Spaces:
Build error
Build error
File size: 13,972 Bytes
9206300 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
import scipy
from torch.nn import functional as F
import torch
from torch import nn
import numpy as np
from modules.commons.wavenet import WN
from modules.glow import utils
class ActNorm(nn.Module):
def __init__(self, channels, ddi=False, **kwargs):
super().__init__()
self.channels = channels
self.initialized = not ddi
self.logs = nn.Parameter(torch.zeros(1, channels, 1))
self.bias = nn.Parameter(torch.zeros(1, channels, 1))
def forward(self, x, x_mask=None, reverse=False, **kwargs):
if x_mask is None:
x_mask = torch.ones(x.size(0), 1, x.size(2)).to(device=x.device, dtype=x.dtype)
x_len = torch.sum(x_mask, [1, 2])
if not self.initialized:
self.initialize(x, x_mask)
self.initialized = True
if reverse:
z = (x - self.bias) * torch.exp(-self.logs) * x_mask
logdet = torch.sum(-self.logs) * x_len
else:
z = (self.bias + torch.exp(self.logs) * x) * x_mask
logdet = torch.sum(self.logs) * x_len # [b]
return z, logdet
def store_inverse(self):
pass
def set_ddi(self, ddi):
self.initialized = not ddi
def initialize(self, x, x_mask):
with torch.no_grad():
denom = torch.sum(x_mask, [0, 2])
m = torch.sum(x * x_mask, [0, 2]) / denom
m_sq = torch.sum(x * x * x_mask, [0, 2]) / denom
v = m_sq - (m ** 2)
logs = 0.5 * torch.log(torch.clamp_min(v, 1e-6))
bias_init = (-m * torch.exp(-logs)).view(*self.bias.shape).to(dtype=self.bias.dtype)
logs_init = (-logs).view(*self.logs.shape).to(dtype=self.logs.dtype)
self.bias.data.copy_(bias_init)
self.logs.data.copy_(logs_init)
class InvConvNear(nn.Module):
def __init__(self, channels, n_split=4, no_jacobian=False, lu=True, n_sqz=2, **kwargs):
super().__init__()
assert (n_split % 2 == 0)
self.channels = channels
self.n_split = n_split
self.n_sqz = n_sqz
self.no_jacobian = no_jacobian
w_init = torch.qr(torch.FloatTensor(self.n_split, self.n_split).normal_())[0]
if torch.det(w_init) < 0:
w_init[:, 0] = -1 * w_init[:, 0]
self.lu = lu
if lu:
# LU decomposition can slightly speed up the inverse
np_p, np_l, np_u = scipy.linalg.lu(w_init)
np_s = np.diag(np_u)
np_sign_s = np.sign(np_s)
np_log_s = np.log(np.abs(np_s))
np_u = np.triu(np_u, k=1)
l_mask = np.tril(np.ones(w_init.shape, dtype=float), -1)
eye = np.eye(*w_init.shape, dtype=float)
self.register_buffer('p', torch.Tensor(np_p.astype(float)))
self.register_buffer('sign_s', torch.Tensor(np_sign_s.astype(float)))
self.l = nn.Parameter(torch.Tensor(np_l.astype(float)), requires_grad=True)
self.log_s = nn.Parameter(torch.Tensor(np_log_s.astype(float)), requires_grad=True)
self.u = nn.Parameter(torch.Tensor(np_u.astype(float)), requires_grad=True)
self.register_buffer('l_mask', torch.Tensor(l_mask))
self.register_buffer('eye', torch.Tensor(eye))
else:
self.weight = nn.Parameter(w_init)
def forward(self, x, x_mask=None, reverse=False, **kwargs):
b, c, t = x.size()
assert (c % self.n_split == 0)
if x_mask is None:
x_mask = 1
x_len = torch.ones((b,), dtype=x.dtype, device=x.device) * t
else:
x_len = torch.sum(x_mask, [1, 2])
x = x.view(b, self.n_sqz, c // self.n_split, self.n_split // self.n_sqz, t)
x = x.permute(0, 1, 3, 2, 4).contiguous().view(b, self.n_split, c // self.n_split, t)
if self.lu:
self.weight, log_s = self._get_weight()
logdet = log_s.sum()
logdet = logdet * (c / self.n_split) * x_len
else:
logdet = torch.logdet(self.weight) * (c / self.n_split) * x_len # [b]
if reverse:
if hasattr(self, "weight_inv"):
weight = self.weight_inv
else:
weight = torch.inverse(self.weight.float()).to(dtype=self.weight.dtype)
logdet = -logdet
else:
weight = self.weight
if self.no_jacobian:
logdet = 0
weight = weight.view(self.n_split, self.n_split, 1, 1)
z = F.conv2d(x, weight)
z = z.view(b, self.n_sqz, self.n_split // self.n_sqz, c // self.n_split, t)
z = z.permute(0, 1, 3, 2, 4).contiguous().view(b, c, t) * x_mask
return z, logdet
def _get_weight(self):
l, log_s, u = self.l, self.log_s, self.u
l = l * self.l_mask + self.eye
u = u * self.l_mask.transpose(0, 1).contiguous() + torch.diag(self.sign_s * torch.exp(log_s))
weight = torch.matmul(self.p, torch.matmul(l, u))
return weight, log_s
def store_inverse(self):
weight, _ = self._get_weight()
self.weight_inv = torch.inverse(weight.float()).to(next(self.parameters()).device)
class InvConv(nn.Module):
def __init__(self, channels, no_jacobian=False, lu=True, **kwargs):
super().__init__()
w_shape = [channels, channels]
w_init = np.linalg.qr(np.random.randn(*w_shape))[0].astype(float)
LU_decomposed = lu
if not LU_decomposed:
# Sample a random orthogonal matrix:
self.register_parameter("weight", nn.Parameter(torch.Tensor(w_init)))
else:
np_p, np_l, np_u = scipy.linalg.lu(w_init)
np_s = np.diag(np_u)
np_sign_s = np.sign(np_s)
np_log_s = np.log(np.abs(np_s))
np_u = np.triu(np_u, k=1)
l_mask = np.tril(np.ones(w_shape, dtype=float), -1)
eye = np.eye(*w_shape, dtype=float)
self.register_buffer('p', torch.Tensor(np_p.astype(float)))
self.register_buffer('sign_s', torch.Tensor(np_sign_s.astype(float)))
self.l = nn.Parameter(torch.Tensor(np_l.astype(float)))
self.log_s = nn.Parameter(torch.Tensor(np_log_s.astype(float)))
self.u = nn.Parameter(torch.Tensor(np_u.astype(float)))
self.l_mask = torch.Tensor(l_mask)
self.eye = torch.Tensor(eye)
self.w_shape = w_shape
self.LU = LU_decomposed
self.weight = None
def get_weight(self, device, reverse):
w_shape = self.w_shape
self.p = self.p.to(device)
self.sign_s = self.sign_s.to(device)
self.l_mask = self.l_mask.to(device)
self.eye = self.eye.to(device)
l = self.l * self.l_mask + self.eye
u = self.u * self.l_mask.transpose(0, 1).contiguous() + torch.diag(self.sign_s * torch.exp(self.log_s))
dlogdet = self.log_s.sum()
if not reverse:
w = torch.matmul(self.p, torch.matmul(l, u))
else:
l = torch.inverse(l.double()).float()
u = torch.inverse(u.double()).float()
w = torch.matmul(u, torch.matmul(l, self.p.inverse()))
return w.view(w_shape[0], w_shape[1], 1), dlogdet
def forward(self, x, x_mask=None, reverse=False, **kwargs):
"""
log-det = log|abs(|W|)| * pixels
"""
b, c, t = x.size()
if x_mask is None:
x_len = torch.ones((b,), dtype=x.dtype, device=x.device) * t
else:
x_len = torch.sum(x_mask, [1, 2])
logdet = 0
if not reverse:
weight, dlogdet = self.get_weight(x.device, reverse)
z = F.conv1d(x, weight)
if logdet is not None:
logdet = logdet + dlogdet * x_len
return z, logdet
else:
if self.weight is None:
weight, dlogdet = self.get_weight(x.device, reverse)
else:
weight, dlogdet = self.weight, self.dlogdet
z = F.conv1d(x, weight)
if logdet is not None:
logdet = logdet - dlogdet * x_len
return z, logdet
def store_inverse(self):
self.weight, self.dlogdet = self.get_weight('cuda', reverse=True)
class CouplingBlock(nn.Module):
def __init__(self, in_channels, hidden_channels, kernel_size, dilation_rate, n_layers,
gin_channels=0, p_dropout=0, sigmoid_scale=False, wn=None):
super().__init__()
self.in_channels = in_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.gin_channels = gin_channels
self.p_dropout = p_dropout
self.sigmoid_scale = sigmoid_scale
start = torch.nn.Conv1d(in_channels // 2, hidden_channels, 1)
start = torch.nn.utils.weight_norm(start)
self.start = start
# Initializing last layer to 0 makes the affine coupling layers
# do nothing at first. This helps with training stability
end = torch.nn.Conv1d(hidden_channels, in_channels, 1)
end.weight.data.zero_()
end.bias.data.zero_()
self.end = end
self.wn = WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels, p_dropout)
if wn is not None:
self.wn.in_layers = wn.in_layers
self.wn.res_skip_layers = wn.res_skip_layers
def forward(self, x, x_mask=None, reverse=False, g=None, **kwargs):
if x_mask is None:
x_mask = 1
x_0, x_1 = x[:, :self.in_channels // 2], x[:, self.in_channels // 2:]
x = self.start(x_0) * x_mask
x = self.wn(x, x_mask, g)
out = self.end(x)
z_0 = x_0
m = out[:, :self.in_channels // 2, :]
logs = out[:, self.in_channels // 2:, :]
if self.sigmoid_scale:
logs = torch.log(1e-6 + torch.sigmoid(logs + 2))
if reverse:
z_1 = (x_1 - m) * torch.exp(-logs) * x_mask
logdet = torch.sum(-logs * x_mask, [1, 2])
else:
z_1 = (m + torch.exp(logs) * x_1) * x_mask
logdet = torch.sum(logs * x_mask, [1, 2])
z = torch.cat([z_0, z_1], 1)
return z, logdet
def store_inverse(self):
self.wn.remove_weight_norm()
class Glow(nn.Module):
def __init__(self,
in_channels,
hidden_channels,
kernel_size,
dilation_rate,
n_blocks,
n_layers,
p_dropout=0.,
n_split=4,
n_sqz=2,
sigmoid_scale=False,
gin_channels=0,
inv_conv_type='near',
share_cond_layers=False,
share_wn_layers=0,
):
super().__init__()
self.in_channels = in_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_blocks = n_blocks
self.n_layers = n_layers
self.p_dropout = p_dropout
self.n_split = n_split
self.n_sqz = n_sqz
self.sigmoid_scale = sigmoid_scale
self.gin_channels = gin_channels
self.share_cond_layers = share_cond_layers
if gin_channels != 0 and share_cond_layers:
cond_layer = torch.nn.Conv1d(gin_channels * n_sqz, 2 * hidden_channels * n_layers, 1)
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
wn = None
self.flows = nn.ModuleList()
for b in range(n_blocks):
self.flows.append(ActNorm(channels=in_channels * n_sqz))
if inv_conv_type == 'near':
self.flows.append(InvConvNear(channels=in_channels * n_sqz, n_split=n_split, n_sqz=n_sqz))
if inv_conv_type == 'invconv':
self.flows.append(InvConv(channels=in_channels * n_sqz))
if share_wn_layers > 0:
if b % share_wn_layers == 0:
wn = WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels * n_sqz,
p_dropout, share_cond_layers)
self.flows.append(
CouplingBlock(
in_channels * n_sqz,
hidden_channels,
kernel_size=kernel_size,
dilation_rate=dilation_rate,
n_layers=n_layers,
gin_channels=gin_channels * n_sqz,
p_dropout=p_dropout,
sigmoid_scale=sigmoid_scale,
wn=wn
))
def forward(self, x, x_mask=None, g=None, reverse=False, return_hiddens=False):
logdet_tot = 0
if not reverse:
flows = self.flows
else:
flows = reversed(self.flows)
if return_hiddens:
hs = []
if self.n_sqz > 1:
x, x_mask_ = utils.squeeze(x, x_mask, self.n_sqz)
if g is not None:
g, _ = utils.squeeze(g, x_mask, self.n_sqz)
x_mask = x_mask_
if self.share_cond_layers and g is not None:
g = self.cond_layer(g)
for f in flows:
x, logdet = f(x, x_mask, g=g, reverse=reverse)
if return_hiddens:
hs.append(x)
logdet_tot += logdet
if self.n_sqz > 1:
x, x_mask = utils.unsqueeze(x, x_mask, self.n_sqz)
if return_hiddens:
return x, logdet_tot, hs
return x, logdet_tot
def store_inverse(self):
def remove_weight_norm(m):
try:
nn.utils.remove_weight_norm(m)
except ValueError: # this module didn't have weight norm
return
self.apply(remove_weight_norm)
for f in self.flows:
f.store_inverse()
|