Spaces:
Build error
Build error
File size: 6,033 Bytes
9206300 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import os
import torch
import torch.distributed as dist
from torch import nn
from torch.utils.data import DistributedSampler
from tasks.vocoder.dataset_utils import VocoderDataset, EndlessDistributedSampler
from text_to_speech.utils.audio.io import save_wav
from text_to_speech.utils.commons.base_task import BaseTask
from text_to_speech.utils.commons.dataset_utils import data_loader
from text_to_speech.utils.commons.hparams import hparams
from text_to_speech.utils.commons.tensor_utils import tensors_to_scalars
class VocoderBaseTask(BaseTask):
def __init__(self):
super(VocoderBaseTask, self).__init__()
self.max_sentences = hparams['max_sentences']
self.max_valid_sentences = hparams['max_valid_sentences']
if self.max_valid_sentences == -1:
hparams['max_valid_sentences'] = self.max_valid_sentences = self.max_sentences
self.dataset_cls = VocoderDataset
@data_loader
def train_dataloader(self):
train_dataset = self.dataset_cls('train', shuffle=True)
return self.build_dataloader(train_dataset, True, self.max_sentences, hparams['endless_ds'])
@data_loader
def val_dataloader(self):
valid_dataset = self.dataset_cls('test', shuffle=False)
return self.build_dataloader(valid_dataset, False, self.max_valid_sentences)
@data_loader
def test_dataloader(self):
test_dataset = self.dataset_cls('test', shuffle=False)
return self.build_dataloader(test_dataset, False, self.max_valid_sentences)
def build_dataloader(self, dataset, shuffle, max_sentences, endless=False):
world_size = 1
rank = 0
if dist.is_initialized():
world_size = dist.get_world_size()
rank = dist.get_rank()
sampler_cls = DistributedSampler if not endless else EndlessDistributedSampler
train_sampler = sampler_cls(
dataset=dataset,
num_replicas=world_size,
rank=rank,
shuffle=shuffle,
)
return torch.utils.data.DataLoader(
dataset=dataset,
shuffle=False,
collate_fn=dataset.collater,
batch_size=max_sentences,
num_workers=dataset.num_workers,
sampler=train_sampler,
pin_memory=True,
)
def build_optimizer(self, model):
optimizer_gen = torch.optim.AdamW(self.model_gen.parameters(), lr=hparams['lr'],
betas=[hparams['adam_b1'], hparams['adam_b2']])
optimizer_disc = torch.optim.AdamW(self.model_disc.parameters(), lr=hparams['lr'],
betas=[hparams['adam_b1'], hparams['adam_b2']])
return [optimizer_gen, optimizer_disc]
def build_scheduler(self, optimizer):
return {
"gen": torch.optim.lr_scheduler.StepLR(
optimizer=optimizer[0],
**hparams["generator_scheduler_params"]),
"disc": torch.optim.lr_scheduler.StepLR(
optimizer=optimizer[1],
**hparams["discriminator_scheduler_params"]),
}
def validation_step(self, sample, batch_idx):
outputs = {}
total_loss, loss_output = self._training_step(sample, batch_idx, 0)
outputs['losses'] = tensors_to_scalars(loss_output)
outputs['total_loss'] = tensors_to_scalars(total_loss)
if self.global_step % hparams['valid_infer_interval'] == 0 and \
batch_idx < 10:
mels = sample['mels']
y = sample['wavs']
f0 = sample['f0']
y_ = self.model_gen(mels, f0)
for idx, (wav_pred, wav_gt, item_name) in enumerate(zip(y_, y, sample["item_name"])):
wav_pred = wav_pred / wav_pred.abs().max()
if self.global_step == 0:
wav_gt = wav_gt / wav_gt.abs().max()
self.logger.add_audio(f'wav_{batch_idx}_{idx}_gt', wav_gt, self.global_step,
hparams['audio_sample_rate'])
self.logger.add_audio(f'wav_{batch_idx}_{idx}_pred', wav_pred, self.global_step,
hparams['audio_sample_rate'])
return outputs
def test_start(self):
self.gen_dir = os.path.join(hparams['work_dir'],
f'generated_{self.trainer.global_step}_{hparams["gen_dir_name"]}')
os.makedirs(self.gen_dir, exist_ok=True)
def test_step(self, sample, batch_idx):
mels = sample['mels']
y = sample['wavs']
f0 = sample['f0']
loss_output = {}
y_ = self.model_gen(mels, f0)
gen_dir = os.path.join(hparams['work_dir'], f'generated_{self.trainer.global_step}_{hparams["gen_dir_name"]}')
os.makedirs(gen_dir, exist_ok=True)
for idx, (wav_pred, wav_gt, item_name) in enumerate(zip(y_, y, sample["item_name"])):
wav_gt = wav_gt.clamp(-1, 1)
wav_pred = wav_pred.clamp(-1, 1)
save_wav(
wav_gt.view(-1).cpu().float().numpy(), f'{gen_dir}/{item_name}_gt.wav',
hparams['audio_sample_rate'])
save_wav(
wav_pred.view(-1).cpu().float().numpy(), f'{gen_dir}/{item_name}_pred.wav',
hparams['audio_sample_rate'])
return loss_output
def test_end(self, outputs):
return {}
def on_before_optimization(self, opt_idx):
if opt_idx == 0:
nn.utils.clip_grad_norm_(self.model_gen.parameters(), hparams['generator_grad_norm'])
else:
nn.utils.clip_grad_norm_(self.model_disc.parameters(), hparams["discriminator_grad_norm"])
def on_after_optimization(self, epoch, batch_idx, optimizer, optimizer_idx):
if optimizer_idx == 0:
self.scheduler['gen'].step(self.global_step // hparams['accumulate_grad_batches'])
else:
self.scheduler['disc'].step(self.global_step // hparams['accumulate_grad_batches'])
|