File size: 13,228 Bytes
9206300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import torch
from modules.GenerSpeech.model.glow_modules import Glow
from modules.fastspeech.tts_modules import PitchPredictor
import random
from modules.GenerSpeech.model.prosody_util import ProsodyAligner, LocalStyleAdaptor
from utils.pitch_utils import f0_to_coarse, denorm_f0
from modules.commons.common_layers import *
import torch.distributions as dist
from utils.hparams import hparams
from modules.GenerSpeech.model.mixstyle import MixStyle
from modules.fastspeech.fs2 import FastSpeech2
import json
from modules.fastspeech.tts_modules import DEFAULT_MAX_SOURCE_POSITIONS, DEFAULT_MAX_TARGET_POSITIONS

class GenerSpeech(FastSpeech2):
    '''
    GenerSpeech: Towards Style Transfer for Generalizable Out-Of-Domain Text-to-Speech
    https://arxiv.org/abs/2205.07211
    '''
    def __init__(self, dictionary, out_dims=None):
        super().__init__(dictionary, out_dims)

        # Mixstyle
        self.norm = MixStyle(p=0.5, alpha=0.1, eps=1e-6, hidden_size=self.hidden_size)

        # emotion embedding
        self.emo_embed_proj = Linear(256, self.hidden_size, bias=True)

        # build prosody extractor
        ## frame level
        self.prosody_extractor_utter = LocalStyleAdaptor(self.hidden_size, hparams['nVQ'], self.padding_idx)
        self.l1_utter = nn.Linear(self.hidden_size * 2, self.hidden_size)
        self.align_utter = ProsodyAligner(num_layers=2)

        ## phoneme level
        self.prosody_extractor_ph = LocalStyleAdaptor(self.hidden_size, hparams['nVQ'], self.padding_idx)
        self.l1_ph = nn.Linear(self.hidden_size * 2, self.hidden_size)
        self.align_ph = ProsodyAligner(num_layers=2)

        ## word level
        self.prosody_extractor_word = LocalStyleAdaptor(self.hidden_size, hparams['nVQ'], self.padding_idx)
        self.l1_word = nn.Linear(self.hidden_size * 2, self.hidden_size)
        self.align_word = ProsodyAligner(num_layers=2)

        self.pitch_inpainter_predictor = PitchPredictor(
            self.hidden_size, n_chans=self.hidden_size,
            n_layers=3, dropout_rate=0.1, odim=2,
            padding=hparams['ffn_padding'], kernel_size=hparams['predictor_kernel'])

        # build attention layer
        self.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS
        self.embed_positions = SinusoidalPositionalEmbedding(
            self.hidden_size, self.padding_idx,
            init_size=self.max_source_positions + self.padding_idx + 1,
        )

        # build post flow
        cond_hs = 80
        if hparams.get('use_txt_cond', True):
            cond_hs = cond_hs + hparams['hidden_size']

        cond_hs = cond_hs + hparams['hidden_size'] * 3  # for emo, spk embedding and prosody embedding
        self.post_flow = Glow(
            80, hparams['post_glow_hidden'], hparams['post_glow_kernel_size'], 1,
            hparams['post_glow_n_blocks'], hparams['post_glow_n_block_layers'],
            n_split=4, n_sqz=2,
            gin_channels=cond_hs,
            share_cond_layers=hparams['post_share_cond_layers'],
            share_wn_layers=hparams['share_wn_layers'],
            sigmoid_scale=hparams['sigmoid_scale']
        )
        self.prior_dist = dist.Normal(0, 1)


    def forward(self, txt_tokens, mel2ph=None, ref_mel2ph=None, ref_mel2word=None, spk_embed=None, emo_embed=None, ref_mels=None,
                f0=None, uv=None, skip_decoder=False, global_steps=0, infer=False, **kwargs):
        ret = {}
        encoder_out = self.encoder(txt_tokens)  # [B, T, C]
        src_nonpadding = (txt_tokens > 0).float()[:, :, None]

        # add spk/emo embed
        spk_embed = self.spk_embed_proj(spk_embed)[:, None, :]
        emo_embed = self.emo_embed_proj(emo_embed)[:, None, :]


        # add dur
        dur_inp = (encoder_out + spk_embed + emo_embed) * src_nonpadding
        mel2ph = self.add_dur(dur_inp, mel2ph, txt_tokens, ret)
        tgt_nonpadding = (mel2ph > 0).float()[:, :, None]
        decoder_inp = self.expand_states(encoder_out, mel2ph)
        decoder_inp = self.norm(decoder_inp, spk_embed + emo_embed)

        # add prosody VQ
        ret['ref_mel2ph'] = ref_mel2ph
        ret['ref_mel2word'] = ref_mel2word
        prosody_utter_mel = self.get_prosody_utter(decoder_inp, ref_mels, ret, infer, global_steps)
        prosody_ph_mel = self.get_prosody_ph(decoder_inp, ref_mels, ret, infer, global_steps)
        prosody_word_mel = self.get_prosody_word(decoder_inp, ref_mels, ret, infer, global_steps)

        # add pitch embed
        pitch_inp_domain_agnostic = decoder_inp * tgt_nonpadding
        pitch_inp_domain_specific = (decoder_inp + spk_embed + emo_embed + prosody_utter_mel + prosody_ph_mel + prosody_word_mel) * tgt_nonpadding
        predicted_pitch = self.inpaint_pitch(pitch_inp_domain_agnostic, pitch_inp_domain_specific, f0, uv, mel2ph, ret)

        # decode
        decoder_inp = decoder_inp + spk_embed + emo_embed + predicted_pitch + prosody_utter_mel + prosody_ph_mel + prosody_word_mel
        ret['decoder_inp'] = decoder_inp = decoder_inp * tgt_nonpadding
        if skip_decoder:
            return ret
        ret['mel_out'] = self.run_decoder(decoder_inp, tgt_nonpadding, ret, infer=infer, **kwargs)

        # postflow
        is_training = self.training
        ret['x_mask'] = tgt_nonpadding
        ret['spk_embed'] = spk_embed
        ret['emo_embed'] = emo_embed
        ret['ref_prosody'] = prosody_utter_mel + prosody_ph_mel + prosody_word_mel
        self.run_post_glow(ref_mels, infer, is_training, ret)
        return ret

    def get_prosody_ph(self, encoder_out, ref_mels, ret, infer=False, global_steps=0):
        # get VQ prosody
        if global_steps > hparams['vq_start'] or infer:
            prosody_embedding, loss, ppl = self.prosody_extractor_ph(ref_mels, ret['ref_mel2ph'], no_vq=False)
            ret['vq_loss_ph'] = loss
            ret['ppl_ph'] = ppl
        else:
            prosody_embedding = self.prosody_extractor_ph(ref_mels, ret['ref_mel2ph'], no_vq=True)

        # add positional embedding
        positions = self.embed_positions(prosody_embedding[:, :, 0])
        prosody_embedding = self.l1_ph(torch.cat([prosody_embedding, positions], dim=-1))


        # style-to-content attention
        src_key_padding_mask = encoder_out[:, :, 0].eq(self.padding_idx).data
        prosody_key_padding_mask = prosody_embedding[:, :, 0].eq(self.padding_idx).data
        if global_steps < hparams['forcing']:
            output, guided_loss, attn_emo = self.align_ph(encoder_out.transpose(0, 1), prosody_embedding.transpose(0, 1),
                                                   src_key_padding_mask, prosody_key_padding_mask, forcing=True)
        else:
            output, guided_loss, attn_emo = self.align_ph(encoder_out.transpose(0, 1), prosody_embedding.transpose(0, 1),
                                                       src_key_padding_mask, prosody_key_padding_mask, forcing=False)

        ret['gloss_ph'] = guided_loss
        ret['attn_ph'] = attn_emo
        return output.transpose(0, 1)

    def get_prosody_word(self, encoder_out, ref_mels, ret, infer=False, global_steps=0):
        # get VQ prosody
        if global_steps > hparams['vq_start'] or infer:
            prosody_embedding, loss, ppl = self.prosody_extractor_word(ref_mels, ret['ref_mel2word'], no_vq=False)
            ret['vq_loss_word'] = loss
            ret['ppl_word'] = ppl
        else:
            prosody_embedding = self.prosody_extractor_word(ref_mels, ret['ref_mel2word'], no_vq=True)

        # add positional embedding
        positions = self.embed_positions(prosody_embedding[:, :, 0])
        prosody_embedding = self.l1_word(torch.cat([prosody_embedding, positions], dim=-1))


        # style-to-content attention
        src_key_padding_mask = encoder_out[:, :, 0].eq(self.padding_idx).data
        prosody_key_padding_mask = prosody_embedding[:, :, 0].eq(self.padding_idx).data
        if global_steps < hparams['forcing']:
            output, guided_loss, attn_emo = self.align_word(encoder_out.transpose(0, 1), prosody_embedding.transpose(0, 1),
                                                   src_key_padding_mask, prosody_key_padding_mask, forcing=True)
        else:
            output, guided_loss, attn_emo = self.align_word(encoder_out.transpose(0, 1), prosody_embedding.transpose(0, 1),
                                                       src_key_padding_mask, prosody_key_padding_mask, forcing=False)
        ret['gloss_word'] = guided_loss
        ret['attn_word'] = attn_emo
        return output.transpose(0, 1)

    def get_prosody_utter(self, encoder_out, ref_mels, ret, infer=False, global_steps=0):
        # get VQ prosody
        if global_steps > hparams['vq_start'] or infer:
            prosody_embedding, loss, ppl = self.prosody_extractor_utter(ref_mels, no_vq=False)
            ret['vq_loss_utter'] = loss
            ret['ppl_utter'] = ppl
        else:
            prosody_embedding = self.prosody_extractor_utter(ref_mels, no_vq=True)

        # add positional embedding
        positions = self.embed_positions(prosody_embedding[:, :, 0])
        prosody_embedding = self.l1_utter(torch.cat([prosody_embedding, positions], dim=-1))


        # style-to-content attention
        src_key_padding_mask = encoder_out[:, :, 0].eq(self.padding_idx).data
        prosody_key_padding_mask = prosody_embedding[:, :, 0].eq(self.padding_idx).data
        if global_steps < hparams['forcing']:
            output, guided_loss, attn_emo = self.align_utter(encoder_out.transpose(0, 1), prosody_embedding.transpose(0, 1),
                                                   src_key_padding_mask, prosody_key_padding_mask, forcing=True)
        else:
            output, guided_loss, attn_emo = self.align_utter(encoder_out.transpose(0, 1), prosody_embedding.transpose(0, 1),
                                                       src_key_padding_mask, prosody_key_padding_mask, forcing=False)
        ret['gloss_utter'] = guided_loss
        ret['attn_utter'] = attn_emo
        return output.transpose(0, 1)



    def inpaint_pitch(self, pitch_inp_domain_agnostic, pitch_inp_domain_specific, f0, uv, mel2ph, ret):
        if hparams['pitch_type'] == 'frame':
            pitch_padding = mel2ph == 0
        if hparams['predictor_grad'] != 1:
            pitch_inp_domain_agnostic = pitch_inp_domain_agnostic.detach() + hparams['predictor_grad'] * (pitch_inp_domain_agnostic - pitch_inp_domain_agnostic.detach())
            pitch_inp_domain_specific = pitch_inp_domain_specific.detach() + hparams['predictor_grad'] * (pitch_inp_domain_specific - pitch_inp_domain_specific.detach())

        pitch_domain_agnostic = self.pitch_predictor(pitch_inp_domain_agnostic)
        pitch_domain_specific = self.pitch_inpainter_predictor(pitch_inp_domain_specific)
        pitch_pred = pitch_domain_agnostic + pitch_domain_specific
        ret['pitch_pred'] = pitch_pred

        use_uv = hparams['pitch_type'] == 'frame' and hparams['use_uv']
        if f0 is None:
            f0 = pitch_pred[:, :, 0]  # [B, T]
            if use_uv:
                uv = pitch_pred[:, :, 1] > 0  # [B, T]
        f0_denorm = denorm_f0(f0, uv if use_uv else None, hparams, pitch_padding=pitch_padding)
        pitch = f0_to_coarse(f0_denorm)  # start from 0 [B, T_txt]
        ret['f0_denorm'] = f0_denorm
        ret['f0_denorm_pred'] = denorm_f0(pitch_pred[:, :, 0], (pitch_pred[:, :, 1] > 0) if use_uv else None, hparams, pitch_padding=pitch_padding)
        if hparams['pitch_type'] == 'ph':
            pitch = torch.gather(F.pad(pitch, [1, 0]), 1, mel2ph)
            ret['f0_denorm'] = torch.gather(F.pad(ret['f0_denorm'], [1, 0]), 1, mel2ph)
            ret['f0_denorm_pred'] = torch.gather(F.pad(ret['f0_denorm_pred'], [1, 0]), 1, mel2ph)
        pitch_embed = self.pitch_embed(pitch)
        return pitch_embed

    def run_post_glow(self, tgt_mels, infer, is_training, ret):
        x_recon = ret['mel_out'].transpose(1, 2)
        g = x_recon
        B, _, T = g.shape
        if hparams.get('use_txt_cond', True):
            g = torch.cat([g, ret['decoder_inp'].transpose(1, 2)], 1)
        g_spk_embed = ret['spk_embed'].repeat(1, T, 1).transpose(1, 2)
        g_emo_embed = ret['emo_embed'].repeat(1, T, 1).transpose(1, 2)
        l_ref_prosody = ret['ref_prosody'].transpose(1, 2)
        g = torch.cat([g, g_spk_embed, g_emo_embed, l_ref_prosody], dim=1)
        prior_dist = self.prior_dist
        if not infer:
            if is_training:
                self.train()
            x_mask = ret['x_mask'].transpose(1, 2)
            y_lengths = x_mask.sum(-1)
            g = g.detach()
            tgt_mels = tgt_mels.transpose(1, 2)
            z_postflow, ldj = self.post_flow(tgt_mels, x_mask, g=g)
            ldj = ldj / y_lengths / 80
            ret['z_pf'], ret['ldj_pf'] = z_postflow, ldj
            ret['postflow'] = -prior_dist.log_prob(z_postflow).mean() - ldj.mean()
        else:
            x_mask = torch.ones_like(x_recon[:, :1, :])
            z_post = prior_dist.sample(x_recon.shape).to(g.device) * hparams['noise_scale']
            x_recon_, _ = self.post_flow(z_post, x_mask, g, reverse=True)
            x_recon = x_recon_
            ret['mel_out'] = x_recon.transpose(1, 2)