File size: 4,616 Bytes
8121fee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import math

import numpy as np
import torch
import torch.nn as nn

from torch.nn.utils.rnn import PackedSequence, pack_padded_sequence, pad_packed_sequence


def sort_pack_padded_sequence(input, lengths):
    sorted_lengths, indices = torch.sort(lengths, descending=True)
    tmp = pack_padded_sequence(input[indices], sorted_lengths.cpu(), batch_first=True)
    inv_ix = indices.clone()
    inv_ix[indices] = torch.arange(0,len(indices)).type_as(inv_ix)
    return tmp, inv_ix

def pad_unsort_packed_sequence(input, inv_ix):
    tmp, _ = pad_packed_sequence(input, batch_first=True)
    tmp = tmp[inv_ix]
    return tmp

def pack_wrapper(module, attn_feats, attn_feat_lens):
    packed, inv_ix = sort_pack_padded_sequence(attn_feats, attn_feat_lens)
    if isinstance(module, torch.nn.RNNBase):
        return pad_unsort_packed_sequence(module(packed)[0], inv_ix)
    else:
        return pad_unsort_packed_sequence(PackedSequence(module(packed[0]), packed[1]), inv_ix)

def generate_length_mask(lens, max_length=None):
    lens = torch.as_tensor(lens)
    N = lens.size(0)
    if max_length is None:
        max_length = max(lens)
    idxs = torch.arange(max_length).repeat(N).view(N, max_length)
    idxs = idxs.to(lens.device)
    mask = (idxs < lens.view(-1, 1))
    return mask

def mean_with_lens(features, lens):
    """
    features: [N, T, ...] (assume the second dimension represents length)
    lens: [N,]
    """
    lens = torch.as_tensor(lens)
    if max(lens) != features.size(1):
        max_length = features.size(1)
        mask = generate_length_mask(lens, max_length)
    else:
        mask = generate_length_mask(lens)
    mask = mask.to(features.device) # [N, T]

    while mask.ndim < features.ndim:
        mask = mask.unsqueeze(-1)
    feature_mean = features * mask
    feature_mean = feature_mean.sum(1)
    while lens.ndim < feature_mean.ndim:
        lens = lens.unsqueeze(1)
    feature_mean = feature_mean / lens.to(features.device)
    # feature_mean = features * mask.unsqueeze(-1)
    # feature_mean = feature_mean.sum(1) / lens.unsqueeze(1).to(features.device)
    return feature_mean

def max_with_lens(features, lens):
    """
    features: [N, T, ...] (assume the second dimension represents length)
    lens: [N,]
    """
    lens = torch.as_tensor(lens)
    mask = generate_length_mask(lens).to(features.device) # [N, T]

    feature_max = features.clone()
    feature_max[~mask] = float("-inf")
    feature_max, _ = feature_max.max(1)
    return feature_max

def repeat_tensor(x, n):
    return x.unsqueeze(0).repeat(n, *([1] * len(x.shape)))

def init(m, method="kaiming"):
    if isinstance(m, (nn.Conv2d, nn.Conv1d)):
        if method == "kaiming":
            nn.init.kaiming_uniform_(m.weight)
        elif method == "xavier":
            nn.init.xavier_uniform_(m.weight)
        else:
            raise Exception(f"initialization method {method} not supported")
        if m.bias is not None:
            nn.init.constant_(m.bias, 0)
    elif isinstance(m, (nn.BatchNorm2d, nn.BatchNorm1d)):
        nn.init.constant_(m.weight, 1)
        if m.bias is not None:
            nn.init.constant_(m.bias, 0)
    elif isinstance(m, nn.Linear):
        if method == "kaiming":
            nn.init.kaiming_uniform_(m.weight)
        elif method == "xavier":
            nn.init.xavier_uniform_(m.weight)
        else:
            raise Exception(f"initialization method {method} not supported")
        if m.bias is not None:
            nn.init.constant_(m.bias, 0)
    elif isinstance(m, nn.Embedding):
        if method == "kaiming":
            nn.init.kaiming_uniform_(m.weight)
        elif method == "xavier":
            nn.init.xavier_uniform_(m.weight)
        else:
            raise Exception(f"initialization method {method} not supported")




class PositionalEncoding(nn.Module):

    def __init__(self, d_model, dropout=0.1, max_len=100):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * \
            (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0).transpose(0, 1)
        # self.register_buffer("pe", pe)
        self.register_parameter("pe", nn.Parameter(pe, requires_grad=False))

    def forward(self, x):
        # x: [T, N, E]
        x = x + self.pe[:x.size(0), :]
        return self.dropout(x)