File size: 6,474 Bytes
9206300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# -*- coding: utf-8 -*-

"""Upsampling module.

This code is modified from https://github.com/r9y9/wavenet_vocoder.

"""

import numpy as np
import torch
import torch.nn.functional as F

from . import Conv1d


class Stretch2d(torch.nn.Module):
    """Stretch2d module."""

    def __init__(self, x_scale, y_scale, mode="nearest"):
        """Initialize Stretch2d module.

        Args:
            x_scale (int): X scaling factor (Time axis in spectrogram).
            y_scale (int): Y scaling factor (Frequency axis in spectrogram).
            mode (str): Interpolation mode.

        """
        super(Stretch2d, self).__init__()
        self.x_scale = x_scale
        self.y_scale = y_scale
        self.mode = mode

    def forward(self, x):
        """Calculate forward propagation.

        Args:
            x (Tensor): Input tensor (B, C, F, T).

        Returns:
            Tensor: Interpolated tensor (B, C, F * y_scale, T * x_scale),

        """
        return F.interpolate(
            x, scale_factor=(self.y_scale, self.x_scale), mode=self.mode)


class Conv2d(torch.nn.Conv2d):
    """Conv2d module with customized initialization."""

    def __init__(self, *args, **kwargs):
        """Initialize Conv2d module."""
        super(Conv2d, self).__init__(*args, **kwargs)

    def reset_parameters(self):
        """Reset parameters."""
        self.weight.data.fill_(1. / np.prod(self.kernel_size))
        if self.bias is not None:
            torch.nn.init.constant_(self.bias, 0.0)


class UpsampleNetwork(torch.nn.Module):
    """Upsampling network module."""

    def __init__(self,
                 upsample_scales,
                 nonlinear_activation=None,
                 nonlinear_activation_params={},
                 interpolate_mode="nearest",
                 freq_axis_kernel_size=1,
                 use_causal_conv=False,
                 ):
        """Initialize upsampling network module.

        Args:
            upsample_scales (list): List of upsampling scales.
            nonlinear_activation (str): Activation function name.
            nonlinear_activation_params (dict): Arguments for specified activation function.
            interpolate_mode (str): Interpolation mode.
            freq_axis_kernel_size (int): Kernel size in the direction of frequency axis.

        """
        super(UpsampleNetwork, self).__init__()
        self.use_causal_conv = use_causal_conv
        self.up_layers = torch.nn.ModuleList()
        for scale in upsample_scales:
            # interpolation layer
            stretch = Stretch2d(scale, 1, interpolate_mode)
            self.up_layers += [stretch]

            # conv layer
            assert (freq_axis_kernel_size - 1) % 2 == 0, "Not support even number freq axis kernel size."
            freq_axis_padding = (freq_axis_kernel_size - 1) // 2
            kernel_size = (freq_axis_kernel_size, scale * 2 + 1)
            if use_causal_conv:
                padding = (freq_axis_padding, scale * 2)
            else:
                padding = (freq_axis_padding, scale)
            conv = Conv2d(1, 1, kernel_size=kernel_size, padding=padding, bias=False)
            self.up_layers += [conv]

            # nonlinear
            if nonlinear_activation is not None:
                nonlinear = getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params)
                self.up_layers += [nonlinear]

    def forward(self, c):
        """Calculate forward propagation.

        Args:
            c : Input tensor (B, C, T).

        Returns:
            Tensor: Upsampled tensor (B, C, T'), where T' = T * prod(upsample_scales).

        """
        c = c.unsqueeze(1)  # (B, 1, C, T)
        for f in self.up_layers:
            if self.use_causal_conv and isinstance(f, Conv2d):
                c = f(c)[..., :c.size(-1)]
            else:
                c = f(c)
        return c.squeeze(1)  # (B, C, T')


class ConvInUpsampleNetwork(torch.nn.Module):
    """Convolution + upsampling network module."""

    def __init__(self,
                 upsample_scales,
                 nonlinear_activation=None,
                 nonlinear_activation_params={},
                 interpolate_mode="nearest",
                 freq_axis_kernel_size=1,
                 aux_channels=80,
                 aux_context_window=0,
                 use_causal_conv=False
                 ):
        """Initialize convolution + upsampling network module.

        Args:
            upsample_scales (list): List of upsampling scales.
            nonlinear_activation (str): Activation function name.
            nonlinear_activation_params (dict): Arguments for specified activation function.
            mode (str): Interpolation mode.
            freq_axis_kernel_size (int): Kernel size in the direction of frequency axis.
            aux_channels (int): Number of channels of pre-convolutional layer.
            aux_context_window (int): Context window size of the pre-convolutional layer.
            use_causal_conv (bool): Whether to use causal structure.

        """
        super(ConvInUpsampleNetwork, self).__init__()
        self.aux_context_window = aux_context_window
        self.use_causal_conv = use_causal_conv and aux_context_window > 0
        # To capture wide-context information in conditional features
        kernel_size = aux_context_window + 1 if use_causal_conv else 2 * aux_context_window + 1
        # NOTE(kan-bayashi): Here do not use padding because the input is already padded
        self.conv_in = Conv1d(aux_channels, aux_channels, kernel_size=kernel_size, bias=False)
        self.upsample = UpsampleNetwork(
            upsample_scales=upsample_scales,
            nonlinear_activation=nonlinear_activation,
            nonlinear_activation_params=nonlinear_activation_params,
            interpolate_mode=interpolate_mode,
            freq_axis_kernel_size=freq_axis_kernel_size,
            use_causal_conv=use_causal_conv,
        )

    def forward(self, c):
        """Calculate forward propagation.

        Args:
            c : Input tensor (B, C, T').

        Returns:
            Tensor: Upsampled tensor (B, C, T),
                where T = (T' - aux_context_window * 2) * prod(upsample_scales).

        Note:
            The length of inputs considers the context window size.

        """
        c_ = self.conv_in(c)
        c = c_[:, :, :-self.aux_context_window] if self.use_causal_conv else c_
        return self.upsample(c)