Spaces:
Build error
Build error
File size: 13,001 Bytes
9206300 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import os
import torch
import torch.nn.functional as F
import torch.nn as nn
import numpy as np
from text_to_speech.modules.tts.syntaspeech.multi_window_disc import Discriminator
from tasks.tts.fs import FastSpeechTask
from text_to_speech.modules.tts.fs import FastSpeech
from text_to_speech.utils.audio.align import mel2token_to_dur
from text_to_speech.utils.commons.hparams import hparams
from text_to_speech.utils.nn.model_utils import num_params
from text_to_speech.utils.commons.tensor_utils import tensors_to_scalars
from text_to_speech.utils.audio.pitch.utils import denorm_f0, norm_f0
from text_to_speech.utils.audio.pitch_extractors import get_pitch
from text_to_speech.utils.metrics.dtw import dtw as DTW
from text_to_speech.utils.plot.plot import spec_to_figure
from text_to_speech.utils.text.text_encoder import build_token_encoder
class FastSpeechAdvTask(FastSpeechTask):
def __init__(self):
super().__init__()
self.build_disc_model()
self.mse_loss_fn = torch.nn.MSELoss()
def build_tts_model(self):
dict_size = len(self.token_encoder)
self.model = FastSpeech(dict_size, hparams)
self.gen_params = [p for p in self.model.parameters() if p.requires_grad]
self.dp_params = [p for k, p in self.model.named_parameters() if (('dur_predictor' in k) and p.requires_grad)]
self.gen_params_except_dp = [p for k, p in self.model.named_parameters() if (('dur_predictor' not in k) and p.requires_grad)]
self.bert_params = [p for k, p in self.model.named_parameters() if (('bert' in k) and p.requires_grad)]
self.gen_params_except_bert_and_dp = [p for k, p in self.model.named_parameters() if ('dur_predictor' not in k) and ('bert' not in k) and p.requires_grad ]
self.use_bert = True if len(self.bert_params) > 0 else False
def build_disc_model(self):
disc_win_num = hparams['disc_win_num']
h = hparams['mel_disc_hidden_size']
self.mel_disc = Discriminator(
time_lengths=[32, 64, 128][:disc_win_num],
freq_length=80, hidden_size=h, kernel=(3, 3)
)
self.disc_params = list(self.mel_disc.parameters())
def _training_step(self, sample, batch_idx, optimizer_idx):
loss_output = {}
loss_weights = {}
disc_start = self.global_step >= hparams["disc_start_steps"] and hparams['lambda_mel_adv'] > 0
if optimizer_idx == 0:
#######################
# Generator #
#######################
loss_output, model_out = self.run_model(sample, infer=False)
self.model_out_gt = self.model_out = \
{k: v.detach() for k, v in model_out.items() if isinstance(v, torch.Tensor)}
if disc_start:
mel_p = model_out['mel_out']
if hasattr(self.model, 'out2mel'):
mel_p = self.model.out2mel(mel_p)
o_ = self.mel_disc(mel_p)
p_, pc_ = o_['y'], o_['y_c']
if p_ is not None:
loss_output['a'] = self.mse_loss_fn(p_, p_.new_ones(p_.size()))
loss_weights['a'] = hparams['lambda_mel_adv']
if pc_ is not None:
loss_output['ac'] = self.mse_loss_fn(pc_, pc_.new_ones(pc_.size()))
loss_weights['ac'] = hparams['lambda_mel_adv']
else:
#######################
# Discriminator #
#######################
if disc_start and self.global_step % hparams['disc_interval'] == 0:
model_out = self.model_out_gt
mel_g = sample['mels']
mel_p = model_out['mel_out']
o = self.mel_disc(mel_g)
p, pc = o['y'], o['y_c']
o_ = self.mel_disc(mel_p)
p_, pc_ = o_['y'], o_['y_c']
if p_ is not None:
loss_output["r"] = self.mse_loss_fn(p, p.new_ones(p.size()))
loss_output["f"] = self.mse_loss_fn(p_, p_.new_zeros(p_.size()))
if pc_ is not None:
loss_output["rc"] = self.mse_loss_fn(pc, pc.new_ones(pc.size()))
loss_output["fc"] = self.mse_loss_fn(pc_, pc_.new_zeros(pc_.size()))
else:
return None
total_loss = sum([loss_weights.get(k, 1) * v for k, v in loss_output.items() if isinstance(v, torch.Tensor) and v.requires_grad])
loss_output['batch_size'] = sample['txt_tokens'].size()[0]
return total_loss, loss_output
def validation_start(self):
self.vocoder = None
def validation_step(self, sample, batch_idx):
outputs = {}
outputs['losses'] = {}
outputs['losses'], model_out = self.run_model(sample)
outputs['total_loss'] = sum(outputs['losses'].values())
outputs['nsamples'] = sample['nsamples']
outputs = tensors_to_scalars(outputs)
if self.global_step % hparams['valid_infer_interval'] == 0 \
and batch_idx < hparams['num_valid_plots']:
valid_results = self.save_valid_result(sample, batch_idx, model_out)
# wav_gt = valid_results['wav_gt']
mel_gt = valid_results['mel_gt']
# wav_pred = valid_results['wav_pred']
mel_pred = valid_results['mel_pred']
# f0_pred_, _ = get_pitch(wav_pred, mel_pred, hparams)
# f0_gt_, _ = get_pitch(wav_gt, mel_gt, hparams)
# manhattan_distance = lambda x, y: np.abs(x - y)
# dist, cost, acc, path = DTW(f0_pred_, f0_gt_, manhattan_distance)
# outputs['losses']['f0_dtw'] = dist / len(f0_gt_)
return outputs
def save_valid_result(self, sample, batch_idx, model_out):
sr = hparams['audio_sample_rate']
f0_gt = None
mel_out = model_out['mel_out']
if sample.get('f0') is not None:
f0_gt = denorm_f0(sample['f0'][0].cpu(), sample['uv'][0].cpu())
self.plot_mel(batch_idx, sample['mels'], mel_out, f0s=f0_gt)
# if self.global_step > 0:
if self.vocoder is not None:
wav_pred = self.vocoder.spec2wav(mel_out[0].cpu(), f0=f0_gt)
self.logger.add_audio(f'wav_val_{batch_idx}', wav_pred, self.global_step, sr)
# with gt duration
model_out = self.run_model(sample, infer=True, infer_use_gt_dur=True)
dur_info = self.get_plot_dur_info(sample, model_out)
del dur_info['dur_pred']
if self.vocoder is not None:
wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu(), f0=f0_gt)
self.logger.add_audio(f'wav_gdur_{batch_idx}', wav_pred, self.global_step, sr)
self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'][0], f'mel_gdur_{batch_idx}',
dur_info=dur_info, f0s=f0_gt)
# with pred duration
if not hparams['use_gt_dur']:
model_out = self.run_model(sample, infer=True, infer_use_gt_dur=False)
dur_info = self.get_plot_dur_info(sample, model_out)
self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'][0], f'mel_pdur_{batch_idx}',
dur_info=dur_info, f0s=f0_gt)
if self.vocoder is not None:
wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu(), f0=f0_gt)
self.logger.add_audio(f'wav_pdur_{batch_idx}', wav_pred, self.global_step, sr)
# gt wav
mel_gt = sample['mels'][0].cpu()
if self.vocoder is not None:
wav_gt = self.vocoder.spec2wav(mel_gt, f0=f0_gt)
if self.global_step <= hparams['valid_infer_interval']:
self.logger.add_audio(f'wav_gt_{batch_idx}', wav_gt, self.global_step, sr)
# add attn plot
# if self.global_step > 0 and hparams['dur_level'] == 'word':
# self.logger.add_figure(f'attn_{batch_idx}', spec_to_figure(model_out['attn'][0]), self.global_step)
return {'mel_gt': mel_gt, 'mel_pred': model_out['mel_out'][0].cpu()}
# return {'wav_gt': wav_gt, 'wav_pred': wav_pred, 'mel_gt': mel_gt, 'mel_pred': model_out['mel_out'][0].cpu()}
def get_plot_dur_info(self, sample, model_out):
# if hparams['dur_level'] == 'word':
# T_txt = sample['word_lengths'].max()
# dur_gt = mel2token_to_dur(sample['mel2word'], T_txt)[0]
# dur_pred = model_out['dur'] if 'dur' in model_out else dur_gt
# txt = sample['ph_words'][0].split(" ")
# else:
T_txt = sample['txt_tokens'].shape[1]
dur_gt = mel2token_to_dur(sample['mel2ph'], T_txt)[0]
dur_pred = model_out['dur'] if 'dur' in model_out else dur_gt
txt = self.token_encoder.decode(sample['txt_tokens'][0].cpu().numpy())
txt = txt.split(" ")
return {'dur_gt': dur_gt, 'dur_pred': dur_pred, 'txt': txt}
def build_optimizer(self, model):
optimizer_gen = torch.optim.AdamW(
self.gen_params,
lr=hparams['lr'],
betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']),
weight_decay=hparams['weight_decay'])
optimizer_disc = torch.optim.AdamW(
self.disc_params,
lr=hparams['disc_lr'],
betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']),
**hparams["discriminator_optimizer_params"]) if len(self.disc_params) > 0 else None
return [optimizer_gen, optimizer_disc]
def build_scheduler(self, optimizer):
return [
FastSpeechTask.build_scheduler(self, optimizer[0]), # Generator Scheduler
torch.optim.lr_scheduler.StepLR(optimizer=optimizer[1], # Discriminator Scheduler
**hparams["discriminator_scheduler_params"]),
]
def on_before_optimization(self, opt_idx):
if opt_idx == 0:
nn.utils.clip_grad_norm_(self.dp_params, hparams['clip_grad_norm'])
if self.use_bert:
nn.utils.clip_grad_norm_(self.bert_params, hparams['clip_grad_norm'])
nn.utils.clip_grad_norm_(self.gen_params_except_bert_and_dp, hparams['clip_grad_norm'])
else:
nn.utils.clip_grad_norm_(self.gen_params_except_dp, hparams['clip_grad_norm'])
else:
nn.utils.clip_grad_norm_(self.disc_params, hparams["clip_grad_norm"])
def on_after_optimization(self, epoch, batch_idx, optimizer, optimizer_idx):
if self.scheduler is not None:
self.scheduler[0].step(self.global_step // hparams['accumulate_grad_batches'])
self.scheduler[1].step(self.global_step // hparams['accumulate_grad_batches'])
############
# infer
############
def test_start(self):
super().test_start()
if hparams.get('save_attn', False):
os.makedirs(f'{self.gen_dir}/attn', exist_ok=True)
self.model.store_inverse_all()
def test_step(self, sample, batch_idx):
assert sample['txt_tokens'].shape[0] == 1, 'only support batch_size=1 in inference'
outputs = self.run_model(sample, infer=True)
text = sample['text'][0]
item_name = sample['item_name'][0]
tokens = sample['txt_tokens'][0].cpu().numpy()
mel_gt = sample['mels'][0].cpu().numpy()
mel_pred = outputs['mel_out'][0].cpu().numpy()
mel2ph = sample['mel2ph'][0].cpu().numpy()
mel2ph_pred = None
str_phs = self.token_encoder.decode(tokens, strip_padding=True)
base_fn = f'[{batch_idx:06d}][{item_name.replace("%", "_")}][%s]'
if text is not None:
base_fn += text.replace(":", "$3A")[:80]
base_fn = base_fn.replace(' ', '_')
gen_dir = self.gen_dir
wav_pred = self.vocoder.spec2wav(mel_pred)
self.saving_result_pool.add_job(self.save_result, args=[
wav_pred, mel_pred, base_fn % 'P', gen_dir, str_phs, mel2ph_pred])
if hparams['save_gt']:
wav_gt = self.vocoder.spec2wav(mel_gt)
self.saving_result_pool.add_job(self.save_result, args=[
wav_gt, mel_gt, base_fn % 'G', gen_dir, str_phs, mel2ph])
if hparams.get('save_attn', False):
attn = outputs['attn'][0].cpu().numpy()
np.save(f'{gen_dir}/attn/{item_name}.npy', attn)
# save f0 for pitch dtw
f0_pred_, _ = get_pitch(wav_pred, mel_pred, hparams)
f0_gt_, _ = get_pitch(wav_gt, mel_gt, hparams)
np.save(f'{gen_dir}/f0/{item_name}.npy', f0_pred_)
np.save(f'{gen_dir}/f0/{item_name}_gt.npy', f0_gt_)
print(f"Pred_shape: {mel_pred.shape}, gt_shape: {mel_gt.shape}")
return {
'item_name': item_name,
'text': text,
'ph_tokens': self.token_encoder.decode(tokens.tolist()),
'wav_fn_pred': base_fn % 'P',
'wav_fn_gt': base_fn % 'G',
}
|