[:, :, None].repeat([1, 1, H]), h)
    all_ones = h.new_ones(h.shape[:2])
    cnt_gby_segs = h.new_zeros([B, max_len + 1]).scatter_add_(1, seg_ids, all_ones).contiguous()
    h_gby_segs = h_gby_segs[:, 1:]
    cnt_gby_segs = cnt_gby_segs[:, 1:]
    h_gby_segs = h_gby_segs / torch.clamp(cnt_gby_segs[:, :, None], min=1)
    return h_gby_segs, cnt_gby_segs

def expand_word2ph(word_encoding, ph2word):
    word_encoding = F.pad(word_encoding,[0,0,1,0])
    ph2word_ = ph2word[:, :, None].repeat([1, 1, word_encoding.shape[-1]])
    out = torch.gather(word_encoding, 1, ph2word_)  # [B, T, H]
    return out