Spaces:
Build error
Build error
File size: 4,361 Bytes
9206300 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from math import sqrt
from .diffusion import Mish
from utils.hparams import hparams
Linear = nn.Linear
ConvTranspose2d = nn.ConvTranspose2d
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
def override(self, attrs):
if isinstance(attrs, dict):
self.__dict__.update(**attrs)
elif isinstance(attrs, (list, tuple, set)):
for attr in attrs:
self.override(attr)
elif attrs is not None:
raise NotImplementedError
return self
class SinusoidalPosEmb(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, x):
device = x.device
half_dim = self.dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
emb = x[:, None] * emb[None, :]
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
return emb
def Conv1d(*args, **kwargs):
layer = nn.Conv1d(*args, **kwargs)
nn.init.kaiming_normal_(layer.weight)
return layer
@torch.jit.script
def silu(x):
return x * torch.sigmoid(x)
class ResidualBlock(nn.Module):
def __init__(self, encoder_hidden, residual_channels, dilation):
super().__init__()
self.dilated_conv = Conv1d(residual_channels, 2 * residual_channels, 3, padding=dilation, dilation=dilation)
self.diffusion_projection = Linear(residual_channels, residual_channels)
self.conditioner_projection = Conv1d(encoder_hidden, 2 * residual_channels, 1)
self.output_projection = Conv1d(residual_channels, 2 * residual_channels, 1)
def forward(self, x, conditioner, diffusion_step):
diffusion_step = self.diffusion_projection(diffusion_step).unsqueeze(-1)
conditioner = self.conditioner_projection(conditioner)
y = x + diffusion_step
y = self.dilated_conv(y) + conditioner
gate, filter = torch.chunk(y, 2, dim=1)
y = torch.sigmoid(gate) * torch.tanh(filter)
y = self.output_projection(y)
residual, skip = torch.chunk(y, 2, dim=1)
return (x + residual) / sqrt(2.0), skip
class DiffNet(nn.Module):
def __init__(self, in_dims=80):
super().__init__()
self.params = params = AttrDict(
# Model params
encoder_hidden=hparams['hidden_size'],
residual_layers=hparams['residual_layers'],
residual_channels=hparams['residual_channels'],
dilation_cycle_length=hparams['dilation_cycle_length'],
)
self.input_projection = Conv1d(in_dims, params.residual_channels, 1)
self.diffusion_embedding = SinusoidalPosEmb(params.residual_channels)
dim = params.residual_channels
self.mlp = nn.Sequential(
nn.Linear(dim, dim * 4),
Mish(),
nn.Linear(dim * 4, dim)
)
self.residual_layers = nn.ModuleList([
ResidualBlock(params.encoder_hidden, params.residual_channels, 2 ** (i % params.dilation_cycle_length))
for i in range(params.residual_layers)
])
self.skip_projection = Conv1d(params.residual_channels, params.residual_channels, 1)
self.output_projection = Conv1d(params.residual_channels, in_dims, 1)
nn.init.zeros_(self.output_projection.weight)
def forward(self, spec, diffusion_step, cond):
"""
:param spec: [B, 1, M, T]
:param diffusion_step: [B, 1]
:param cond: [B, M, T]
:return:
"""
x = spec[:, 0]
x = self.input_projection(x) # x [B, residual_channel, T]
x = F.relu(x)
diffusion_step = self.diffusion_embedding(diffusion_step)
diffusion_step = self.mlp(diffusion_step)
skip = []
for layer_id, layer in enumerate(self.residual_layers):
x, skip_connection = layer(x, cond, diffusion_step)
skip.append(skip_connection)
x = torch.sum(torch.stack(skip), dim=0) / sqrt(len(self.residual_layers))
x = self.skip_projection(x)
x = F.relu(x)
x = self.output_projection(x) # [B, 80, T]
return x[:, None, :, :]
|