Spaces:
Build error
Build error
File size: 22,456 Bytes
8121fee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
# -*- coding: utf-8 -*-
from typing import Dict
import torch
import torch.nn as nn
from .utils import mean_with_lens, repeat_tensor
class CaptionModel(nn.Module):
"""
Encoder-decoder captioning model.
"""
pad_idx = 0
start_idx = 1
end_idx = 2
max_length = 20
def __init__(self, encoder: nn.Module, decoder: nn.Module, **kwargs):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.vocab_size = decoder.vocab_size
self.train_forward_keys = ["cap", "cap_len", "ss_ratio"]
self.inference_forward_keys = ["sample_method", "max_length", "temp"]
freeze_encoder = kwargs.get("freeze_encoder", False)
if freeze_encoder:
for param in self.encoder.parameters():
param.requires_grad = False
self.check_decoder_compatibility()
def check_decoder_compatibility(self):
compatible_decoders = [x.__class__.__name__ for x in self.compatible_decoders]
assert isinstance(self.decoder, self.compatible_decoders), \
f"{self.decoder.__class__.__name__} is incompatible with " \
f"{self.__class__.__name__}, please use decoder in {compatible_decoders} "
@classmethod
def set_index(cls, start_idx, end_idx):
cls.start_idx = start_idx
cls.end_idx = end_idx
def forward(self, input_dict: Dict):
"""
input_dict: {
(required)
mode: train/inference,
spec,
spec_len,
fc,
attn,
attn_len,
[sample_method: greedy],
[temp: 1.0] (in case of no teacher forcing)
(optional, mode=train)
cap,
cap_len,
ss_ratio,
(optional, mode=inference)
sample_method: greedy/beam,
max_length,
temp,
beam_size (optional, sample_method=beam),
n_best (optional, sample_method=beam),
}
"""
# encoder_input_keys = ["spec", "spec_len", "fc", "attn", "attn_len"]
# encoder_input = { key: input_dict[key] for key in encoder_input_keys }
encoder_output_dict = self.encoder(input_dict)
if input_dict["mode"] == "train":
forward_dict = {
"mode": "train", "sample_method": "greedy", "temp": 1.0
}
for key in self.train_forward_keys:
forward_dict[key] = input_dict[key]
forward_dict.update(encoder_output_dict)
output = self.train_forward(forward_dict)
elif input_dict["mode"] == "inference":
forward_dict = {"mode": "inference"}
default_args = { "sample_method": "greedy", "max_length": self.max_length, "temp": 1.0 }
for key in self.inference_forward_keys:
if key in input_dict:
forward_dict[key] = input_dict[key]
else:
forward_dict[key] = default_args[key]
if forward_dict["sample_method"] == "beam":
forward_dict["beam_size"] = input_dict.get("beam_size", 3)
forward_dict["n_best"] = input_dict.get("n_best", False)
forward_dict["n_best_size"] = input_dict.get("n_best_size", forward_dict["beam_size"])
elif forward_dict["sample_method"] == "dbs":
forward_dict["beam_size"] = input_dict.get("beam_size", 6)
forward_dict["group_size"] = input_dict.get("group_size", 3)
forward_dict["diversity_lambda"] = input_dict.get("diversity_lambda", 0.5)
forward_dict["group_nbest"] = input_dict.get("group_nbest", True)
forward_dict.update(encoder_output_dict)
output = self.inference_forward(forward_dict)
else:
raise Exception("mode should be either 'train' or 'inference'")
return output
def prepare_output(self, input_dict):
output = {}
batch_size = input_dict["fc_emb"].size(0)
if input_dict["mode"] == "train":
max_length = input_dict["cap"].size(1) - 1
elif input_dict["mode"] == "inference":
max_length = input_dict["max_length"]
else:
raise Exception("mode should be either 'train' or 'inference'")
device = input_dict["fc_emb"].device
output["seq"] = torch.full((batch_size, max_length), self.end_idx,
dtype=torch.long)
output["logit"] = torch.empty(batch_size, max_length,
self.vocab_size).to(device)
output["sampled_logprob"] = torch.zeros(batch_size, max_length)
output["embed"] = torch.empty(batch_size, max_length,
self.decoder.d_model).to(device)
return output
def train_forward(self, input_dict):
if input_dict["ss_ratio"] != 1: # scheduled sampling training
input_dict["mode"] = "train"
return self.stepwise_forward(input_dict)
output = self.seq_forward(input_dict)
self.train_process(output, input_dict)
return output
def seq_forward(self, input_dict):
raise NotImplementedError
def train_process(self, output, input_dict):
pass
def inference_forward(self, input_dict):
if input_dict["sample_method"] == "beam":
return self.beam_search(input_dict)
elif input_dict["sample_method"] == "dbs":
return self.diverse_beam_search(input_dict)
return self.stepwise_forward(input_dict)
def stepwise_forward(self, input_dict):
"""Step-by-step decoding"""
output = self.prepare_output(input_dict)
max_length = output["seq"].size(1)
# start sampling
for t in range(max_length):
input_dict["t"] = t
self.decode_step(input_dict, output)
if input_dict["mode"] == "inference": # decide whether to stop when sampling
unfinished_t = output["seq"][:, t] != self.end_idx
if t == 0:
unfinished = unfinished_t
else:
unfinished *= unfinished_t
output["seq"][:, t][~unfinished] = self.end_idx
if unfinished.sum() == 0:
break
self.stepwise_process(output)
return output
def decode_step(self, input_dict, output):
"""Decoding operation of timestep t"""
decoder_input = self.prepare_decoder_input(input_dict, output)
# feed to the decoder to get logit
output_t = self.decoder(decoder_input)
logit_t = output_t["logit"]
# assert logit_t.ndim == 3
if logit_t.size(1) == 1:
logit_t = logit_t.squeeze(1)
embed_t = output_t["embed"].squeeze(1)
elif logit_t.size(1) > 1:
logit_t = logit_t[:, -1, :]
embed_t = output_t["embed"][:, -1, :]
else:
raise Exception("no logit output")
# sample the next input word and get the corresponding logit
sampled = self.sample_next_word(logit_t,
method=input_dict["sample_method"],
temp=input_dict["temp"])
output_t.update(sampled)
output_t["t"] = input_dict["t"]
output_t["logit"] = logit_t
output_t["embed"] = embed_t
self.stepwise_process_step(output, output_t)
def prepare_decoder_input(self, input_dict, output):
"""Prepare the inp ut dict for the decoder"""
raise NotImplementedError
def stepwise_process_step(self, output, output_t):
"""Postprocessing (save output values) after each timestep t"""
t = output_t["t"]
output["logit"][:, t, :] = output_t["logit"]
output["seq"][:, t] = output_t["word"]
output["sampled_logprob"][:, t] = output_t["probs"]
output["embed"][:, t, :] = output_t["embed"]
def stepwise_process(self, output):
"""Postprocessing after the whole step-by-step autoregressive decoding"""
pass
def sample_next_word(self, logit, method, temp):
"""Sample the next word, given probs output by the decoder"""
logprob = torch.log_softmax(logit, dim=1)
if method == "greedy":
sampled_logprob, word = torch.max(logprob.detach(), 1)
elif method == "gumbel":
def sample_gumbel(shape, eps=1e-20):
U = torch.rand(shape).to(logprob.device)
return -torch.log(-torch.log(U + eps) + eps)
def gumbel_softmax_sample(logit, temperature):
y = logit + sample_gumbel(logit.size())
return torch.log_softmax(y / temperature, dim=-1)
_logprob = gumbel_softmax_sample(logprob, temp)
_, word = torch.max(_logprob.data, 1)
sampled_logprob = logprob.gather(1, word.unsqueeze(-1))
else:
logprob = logprob / temp
if method.startswith("top"):
top_num = float(method[3:])
if 0 < top_num < 1: # top-p sampling
probs = torch.softmax(logit, dim=1)
sorted_probs, sorted_indices = torch.sort(probs, descending=True, dim=1)
_cumsum = sorted_probs.cumsum(1)
mask = _cumsum < top_num
mask = torch.cat([torch.ones_like(mask[:,:1]), mask[:,:-1]], 1)
sorted_probs = sorted_probs * mask.to(sorted_probs)
sorted_probs = sorted_probs / sorted_probs.sum(1, keepdim=True)
logprob.scatter_(1, sorted_indices, sorted_probs.log())
else: # top-k sampling
k = int(top_num)
tmp = torch.empty_like(logprob).fill_(float('-inf'))
topk, indices = torch.topk(logprob, k, dim=1)
tmp = tmp.scatter(1, indices, topk)
logprob = tmp
word = torch.distributions.Categorical(logits=logprob.detach()).sample()
sampled_logprob = logprob.gather(1, word.unsqueeze(-1)).squeeze(1)
word = word.detach().long()
# sampled_logprob: [N,], word: [N,]
return {"word": word, "probs": sampled_logprob}
def beam_search(self, input_dict):
output = self.prepare_output(input_dict)
max_length = input_dict["max_length"]
beam_size = input_dict["beam_size"]
if input_dict["n_best"]:
n_best_size = input_dict["n_best_size"]
batch_size, max_length = output["seq"].size()
output["seq"] = torch.full((batch_size, n_best_size, max_length),
self.end_idx, dtype=torch.long)
temp = input_dict["temp"]
# instance by instance beam seach
for i in range(output["seq"].size(0)):
output_i = self.prepare_beamsearch_output(input_dict)
input_dict["sample_idx"] = i
for t in range(max_length):
input_dict["t"] = t
output_t = self.beamsearch_step(input_dict, output_i)
#######################################
# merge with previous beam and select the current max prob beam
#######################################
logit_t = output_t["logit"]
if logit_t.size(1) == 1:
logit_t = logit_t.squeeze(1)
elif logit_t.size(1) > 1:
logit_t = logit_t[:, -1, :]
else:
raise Exception("no logit output")
logprob_t = torch.log_softmax(logit_t, dim=1)
logprob_t = torch.log_softmax(logprob_t / temp, dim=1)
logprob_t = output_i["topk_logprob"].unsqueeze(1) + logprob_t
if t == 0: # for the first step, all k seq will have the same probs
topk_logprob, topk_words = logprob_t[0].topk(
beam_size, 0, True, True)
else: # unroll and find top logprob, and their unrolled indices
topk_logprob, topk_words = logprob_t.view(-1).topk(
beam_size, 0, True, True)
topk_words = topk_words.cpu()
output_i["topk_logprob"] = topk_logprob
# output_i["prev_words_beam"] = topk_words // self.vocab_size # [beam_size,]
output_i["prev_words_beam"] = torch.div(topk_words, self.vocab_size,
rounding_mode='trunc')
output_i["next_word"] = topk_words % self.vocab_size # [beam_size,]
if t == 0:
output_i["seq"] = output_i["next_word"].unsqueeze(1)
else:
output_i["seq"] = torch.cat([
output_i["seq"][output_i["prev_words_beam"]],
output_i["next_word"].unsqueeze(1)], dim=1)
# add finished beams to results
is_end = output_i["next_word"] == self.end_idx
if t == max_length - 1:
is_end.fill_(1)
for beam_idx in range(beam_size):
if is_end[beam_idx]:
final_beam = {
"seq": output_i["seq"][beam_idx].clone(),
"score": output_i["topk_logprob"][beam_idx].item()
}
final_beam["score"] = final_beam["score"] / (t + 1)
output_i["done_beams"].append(final_beam)
output_i["topk_logprob"][is_end] -= 1000
self.beamsearch_process_step(output_i, output_t)
self.beamsearch_process(output, output_i, input_dict)
return output
def prepare_beamsearch_output(self, input_dict):
beam_size = input_dict["beam_size"]
device = input_dict["fc_emb"].device
output = {
"topk_logprob": torch.zeros(beam_size).to(device),
"seq": None,
"prev_words_beam": None,
"next_word": None,
"done_beams": [],
}
return output
def beamsearch_step(self, input_dict, output_i):
decoder_input = self.prepare_beamsearch_decoder_input(input_dict, output_i)
output_t = self.decoder(decoder_input)
output_t["t"] = input_dict["t"]
return output_t
def prepare_beamsearch_decoder_input(self, input_dict, output_i):
raise NotImplementedError
def beamsearch_process_step(self, output_i, output_t):
pass
def beamsearch_process(self, output, output_i, input_dict):
i = input_dict["sample_idx"]
done_beams = sorted(output_i["done_beams"], key=lambda x: -x["score"])
if input_dict["n_best"]:
done_beams = done_beams[:input_dict["n_best_size"]]
for out_idx, done_beam in enumerate(done_beams):
seq = done_beam["seq"]
output["seq"][i][out_idx, :len(seq)] = seq
else:
seq = done_beams[0]["seq"]
output["seq"][i][:len(seq)] = seq
def diverse_beam_search(self, input_dict):
def add_diversity(seq_table, logprob, t, divm, diversity_lambda, bdash):
local_time = t - divm
unaug_logprob = logprob.clone()
if divm > 0:
change = torch.zeros(logprob.size(-1))
for prev_choice in range(divm):
prev_decisions = seq_table[prev_choice][..., local_time]
for prev_labels in range(bdash):
change.scatter_add_(0, prev_decisions[prev_labels], change.new_ones(1))
change = change.to(logprob.device)
logprob = logprob - repeat_tensor(change, bdash) * diversity_lambda
return logprob, unaug_logprob
output = self.prepare_output(input_dict)
group_size = input_dict["group_size"]
batch_size = output["seq"].size(0)
beam_size = input_dict["beam_size"]
bdash = beam_size // group_size
input_dict["bdash"] = bdash
diversity_lambda = input_dict["diversity_lambda"]
device = input_dict["fc_emb"].device
max_length = input_dict["max_length"]
temp = input_dict["temp"]
group_nbest = input_dict["group_nbest"]
batch_size, max_length = output["seq"].size()
if group_nbest:
output["seq"] = torch.full((batch_size, beam_size, max_length),
self.end_idx, dtype=torch.long)
else:
output["seq"] = torch.full((batch_size, group_size, max_length),
self.end_idx, dtype=torch.long)
for i in range(batch_size):
input_dict["sample_idx"] = i
seq_table = [torch.LongTensor(bdash, 0) for _ in range(group_size)] # group_size x [bdash, 0]
logprob_table = [torch.zeros(bdash).to(device) for _ in range(group_size)]
done_beams_table = [[] for _ in range(group_size)]
output_i = {
"prev_words_beam": [None for _ in range(group_size)],
"next_word": [None for _ in range(group_size)],
"state": [None for _ in range(group_size)]
}
for t in range(max_length + group_size - 1):
input_dict["t"] = t
for divm in range(group_size):
input_dict["divm"] = divm
if t >= divm and t <= max_length + divm - 1:
local_time = t - divm
decoder_input = self.prepare_dbs_decoder_input(input_dict, output_i)
output_t = self.decoder(decoder_input)
output_t["divm"] = divm
logit_t = output_t["logit"]
if logit_t.size(1) == 1:
logit_t = logit_t.squeeze(1)
elif logit_t.size(1) > 1:
logit_t = logit_t[:, -1, :]
else:
raise Exception("no logit output")
logprob_t = torch.log_softmax(logit_t, dim=1)
logprob_t = torch.log_softmax(logprob_t / temp, dim=1)
logprob_t, unaug_logprob_t = add_diversity(seq_table, logprob_t, t, divm, diversity_lambda, bdash)
logprob_t = logprob_table[divm].unsqueeze(-1) + logprob_t
if local_time == 0: # for the first step, all k seq will have the same probs
topk_logprob, topk_words = logprob_t[0].topk(
bdash, 0, True, True)
else: # unroll and find top logprob, and their unrolled indices
topk_logprob, topk_words = logprob_t.view(-1).topk(
bdash, 0, True, True)
topk_words = topk_words.cpu()
logprob_table[divm] = topk_logprob
output_i["prev_words_beam"][divm] = topk_words // self.vocab_size # [bdash,]
output_i["next_word"][divm] = topk_words % self.vocab_size # [bdash,]
if local_time > 0:
seq_table[divm] = seq_table[divm][output_i["prev_words_beam"][divm]]
seq_table[divm] = torch.cat([
seq_table[divm],
output_i["next_word"][divm].unsqueeze(-1)], -1)
is_end = seq_table[divm][:, t-divm] == self.end_idx
assert seq_table[divm].shape[-1] == t - divm + 1
if t == max_length + divm - 1:
is_end.fill_(1)
for beam_idx in range(bdash):
if is_end[beam_idx]:
final_beam = {
"seq": seq_table[divm][beam_idx].clone(),
"score": logprob_table[divm][beam_idx].item()
}
final_beam["score"] = final_beam["score"] / (t - divm + 1)
done_beams_table[divm].append(final_beam)
logprob_table[divm][is_end] -= 1000
self.dbs_process_step(output_i, output_t)
done_beams_table = [sorted(done_beams_table[divm], key=lambda x: -x["score"])[:bdash] for divm in range(group_size)]
if group_nbest:
done_beams = sum(done_beams_table, [])
else:
done_beams = [group_beam[0] for group_beam in done_beams_table]
for _, done_beam in enumerate(done_beams):
output["seq"][i, _, :len(done_beam["seq"])] = done_beam["seq"]
return output
def prepare_dbs_decoder_input(self, input_dict, output_i):
raise NotImplementedError
def dbs_process_step(self, output_i, output_t):
pass
class CaptionSequenceModel(nn.Module):
def __init__(self, model, seq_output_size):
super().__init__()
self.model = model
if model.decoder.d_model != seq_output_size:
self.output_transform = nn.Linear(model.decoder.d_model, seq_output_size)
else:
self.output_transform = lambda x: x
def forward(self, input_dict):
output = self.model(input_dict)
if input_dict["mode"] == "train":
lens = input_dict["cap_len"] - 1
# seq_outputs: [N, d_model]
elif input_dict["mode"] == "inference":
if "sample_method" in input_dict and input_dict["sample_method"] == "beam":
return output
seq = output["seq"]
lens = torch.where(seq == self.model.end_idx, torch.zeros_like(seq), torch.ones_like(seq)).sum(dim=1)
else:
raise Exception("mode should be either 'train' or 'inference'")
seq_output = mean_with_lens(output["embed"], lens)
seq_output = self.output_transform(seq_output)
output["seq_output"] = seq_output
return output
|