Spaces:
Build error
Build error
File size: 50,181 Bytes
3d2e945 013d0b6 3d2e945 3032eab 3d2e945 1b4468e 3d2e945 1b4468e 3d2e945 013d0b6 4d54c87 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 cfba0dd 013d0b6 3d2e945 013d0b6 3d2e945 4d54c87 3d2e945 013d0b6 3d2e945 013d0b6 4d54c87 3d2e945 013d0b6 3d2e945 013d0b6 4d54c87 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 c52f81e 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 4d54c87 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 1400424 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 c52f81e 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 7c71ec4 9bf0961 013d0b6 7c71ec4 9bf0961 7c71ec4 013d0b6 7c71ec4 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 c52f81e 4d54c87 4f2ef2c 4d54c87 3d2e945 4d54c87 3d2e945 4d54c87 3d2e945 013d0b6 3d2e945 fda2ed9 3d2e945 c52f81e 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 4d54c87 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 1400424 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 1400424 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 013d0b6 3d2e945 c52f81e 013d0b6 7c71ec4 1400424 013d0b6 7c71ec4 013d0b6 7c71ec4 013d0b6 3d2e945 4d54c87 013d0b6 3d2e945 013d0b6 3d2e945 4d54c87 013d0b6 3d2e945 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 06be3a6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 06be3a6 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 1b4468e 013d0b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 |
import sys
import os
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'NeuralSeq'))
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'text_to_audio/Make_An_Audio'))
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'audio_detection'))
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'mono2binaural'))
import matplotlib
import librosa
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation
import torch
from diffusers import StableDiffusionPipeline
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
import re
import uuid
import soundfile
from diffusers import StableDiffusionInpaintPipeline
from PIL import Image
import numpy as np
from omegaconf import OmegaConf
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
import cv2
import einops
from einops import repeat
from pytorch_lightning import seed_everything
import random
from ldm.util import instantiate_from_config
from ldm.data.extract_mel_spectrogram import TRANSFORMS_16000
from pathlib import Path
from vocoder.hifigan.modules import VocoderHifigan
from vocoder.bigvgan.models import VocoderBigVGAN
from ldm.models.diffusion.ddim import DDIMSampler
from wav_evaluation.models.CLAPWrapper import CLAPWrapper
from inference.svs.ds_e2e import DiffSingerE2EInfer
from audio_to_text.inference_waveform import AudioCapModel
import whisper
from text_to_speech.TTS_binding import TTSInference
from inference.svs.ds_e2e import DiffSingerE2EInfer
from inference.tts.GenerSpeech import GenerSpeechInfer
from utils.hparams import set_hparams
from utils.hparams import hparams as hp
from utils.os_utils import move_file
import scipy.io.wavfile as wavfile
from audio_infer.utils import config as detection_config
from audio_infer.pytorch.models import PVT
from src.models import BinauralNetwork
from sound_extraction.model.LASSNet import LASSNet
from sound_extraction.utils.stft import STFT
from sound_extraction.utils.wav_io import load_wav, save_wav
from target_sound_detection.src import models as tsd_models
from target_sound_detection.src.models import event_labels
from target_sound_detection.src.utils import median_filter, decode_with_timestamps
import clip
def prompts(name, description):
def decorator(func):
func.name = name
func.description = description
return func
return decorator
def initialize_model(config, ckpt, device):
config = OmegaConf.load(config)
model = instantiate_from_config(config.model)
model.load_state_dict(torch.load(ckpt, map_location='cpu')["state_dict"], strict=False)
model = model.to(device)
model.cond_stage_model.to(model.device)
model.cond_stage_model.device = model.device
sampler = DDIMSampler(model)
return sampler
def initialize_model_inpaint(config, ckpt):
config = OmegaConf.load(config)
model = instantiate_from_config(config.model)
model.load_state_dict(torch.load(ckpt, map_location='cpu')["state_dict"], strict=False)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
print(model.device, device, model.cond_stage_model.device)
sampler = DDIMSampler(model)
return sampler
def select_best_audio(prompt, wav_list):
clap_model = CLAPWrapper('text_to_audio/Make_An_Audio/useful_ckpts/CLAP/CLAP_weights_2022.pth',
'text_to_audio/Make_An_Audio/useful_ckpts/CLAP/config.yml',
use_cuda=torch.cuda.is_available())
text_embeddings = clap_model.get_text_embeddings([prompt])
score_list = []
for data in wav_list:
sr, wav = data
audio_embeddings = clap_model.get_audio_embeddings([(torch.FloatTensor(wav), sr)], resample=True)
score = clap_model.compute_similarity(audio_embeddings, text_embeddings,
use_logit_scale=False).squeeze().cpu().numpy()
score_list.append(score)
max_index = np.array(score_list).argmax()
print(score_list, max_index)
return wav_list[max_index]
def merge_audio(audio_path_1, audio_path_2):
merged_signal = []
sr_1, signal_1 = wavfile.read(audio_path_1)
sr_2, signal_2 = wavfile.read(audio_path_2)
merged_signal.append(signal_1)
merged_signal.append(signal_2)
merged_signal = np.hstack(merged_signal)
merged_signal = np.asarray(merged_signal, dtype=np.int16)
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
wavfile.write(audio_filename, sr_1, merged_signal)
return audio_filename
class T2I:
def __init__(self, device):
print("Initializing T2I to %s" % device)
self.device = device
self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
self.text_refine_tokenizer = AutoTokenizer.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion")
self.text_refine_model = AutoModelForCausalLM.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion")
self.text_refine_gpt2_pipe = pipeline("text-generation", model=self.text_refine_model,
tokenizer=self.text_refine_tokenizer, device=self.device)
self.pipe.to(device)
@prompts(name="Generate Image From User Input Text",
description="useful when you want to generate an image from a user input text and save it to a file. "
"like: generate an image of an object or something, or generate an image that includes some objects. "
"The input to this tool should be a string, representing the text used to generate image. ")
def inference(self, text):
image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
refined_text = self.text_refine_gpt2_pipe(text)[0]["generated_text"]
print(f'{text} refined to {refined_text}')
image = self.pipe(refined_text).images[0]
image.save(image_filename)
print(f"Processed T2I.run, text: {text}, image_filename: {image_filename}")
return image_filename
class ImageCaptioning:
def __init__(self, device):
print("Initializing ImageCaptioning to %s" % device)
self.device = device
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(
self.device)
@prompts(name="Remove Something From The Photo",
description="useful when you want to remove and object or something from the photo "
"from its description or location. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the object need to be removed. ")
def inference(self, image_path):
inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device)
out = self.model.generate(**inputs)
captions = self.processor.decode(out[0], skip_special_tokens=True)
return captions
class T2A:
def __init__(self, device):
print("Initializing Make-An-Audio to %s" % device)
self.device = device
self.sampler = initialize_model('text_to_audio/Make_An_Audio/configs/text-to-audio/txt2audio_args.yaml',
'text_to_audio/Make_An_Audio/useful_ckpts/ta40multi_epoch=000085.ckpt',
device=device)
self.vocoder = VocoderBigVGAN('text_to_audio/Make_An_Audio/vocoder/logs/bigv16k53w', device=device)
def txt2audio(self, text, seed=55, scale=1.5, ddim_steps=100, n_samples=3, W=624, H=80):
SAMPLE_RATE = 16000
prng = np.random.RandomState(seed)
start_code = prng.randn(n_samples, self.sampler.model.first_stage_model.embed_dim, H // 8, W // 8)
start_code = torch.from_numpy(start_code).to(device=self.device, dtype=torch.float32)
uc = self.sampler.model.get_learned_conditioning(n_samples * [""])
c = self.sampler.model.get_learned_conditioning(n_samples * [text])
shape = [self.sampler.model.first_stage_model.embed_dim, H // 8, W // 8] # (z_dim, 80//2^x, 848//2^x)
samples_ddim, _ = self.sampler.sample(S=ddim_steps,
conditioning=c,
batch_size=n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=scale,
unconditional_conditioning=uc,
x_T=start_code)
x_samples_ddim = self.sampler.model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) # [0, 1]
wav_list = []
for idx, spec in enumerate(x_samples_ddim):
wav = self.vocoder.vocode(spec)
wav_list.append((SAMPLE_RATE, wav))
best_wav = select_best_audio(text, wav_list)
return best_wav
@prompts(name="Generate Audio From User Input Text",
description="useful for when you want to generate an audio "
"from a user input text and it saved it to a file."
"The input to this tool should be a string, "
"representing the text used to generate audio.")
def inference(self, text, seed=55, scale=1.5, ddim_steps=100, n_samples=3, W=624, H=80):
melbins, mel_len = 80, 624
with torch.no_grad():
result = self.txt2audio(
text=text,
H=melbins,
W=mel_len
)
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
soundfile.write(audio_filename, result[1], samplerate=16000)
print(f"Processed T2I.run, text: {text}, audio_filename: {audio_filename}")
return audio_filename
class I2A:
def __init__(self, device):
print("Initializing Make-An-Audio-Image to %s" % device)
self.device = device
self.sampler = initialize_model('text_to_audio/Make_An_Audio/configs/img_to_audio/img2audio_args.yaml',
'text_to_audio/Make_An_Audio/useful_ckpts/ta54_epoch=000216.ckpt',
device=device)
self.vocoder = VocoderBigVGAN('text_to_audio/Make_An_Audio/vocoder/logs/bigv16k53w', device=device)
def img2audio(self, image, seed=55, scale=3, ddim_steps=100, W=624, H=80):
SAMPLE_RATE = 16000
n_samples = 1 # only support 1 sample
prng = np.random.RandomState(seed)
start_code = prng.randn(n_samples, self.sampler.model.first_stage_model.embed_dim, H // 8, W // 8)
start_code = torch.from_numpy(start_code).to(device=self.device, dtype=torch.float32)
uc = self.sampler.model.get_learned_conditioning(n_samples * [""])
# image = Image.fromarray(image)
image = Image.open(image)
image = self.sampler.model.cond_stage_model.preprocess(image).unsqueeze(0)
image_embedding = self.sampler.model.cond_stage_model.forward_img(image)
c = image_embedding.repeat(n_samples, 1, 1)
shape = [self.sampler.model.first_stage_model.embed_dim, H // 8, W // 8] # (z_dim, 80//2^x, 848//2^x)
samples_ddim, _ = self.sampler.sample(S=ddim_steps,
conditioning=c,
batch_size=n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=scale,
unconditional_conditioning=uc,
x_T=start_code)
x_samples_ddim = self.sampler.model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) # [0, 1]
wav_list = []
for idx, spec in enumerate(x_samples_ddim):
wav = self.vocoder.vocode(spec)
wav_list.append((SAMPLE_RATE, wav))
best_wav = wav_list[0]
return best_wav
@prompts(name="Generate Audio From The Image",
description="useful for when you want to generate an audio "
"based on an image. "
"The input to this tool should be a string, "
"representing the image_path. ")
def inference(self, image, seed=55, scale=3, ddim_steps=100, W=624, H=80):
melbins, mel_len = 80, 624
with torch.no_grad():
result = self.img2audio(
image=image,
H=melbins,
W=mel_len
)
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
soundfile.write(audio_filename, result[1], samplerate=16000)
print(f"Processed I2a.run, image_filename: {image}, audio_filename: {audio_filename}")
return audio_filename
class TTS:
def __init__(self, device=None):
self.model = TTSInference(device)
@prompts(name="Synthesize Speech Given the User Input Text",
description="useful for when you want to convert a user input text into speech audio it saved it to a file."
"The input to this tool should be a string, "
"representing the text used to be converted to speech.")
def inference(self, text):
inp = {"text": text}
out = self.model.infer_once(inp)
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
soundfile.write(audio_filename, out, samplerate=22050)
return audio_filename
class T2S:
def __init__(self, device=None):
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print("Initializing DiffSinger to %s" % device)
self.device = device
self.exp_name = 'checkpoints/0831_opencpop_ds1000'
self.config = 'NeuralSeq/egs/egs_bases/svs/midi/e2e/opencpop/ds1000.yaml'
self.set_model_hparams()
self.pipe = DiffSingerE2EInfer(self.hp, device)
self.default_inp = {
'text': '你 说 你 不 SP 懂 为 何 在 这 时 牵 手 AP',
'notes': 'D#4/Eb4 | D#4/Eb4 | D#4/Eb4 | D#4/Eb4 | rest | D#4/Eb4 | D4 | D4 | D4 | D#4/Eb4 | F4 | D#4/Eb4 | D4 | rest',
'notes_duration': '0.113740 | 0.329060 | 0.287950 | 0.133480 | 0.150900 | 0.484730 | 0.242010 | 0.180820 | 0.343570 | 0.152050 | 0.266720 | 0.280310 | 0.633300 | 0.444590'
}
def set_model_hparams(self):
set_hparams(config=self.config, exp_name=self.exp_name, print_hparams=False)
self.hp = hp
@prompts(name="Generate Singing Voice From User Input Text, Note and Duration Sequence",
description="useful for when you want to generate a piece of singing voice (Optional: from User Input Text, Note and Duration Sequence) "
"and save it to a file."
"If Like: Generate a piece of singing voice, the input to this tool should be \"\" since there is no User Input Text, Note and Duration Sequence. "
"If Like: Generate a piece of singing voice. Text: xxx, Note: xxx, Duration: xxx. "
"Or Like: Generate a piece of singing voice. Text is xxx, note is xxx, duration is xxx."
"The input to this tool should be a comma seperated string of three, "
"representing text, note and duration sequence since User Input Text, Note and Duration Sequence are all provided. ")
def inference(self, inputs):
self.set_model_hparams()
val = inputs.split(",")
key = ['text', 'notes', 'notes_duration']
try:
inp = {k: v for k, v in zip(key, val)}
wav = self.pipe.infer_once(inp)
except:
print('Error occurs. Generate default audio sample.\n')
inp = self.default_inp
wav = self.pipe.infer_once(inp)
wav *= 32767
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
wavfile.write(audio_filename, self.hp['audio_sample_rate'], wav.astype(np.int16))
print(f"Processed T2S.run, audio_filename: {audio_filename}")
return audio_filename
class TTS_OOD:
def __init__(self, device):
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print("Initializing GenerSpeech to %s" % device)
self.device = device
self.exp_name = 'checkpoints/GenerSpeech'
self.config = 'NeuralSeq/modules/GenerSpeech/config/generspeech.yaml'
self.set_model_hparams()
self.pipe = GenerSpeechInfer(self.hp, device)
def set_model_hparams(self):
set_hparams(config=self.config, exp_name=self.exp_name, print_hparams=False)
f0_stats_fn = f'{hp["binary_data_dir"]}/train_f0s_mean_std.npy'
if os.path.exists(f0_stats_fn):
hp['f0_mean'], hp['f0_std'] = np.load(f0_stats_fn)
hp['f0_mean'] = float(hp['f0_mean'])
hp['f0_std'] = float(hp['f0_std'])
hp['emotion_encoder_path'] = 'checkpoints/Emotion_encoder.pt'
self.hp = hp
@prompts(name="Style Transfer",
description="useful for when you want to generate speech samples with styles "
"(e.g., timbre, emotion, and prosody) derived from a reference custom voice. "
"Like: Generate a speech with style transferred from this voice. The text is xxx., or speak using the voice of this audio. The text is xxx."
"The input to this tool should be a comma seperated string of two, "
"representing reference audio path and input text. ")
def inference(self, inputs):
self.set_model_hparams()
key = ['ref_audio', 'text']
val = inputs.split(",")
inp = {k: v for k, v in zip(key, val)}
wav = self.pipe.infer_once(inp)
wav *= 32767
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
wavfile.write(audio_filename, self.hp['audio_sample_rate'], wav.astype(np.int16))
print(
f"Processed GenerSpeech.run. Input text:{val[1]}. Input reference audio: {val[0]}. Output Audio_filename: {audio_filename}")
return audio_filename
class Inpaint:
def __init__(self, device):
print("Initializing Make-An-Audio-inpaint to %s" % device)
self.device = device
self.sampler = initialize_model_inpaint('text_to_audio/Make_An_Audio/configs/inpaint/txt2audio_args.yaml',
'text_to_audio/Make_An_Audio/useful_ckpts/inpaint7_epoch00047.ckpt')
self.vocoder = VocoderBigVGAN('text_to_audio/Make_An_Audio/vocoder/logs/bigv16k53w', device=device)
self.cmap_transform = matplotlib.cm.viridis
def make_batch_sd(self, mel, mask, num_samples=1):
mel = torch.from_numpy(mel)[None, None, ...].to(dtype=torch.float32)
mask = torch.from_numpy(mask)[None, None, ...].to(dtype=torch.float32)
masked_mel = (1 - mask) * mel
mel = mel * 2 - 1
mask = mask * 2 - 1
masked_mel = masked_mel * 2 - 1
batch = {
"mel": repeat(mel.to(device=self.device), "1 ... -> n ...", n=num_samples),
"mask": repeat(mask.to(device=self.device), "1 ... -> n ...", n=num_samples),
"masked_mel": repeat(masked_mel.to(device=self.device), "1 ... -> n ...", n=num_samples),
}
return batch
def gen_mel(self, input_audio_path):
SAMPLE_RATE = 16000
sr, ori_wav = wavfile.read(input_audio_path)
print("gen_mel")
print(sr, ori_wav.shape, ori_wav)
ori_wav = ori_wav.astype(np.float32, order='C') / 32768.0
if len(ori_wav.shape) == 2: # stereo
ori_wav = librosa.to_mono(
ori_wav.T) # gradio load wav shape could be (wav_len,2) but librosa expects (2,wav_len)
print(sr, ori_wav.shape, ori_wav)
ori_wav = librosa.resample(ori_wav, orig_sr=sr, target_sr=SAMPLE_RATE)
mel_len, hop_size = 848, 256
input_len = mel_len * hop_size
if len(ori_wav) < input_len:
input_wav = np.pad(ori_wav, (0, mel_len * hop_size), constant_values=0)
else:
input_wav = ori_wav[:input_len]
mel = TRANSFORMS_16000(input_wav)
return mel
def gen_mel_audio(self, input_audio):
SAMPLE_RATE = 16000
sr, ori_wav = input_audio
print("gen_mel_audio")
print(sr, ori_wav.shape, ori_wav)
ori_wav = ori_wav.astype(np.float32, order='C') / 32768.0
if len(ori_wav.shape) == 2: # stereo
ori_wav = librosa.to_mono(
ori_wav.T) # gradio load wav shape could be (wav_len,2) but librosa expects (2,wav_len)
print(sr, ori_wav.shape, ori_wav)
ori_wav = librosa.resample(ori_wav, orig_sr=sr, target_sr=SAMPLE_RATE)
mel_len, hop_size = 848, 256
input_len = mel_len * hop_size
if len(ori_wav) < input_len:
input_wav = np.pad(ori_wav, (0, mel_len * hop_size), constant_values=0)
else:
input_wav = ori_wav[:input_len]
mel = TRANSFORMS_16000(input_wav)
return mel
def inpaint(self, batch, seed, ddim_steps, num_samples=1, W=512, H=512):
model = self.sampler.model
prng = np.random.RandomState(seed)
start_code = prng.randn(num_samples, model.first_stage_model.embed_dim, H // 8, W // 8)
start_code = torch.from_numpy(start_code).to(device=self.device, dtype=torch.float32)
c = model.get_first_stage_encoding(model.encode_first_stage(batch["masked_mel"]))
cc = torch.nn.functional.interpolate(batch["mask"],
size=c.shape[-2:])
c = torch.cat((c, cc), dim=1) # (b,c+1,h,w) 1 is mask
shape = (c.shape[1] - 1,) + c.shape[2:]
samples_ddim, _ = self.sampler.sample(S=ddim_steps,
conditioning=c,
batch_size=c.shape[0],
shape=shape,
verbose=False)
x_samples_ddim = model.decode_first_stage(samples_ddim)
mask = batch["mask"] # [-1,1]
mel = torch.clamp((batch["mel"] + 1.0) / 2.0, min=0.0, max=1.0)
mask = torch.clamp((batch["mask"] + 1.0) / 2.0, min=0.0, max=1.0)
predicted_mel = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
inpainted = (1 - mask) * mel + mask * predicted_mel
inpainted = inpainted.cpu().numpy().squeeze()
inapint_wav = self.vocoder.vocode(inpainted)
return inpainted, inapint_wav
def predict(self, input_audio, mel_and_mask, seed=55, ddim_steps=100):
SAMPLE_RATE = 16000
torch.set_grad_enabled(False)
mel_img = Image.open(mel_and_mask['image'])
mask_img = Image.open(mel_and_mask["mask"])
show_mel = np.array(mel_img.convert("L")) / 255
mask = np.array(mask_img.convert("L")) / 255
mel_bins, mel_len = 80, 848
input_mel = self.gen_mel_audio(input_audio)[:, :mel_len]
mask = np.pad(mask, ((0, 0), (0, mel_len - mask.shape[1])), mode='constant', constant_values=0)
print(mask.shape, input_mel.shape)
with torch.no_grad():
batch = self.make_batch_sd(input_mel, mask, num_samples=1)
inpainted, gen_wav = self.inpaint(
batch=batch,
seed=seed,
ddim_steps=ddim_steps,
num_samples=1,
H=mel_bins, W=mel_len
)
inpainted = inpainted[:, :show_mel.shape[1]]
color_mel = self.cmap_transform(inpainted)
input_len = int(input_audio[1].shape[0] * SAMPLE_RATE / input_audio[0])
gen_wav = (gen_wav * 32768).astype(np.int16)[:input_len]
image = Image.fromarray((color_mel * 255).astype(np.uint8))
image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
image.save(image_filename)
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
soundfile.write(audio_filename, gen_wav, samplerate=16000)
return image_filename, audio_filename
@prompts(name="Audio Inpainting",
description="useful for when you want to inpaint a mel spectrum of an audio and predict this audio, "
"this tool will generate a mel spectrum and you can inpaint it, receives audio_path as input. "
"The input to this tool should be a string, "
"representing the audio_path. ")
def inference(self, input_audio_path):
crop_len = 500
crop_mel = self.gen_mel(input_audio_path)[:, :crop_len]
color_mel = self.cmap_transform(crop_mel)
image = Image.fromarray((color_mel * 255).astype(np.uint8))
image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
image.save(image_filename)
return image_filename
class ASR:
def __init__(self, device):
print("Initializing Whisper to %s" % device)
self.device = device
self.model = whisper.load_model("base", device=device)
@prompts(name="Transcribe speech",
description="useful for when you want to know the text corresponding to a human speech, "
"receives audio_path as input. "
"The input to this tool should be a string, "
"representing the audio_path. ")
def inference(self, audio_path):
audio = whisper.load_audio(audio_path)
audio = whisper.pad_or_trim(audio)
mel = whisper.log_mel_spectrogram(audio).to(self.device)
_, probs = self.model.detect_language(mel)
options = whisper.DecodingOptions()
result = whisper.decode(self.model, mel, options)
return result.text
def translate_english(self, audio_path):
audio = self.model.transcribe(audio_path, language='English')
return audio['text']
class A2T:
def __init__(self, device):
print("Initializing Audio-To-Text Model to %s" % device)
self.device = device
self.model = AudioCapModel("audio_to_text/audiocaps_cntrstv_cnn14rnn_trm")
@prompts(name="Generate Text From The Audio",
description="useful for when you want to describe an audio in text, "
"receives audio_path as input. "
"The input to this tool should be a string, "
"representing the audio_path. ")
def inference(self, audio_path):
audio = whisper.load_audio(audio_path)
caption_text = self.model(audio)
return caption_text[0]
class SoundDetection:
def __init__(self, device):
self.device = device
self.sample_rate = 32000
self.window_size = 1024
self.hop_size = 320
self.mel_bins = 64
self.fmin = 50
self.fmax = 14000
self.model_type = 'PVT'
self.checkpoint_path = 'audio_detection/audio_infer/useful_ckpts/audio_detection.pth'
self.classes_num = detection_config.classes_num
self.labels = detection_config.labels
self.frames_per_second = self.sample_rate // self.hop_size
# Model = eval(self.model_type)
self.model = PVT(sample_rate=self.sample_rate, window_size=self.window_size,
hop_size=self.hop_size, mel_bins=self.mel_bins, fmin=self.fmin, fmax=self.fmax,
classes_num=self.classes_num)
checkpoint = torch.load(self.checkpoint_path, map_location=self.device)
self.model.load_state_dict(checkpoint['model'])
self.model.to(device)
@prompts(name="Detect The Sound Event From The Audio",
description="useful for when you want to know what event in the audio and the sound event start or end time, it will return an image "
"receives audio_path as input. "
"The input to this tool should be a string, "
"representing the audio_path. ")
def inference(self, audio_path):
# Forward
(waveform, _) = librosa.core.load(audio_path, sr=self.sample_rate, mono=True)
waveform = waveform[None, :] # (1, audio_length)
waveform = torch.from_numpy(waveform)
waveform = waveform.to(self.device)
# Forward
with torch.no_grad():
self.model.eval()
batch_output_dict = self.model(waveform, None)
framewise_output = batch_output_dict['framewise_output'].data.cpu().numpy()[0]
"""(time_steps, classes_num)"""
# print('Sound event detection result (time_steps x classes_num): {}'.format(
# framewise_output.shape))
import numpy as np
import matplotlib.pyplot as plt
sorted_indexes = np.argsort(np.max(framewise_output, axis=0))[::-1]
top_k = 10 # Show top results
top_result_mat = framewise_output[:, sorted_indexes[0: top_k]]
"""(time_steps, top_k)"""
# Plot result
stft = librosa.core.stft(y=waveform[0].data.cpu().numpy(), n_fft=self.window_size,
hop_length=self.hop_size, window='hann', center=True)
frames_num = stft.shape[-1]
fig, axs = plt.subplots(2, 1, sharex=True, figsize=(10, 4))
axs[0].matshow(np.log(np.abs(stft)), origin='lower', aspect='auto', cmap='jet')
axs[0].set_ylabel('Frequency bins')
axs[0].set_title('Log spectrogram')
axs[1].matshow(top_result_mat.T, origin='upper', aspect='auto', cmap='jet', vmin=0, vmax=1)
axs[1].xaxis.set_ticks(np.arange(0, frames_num, self.frames_per_second))
axs[1].xaxis.set_ticklabels(np.arange(0, frames_num / self.frames_per_second))
axs[1].yaxis.set_ticks(np.arange(0, top_k))
axs[1].yaxis.set_ticklabels(np.array(self.labels)[sorted_indexes[0: top_k]])
axs[1].yaxis.grid(color='k', linestyle='solid', linewidth=0.3, alpha=0.3)
axs[1].set_xlabel('Seconds')
axs[1].xaxis.set_ticks_position('bottom')
plt.tight_layout()
image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
plt.savefig(image_filename)
return image_filename
class SoundExtraction:
def __init__(self, device):
self.device = device
self.model_file = 'sound_extraction/useful_ckpts/LASSNet.pt'
self.stft = STFT()
import torch.nn as nn
self.model = nn.DataParallel(LASSNet(device)).to(device)
checkpoint = torch.load(self.model_file)
self.model.load_state_dict(checkpoint['model'])
self.model.eval()
@prompts(name="Extract Sound Event From Mixture Audio Based On Language Description",
description="useful for when you extract target sound from a mixture audio, you can describe the target sound by text, "
"receives audio_path and text as input. "
"The input to this tool should be a comma seperated string of two, "
"representing mixture audio path and input text.")
def inference(self, inputs):
# key = ['ref_audio', 'text']
val = inputs.split(",")
audio_path = val[0] # audio_path, text
text = val[1]
waveform = load_wav(audio_path)
waveform = torch.tensor(waveform).transpose(1, 0)
mixed_mag, mixed_phase = self.stft.transform(waveform)
text_query = ['[CLS] ' + text]
mixed_mag = mixed_mag.transpose(2, 1).unsqueeze(0).to(self.device)
est_mask = self.model(mixed_mag, text_query)
est_mag = est_mask * mixed_mag
est_mag = est_mag.squeeze(1)
est_mag = est_mag.permute(0, 2, 1)
est_wav = self.stft.inverse(est_mag.cpu().detach(), mixed_phase)
est_wav = est_wav.squeeze(0).squeeze(0).numpy()
# est_path = f'output/est{i}.wav'
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
print('audio_filename ', audio_filename)
save_wav(est_wav, audio_filename)
return audio_filename
class Binaural:
def __init__(self, device):
self.device = device
self.model_file = 'mono2binaural/useful_ckpts/m2b/binaural_network.net'
self.position_file = ['mono2binaural/useful_ckpts/m2b/tx_positions.txt',
'mono2binaural/useful_ckpts/m2b/tx_positions2.txt',
'mono2binaural/useful_ckpts/m2b/tx_positions3.txt',
'mono2binaural/useful_ckpts/m2b/tx_positions4.txt',
'mono2binaural/useful_ckpts/m2b/tx_positions5.txt']
self.net = BinauralNetwork(view_dim=7,
warpnet_layers=4,
warpnet_channels=64,
)
self.net.load_from_file(self.model_file)
self.sr = 48000
@prompts(name="Sythesize Binaural Audio From A Mono Audio Input",
description="useful for when you want to transfer your mono audio into binaural audio, "
"receives audio_path as input. "
"The input to this tool should be a string, "
"representing the audio_path. ")
def inference(self, audio_path):
mono, sr = librosa.load(path=audio_path, sr=self.sr, mono=True)
mono = torch.from_numpy(mono)
mono = mono.unsqueeze(0)
import numpy as np
import random
rand_int = random.randint(0, 4)
view = np.loadtxt(self.position_file[rand_int]).transpose().astype(np.float32)
view = torch.from_numpy(view)
if not view.shape[-1] * 400 == mono.shape[-1]:
mono = mono[:, :(mono.shape[-1] // 400) * 400] #
if view.shape[1] * 400 > mono.shape[1]:
m_a = view.shape[1] - mono.shape[-1] // 400
rand_st = random.randint(0, m_a)
view = view[:, m_a:m_a + (mono.shape[-1] // 400)] #
# binauralize and save output
self.net.eval().to(self.device)
mono, view = mono.to(self.device), view.to(self.device)
chunk_size = 48000 # forward in chunks of 1s
rec_field = 1000 # add 1000 samples as "safe bet" since warping has undefined rec. field
rec_field -= rec_field % 400 # make sure rec_field is a multiple of 400 to match audio and view frequencies
chunks = [
{
"mono": mono[:, max(0, i - rec_field):i + chunk_size],
"view": view[:, max(0, i - rec_field) // 400:(i + chunk_size) // 400]
}
for i in range(0, mono.shape[-1], chunk_size)
]
for i, chunk in enumerate(chunks):
with torch.no_grad():
mono = chunk["mono"].unsqueeze(0)
view = chunk["view"].unsqueeze(0)
binaural = self.net(mono, view).squeeze(0)
if i > 0:
binaural = binaural[:, -(mono.shape[-1] - rec_field):]
chunk["binaural"] = binaural
binaural = torch.cat([chunk["binaural"] for chunk in chunks], dim=-1)
binaural = torch.clamp(binaural, min=-1, max=1).cpu()
# binaural = chunked_forwarding(net, mono, view)
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
import torchaudio
torchaudio.save(audio_filename, binaural, sr)
# soundfile.write(audio_filename, binaural, samplerate = 48000)
print(f"Processed Binaural.run, audio_filename: {audio_filename}")
return audio_filename
class TargetSoundDetection:
def __init__(self, device):
self.device = device
self.MEL_ARGS = {
'n_mels': 64,
'n_fft': 2048,
'hop_length': int(22050 * 20 / 1000),
'win_length': int(22050 * 40 / 1000)
}
self.EPS = np.spacing(1)
self.clip_model, _ = clip.load("ViT-B/32", device=self.device)
self.event_labels = event_labels
self.id_to_event = {i: label for i, label in enumerate(self.event_labels)}
config = torch.load('audio_detection/target_sound_detection/useful_ckpts/tsd/run_config.pth',
map_location='cpu')
config_parameters = dict(config)
config_parameters['tao'] = 0.6
if 'thres' not in config_parameters.keys():
config_parameters['thres'] = 0.5
if 'time_resolution' not in config_parameters.keys():
config_parameters['time_resolution'] = 125
model_parameters = torch.load(
'audio_detection/target_sound_detection/useful_ckpts/tsd/run_model_7_loss=-0.0724.pt'
, map_location=lambda storage, loc: storage) # load parameter
self.model = getattr(tsd_models, config_parameters['model'])(config_parameters,
inputdim=64, outputdim=2,
time_resolution=config_parameters[
'time_resolution'],
**config_parameters['model_args'])
self.model.load_state_dict(model_parameters)
self.model = self.model.to(self.device).eval()
self.re_embeds = torch.load('audio_detection/target_sound_detection/useful_ckpts/tsd/text_emb.pth')
self.ref_mel = torch.load('audio_detection/target_sound_detection/useful_ckpts/tsd/ref_mel.pth')
def extract_feature(self, fname):
import soundfile as sf
y, sr = sf.read(fname, dtype='float32')
print('y ', y.shape)
ti = y.shape[0] / sr
if y.ndim > 1:
y = y.mean(1)
y = librosa.resample(y, sr, 22050)
lms_feature = np.log(librosa.feature.melspectrogram(y, **self.MEL_ARGS) + self.EPS).T
return lms_feature, ti
def build_clip(self, text):
text = clip.tokenize(text).to(self.device) # ["a diagram with dog", "a dog", "a cat"]
text_features = self.clip_model.encode_text(text)
return text_features
def cal_similarity(self, target, retrievals):
ans = []
for name in retrievals.keys():
tmp = retrievals[name]
s = torch.cosine_similarity(target.squeeze(), tmp.squeeze(), dim=0)
ans.append(s.item())
return ans.index(max(ans))
@prompts(name="Target Sound Detection",
description="useful for when you want to know when the target sound event in the audio happens. You can use language descriptions to instruct the model, "
"receives text description and audio_path as input. "
"The input to this tool should be a comma seperated string of two, "
"representing audio path and the text description. ")
def inference(self, inputs):
audio_path, text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
target_emb = self.build_clip(text) # torch type
idx = self.cal_similarity(target_emb, self.re_embeds)
target_event = self.id_to_event[idx]
embedding = self.ref_mel[target_event]
embedding = torch.from_numpy(embedding)
embedding = embedding.unsqueeze(0).to(self.device).float()
inputs, ti = self.extract_feature(audio_path)
inputs = torch.from_numpy(inputs)
inputs = inputs.unsqueeze(0).to(self.device).float()
decision, decision_up, logit = self.model(inputs, embedding)
pred = decision_up.detach().cpu().numpy()
pred = pred[:, :, 0]
frame_num = decision_up.shape[1]
time_ratio = ti / frame_num
filtered_pred = median_filter(pred, window_size=1, threshold=0.5)
time_predictions = []
for index_k in range(filtered_pred.shape[0]):
decoded_pred = []
decoded_pred_ = decode_with_timestamps(target_event, filtered_pred[index_k, :])
if len(decoded_pred_) == 0: # neg deal
decoded_pred_.append((target_event, 0, 0))
decoded_pred.append(decoded_pred_)
for num_batch in range(len(decoded_pred)): # when we test our model,the batch_size is 1
cur_pred = pred[num_batch]
# Save each frame output, for later visualization
label_prediction = decoded_pred[num_batch] # frame predict
for event_label, onset, offset in label_prediction:
time_predictions.append({
'onset': onset * time_ratio,
'offset': offset * time_ratio, })
ans = ''
for i, item in enumerate(time_predictions):
ans = ans + 'segment' + str(i + 1) + ' start_time: ' + str(item['onset']) + ' end_time: ' + str(
item['offset']) + '\t'
return ans
class Speech_Enh_SC:
"""Speech Enhancement or Separation in single-channel
Example usage:
enh_model = Speech_Enh_SS("cuda")
enh_wav = enh_model.inference("./test_chime4_audio_M05_440C0213_PED_REAL.wav")
"""
def __init__(self, device="cuda", model_name="espnet/Wangyou_Zhang_chime4_enh_train_enh_conv_tasnet_raw"):
self.model_name = model_name
self.device = device
print("Initializing ESPnet Enh to %s" % device)
self._initialize_model()
def _initialize_model(self):
from espnet_model_zoo.downloader import ModelDownloader
from espnet2.bin.enh_inference import SeparateSpeech
d = ModelDownloader()
cfg = d.download_and_unpack(self.model_name)
self.separate_speech = SeparateSpeech(
train_config=cfg["train_config"],
model_file=cfg["model_file"],
# for segment-wise process on long speech
segment_size=2.4,
hop_size=0.8,
normalize_segment_scale=False,
show_progressbar=True,
ref_channel=None,
normalize_output_wav=True,
device=self.device,
)
@prompts(name="Speech Enhancement In Single-Channel",
description="useful for when you want to enhance the quality of the speech signal by reducing background noise (single-channel), "
"receives audio_path as input."
"The input to this tool should be a string, "
"representing the audio_path. ")
def inference(self, speech_path, ref_channel=0):
speech, sr = soundfile.read(speech_path)
speech = speech[:, ref_channel]
enh_speech = self.separate_speech(speech[None, ...], fs=sr)
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
soundfile.write(audio_filename, enh_speech[0].squeeze(), samplerate=sr)
return audio_filename
class Speech_SS:
def __init__(self, device="cuda", model_name="lichenda/wsj0_2mix_skim_noncausal"):
self.model_name = model_name
self.device = device
print("Initializing ESPnet SS to %s" % device)
self._initialize_model()
def _initialize_model(self):
from espnet_model_zoo.downloader import ModelDownloader
from espnet2.bin.enh_inference import SeparateSpeech
d = ModelDownloader()
cfg = d.download_and_unpack(self.model_name)
self.separate_speech = SeparateSpeech(
train_config=cfg["train_config"],
model_file=cfg["model_file"],
# for segment-wise process on long speech
segment_size=2.4,
hop_size=0.8,
normalize_segment_scale=False,
show_progressbar=True,
ref_channel=None,
normalize_output_wav=True,
device=self.device,
)
@prompts(name="Speech Separation",
description="useful for when you want to separate each speech from the speech mixture, "
"receives audio_path as input."
"The input to this tool should be a string, "
"representing the audio_path. ")
def inference(self, speech_path):
speech, sr = soundfile.read(speech_path)
enh_speech = self.separate_speech(speech[None, ...], fs=sr)
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
if len(enh_speech) == 1:
soundfile.write(audio_filename, enh_speech[0].squeeze(), samplerate=sr)
else:
audio_filename_1 = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
soundfile.write(audio_filename_1, enh_speech[0].squeeze(), samplerate=sr)
audio_filename_2 = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
soundfile.write(audio_filename_2, enh_speech[1].squeeze(), samplerate=sr)
audio_filename = merge_audio(audio_filename_1, audio_filename_2)
return audio_filename
class Speech_Enh_SC:
"""Speech Enhancement or Separation in single-channel
Example usage:
enh_model = Speech_Enh_SS("cuda")
enh_wav = enh_model.inference("./test_chime4_audio_M05_440C0213_PED_REAL.wav")
"""
def __init__(self, device="cuda", model_name="espnet/Wangyou_Zhang_chime4_enh_train_enh_conv_tasnet_raw"):
self.model_name = model_name
self.device = device
print("Initializing ESPnet Enh to %s" % device)
self._initialize_model()
def _initialize_model(self):
from espnet_model_zoo.downloader import ModelDownloader
from espnet2.bin.enh_inference import SeparateSpeech
d = ModelDownloader()
cfg = d.download_and_unpack(self.model_name)
self.separate_speech = SeparateSpeech(
train_config=cfg["train_config"],
model_file=cfg["model_file"],
# for segment-wise process on long speech
segment_size=2.4,
hop_size=0.8,
normalize_segment_scale=False,
show_progressbar=True,
ref_channel=None,
normalize_output_wav=True,
device=self.device,
)
@prompts(name="Speech Enhancement In Single-Channel",
description="useful for when you want to enhance the quality of the speech signal by reducing background noise (single-channel), "
"receives audio_path as input."
"The input to this tool should be a string, "
"representing the audio_path. ")
def inference(self, speech_path, ref_channel=0):
speech, sr = soundfile.read(speech_path)
if speech.ndim != 1:
speech = speech[:, ref_channel]
enh_speech = self.separate_speech(speech[None, ...], fs=sr)
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
soundfile.write(audio_filename, enh_speech[0].squeeze(), samplerate=sr)
return audio_filename
class Speech_SS:
def __init__(self, device="cuda", model_name="lichenda/wsj0_2mix_skim_noncausal"):
self.model_name = model_name
self.device = device
print("Initializing ESPnet SS to %s" % device)
self._initialize_model()
def _initialize_model(self):
from espnet_model_zoo.downloader import ModelDownloader
from espnet2.bin.enh_inference import SeparateSpeech
d = ModelDownloader()
cfg = d.download_and_unpack(self.model_name)
self.separate_speech = SeparateSpeech(
train_config=cfg["train_config"],
model_file=cfg["model_file"],
# for segment-wise process on long speech
segment_size=2.4,
hop_size=0.8,
normalize_segment_scale=False,
show_progressbar=True,
ref_channel=None,
normalize_output_wav=True,
device=self.device,
)
@prompts(name="Speech Separation",
description="useful for when you want to separate each speech from the speech mixture, "
"receives audio_path as input."
"The input to this tool should be a string, "
"representing the audio_path. ")
def inference(self, speech_path):
speech, sr = soundfile.read(speech_path)
enh_speech = self.separate_speech(speech[None, ...], fs=sr)
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
if len(enh_speech) == 1:
soundfile.write(audio_filename, enh_speech[0].squeeze(), samplerate=sr)
else:
audio_filename_1 = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
soundfile.write(audio_filename_1, enh_speech[0].squeeze(), samplerate=sr)
audio_filename_2 = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
soundfile.write(audio_filename_2, enh_speech[1].squeeze(), samplerate=sr)
audio_filename = merge_audio(audio_filename_1, audio_filename_2)
return audio_filename |