File size: 22,456 Bytes
8121fee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
# -*- coding: utf-8 -*-

from typing import Dict

import torch
import torch.nn as nn

from .utils import mean_with_lens, repeat_tensor


class CaptionModel(nn.Module):
    """
    Encoder-decoder captioning model.
    """

    pad_idx = 0
    start_idx = 1
    end_idx = 2
    max_length = 20

    def __init__(self, encoder: nn.Module, decoder: nn.Module, **kwargs):
        super().__init__()
        self.encoder = encoder
        self.decoder = decoder
        self.vocab_size = decoder.vocab_size
        self.train_forward_keys = ["cap", "cap_len", "ss_ratio"]
        self.inference_forward_keys = ["sample_method", "max_length", "temp"]
        freeze_encoder = kwargs.get("freeze_encoder", False)
        if freeze_encoder:
            for param in self.encoder.parameters():
                param.requires_grad = False
        self.check_decoder_compatibility()

    def check_decoder_compatibility(self):
        compatible_decoders = [x.__class__.__name__ for x in self.compatible_decoders]
        assert isinstance(self.decoder, self.compatible_decoders), \
            f"{self.decoder.__class__.__name__} is incompatible with " \
            f"{self.__class__.__name__}, please use decoder in {compatible_decoders} "

    @classmethod
    def set_index(cls, start_idx, end_idx):
        cls.start_idx = start_idx
        cls.end_idx = end_idx

    def forward(self, input_dict: Dict):
        """
        input_dict: {
            (required)
            mode: train/inference,
            spec,
            spec_len,
            fc,
            attn,
            attn_len,
            [sample_method: greedy],
            [temp: 1.0] (in case of no teacher forcing)

            (optional, mode=train)
            cap,
            cap_len,
            ss_ratio,

            (optional, mode=inference)
            sample_method: greedy/beam,
            max_length,
            temp,
            beam_size (optional, sample_method=beam),
            n_best (optional, sample_method=beam),
        }
        """
        # encoder_input_keys = ["spec", "spec_len", "fc", "attn", "attn_len"]
        # encoder_input = { key: input_dict[key] for key in encoder_input_keys }
        encoder_output_dict = self.encoder(input_dict)
        if input_dict["mode"] == "train":
            forward_dict = {
                "mode": "train", "sample_method": "greedy", "temp": 1.0
            }
            for key in self.train_forward_keys:
                forward_dict[key] = input_dict[key]
            forward_dict.update(encoder_output_dict)
            output = self.train_forward(forward_dict)
        elif input_dict["mode"] == "inference":
            forward_dict = {"mode": "inference"}
            default_args = { "sample_method": "greedy", "max_length": self.max_length, "temp": 1.0 }
            for key in self.inference_forward_keys:
                if key in input_dict:
                    forward_dict[key] = input_dict[key]
                else:
                    forward_dict[key] = default_args[key]

            if forward_dict["sample_method"] == "beam":
                forward_dict["beam_size"] = input_dict.get("beam_size", 3)
                forward_dict["n_best"] = input_dict.get("n_best", False)
                forward_dict["n_best_size"] = input_dict.get("n_best_size", forward_dict["beam_size"])
            elif forward_dict["sample_method"] == "dbs":
                forward_dict["beam_size"] = input_dict.get("beam_size", 6)
                forward_dict["group_size"] = input_dict.get("group_size", 3)
                forward_dict["diversity_lambda"] = input_dict.get("diversity_lambda", 0.5)
                forward_dict["group_nbest"] = input_dict.get("group_nbest", True)

            forward_dict.update(encoder_output_dict)
            output = self.inference_forward(forward_dict)
        else:
            raise Exception("mode should be either 'train' or 'inference'")

        return output

    def prepare_output(self, input_dict):
        output = {}
        batch_size = input_dict["fc_emb"].size(0)
        if input_dict["mode"] == "train":
            max_length = input_dict["cap"].size(1) - 1
        elif input_dict["mode"] == "inference":
            max_length = input_dict["max_length"]
        else:
            raise Exception("mode should be either 'train' or 'inference'")
        device = input_dict["fc_emb"].device
        output["seq"] = torch.full((batch_size, max_length), self.end_idx,
                                   dtype=torch.long)
        output["logit"] = torch.empty(batch_size, max_length,
                                      self.vocab_size).to(device)
        output["sampled_logprob"] = torch.zeros(batch_size, max_length)
        output["embed"] = torch.empty(batch_size, max_length,
                                      self.decoder.d_model).to(device)
        return output

    def train_forward(self, input_dict):
        if input_dict["ss_ratio"] != 1: # scheduled sampling training
            input_dict["mode"] = "train"
            return self.stepwise_forward(input_dict)
        output = self.seq_forward(input_dict)
        self.train_process(output, input_dict)
        return output

    def seq_forward(self, input_dict):
        raise NotImplementedError

    def train_process(self, output, input_dict):
        pass

    def inference_forward(self, input_dict):
        if input_dict["sample_method"] == "beam":
            return self.beam_search(input_dict)
        elif input_dict["sample_method"] == "dbs":
            return self.diverse_beam_search(input_dict)
        return self.stepwise_forward(input_dict)

    def stepwise_forward(self, input_dict):
        """Step-by-step decoding"""
        output = self.prepare_output(input_dict)
        max_length = output["seq"].size(1)
        # start sampling
        for t in range(max_length):
            input_dict["t"] = t
            self.decode_step(input_dict, output)
            if input_dict["mode"] == "inference": # decide whether to stop when sampling
                unfinished_t = output["seq"][:, t] != self.end_idx
                if t == 0:
                    unfinished = unfinished_t
                else:
                    unfinished *= unfinished_t
                output["seq"][:, t][~unfinished] = self.end_idx
                if unfinished.sum() == 0:
                    break
        self.stepwise_process(output)
        return output

    def decode_step(self, input_dict, output):
        """Decoding operation of timestep t"""
        decoder_input = self.prepare_decoder_input(input_dict, output)
        # feed to the decoder to get logit
        output_t = self.decoder(decoder_input)
        logit_t = output_t["logit"]
        # assert logit_t.ndim == 3
        if logit_t.size(1) == 1:
            logit_t = logit_t.squeeze(1)
            embed_t = output_t["embed"].squeeze(1)
        elif logit_t.size(1) > 1:
            logit_t = logit_t[:, -1, :]
            embed_t = output_t["embed"][:, -1, :]
        else:
            raise Exception("no logit output")
        # sample the next input word and get the corresponding logit
        sampled = self.sample_next_word(logit_t,
                                        method=input_dict["sample_method"],
                                        temp=input_dict["temp"])

        output_t.update(sampled)
        output_t["t"] = input_dict["t"]
        output_t["logit"] = logit_t
        output_t["embed"] = embed_t
        self.stepwise_process_step(output, output_t)

    def prepare_decoder_input(self, input_dict, output):
        """Prepare the inp ut dict for the decoder"""
        raise NotImplementedError
    
    def stepwise_process_step(self, output, output_t):
        """Postprocessing (save output values) after each timestep t"""
        t = output_t["t"]
        output["logit"][:, t, :] = output_t["logit"]
        output["seq"][:, t] = output_t["word"]
        output["sampled_logprob"][:, t] = output_t["probs"]
        output["embed"][:, t, :] = output_t["embed"]

    def stepwise_process(self, output):
        """Postprocessing after the whole step-by-step autoregressive decoding"""
        pass

    def sample_next_word(self, logit, method, temp):
        """Sample the next word, given probs output by the decoder"""
        logprob = torch.log_softmax(logit, dim=1)
        if method == "greedy":
            sampled_logprob, word = torch.max(logprob.detach(), 1)
        elif method == "gumbel":
            def sample_gumbel(shape, eps=1e-20):
                U = torch.rand(shape).to(logprob.device)
                return -torch.log(-torch.log(U + eps) + eps)
            def gumbel_softmax_sample(logit, temperature):
                y = logit + sample_gumbel(logit.size())
                return torch.log_softmax(y / temperature, dim=-1)
            _logprob = gumbel_softmax_sample(logprob, temp)
            _, word = torch.max(_logprob.data, 1)
            sampled_logprob = logprob.gather(1, word.unsqueeze(-1))
        else:
            logprob = logprob / temp
            if method.startswith("top"):
                top_num = float(method[3:])
                if 0 < top_num < 1: # top-p sampling
                    probs = torch.softmax(logit, dim=1)
                    sorted_probs, sorted_indices = torch.sort(probs, descending=True, dim=1)
                    _cumsum = sorted_probs.cumsum(1)
                    mask = _cumsum < top_num
                    mask = torch.cat([torch.ones_like(mask[:,:1]), mask[:,:-1]], 1)
                    sorted_probs = sorted_probs * mask.to(sorted_probs)
                    sorted_probs = sorted_probs / sorted_probs.sum(1, keepdim=True)
                    logprob.scatter_(1, sorted_indices, sorted_probs.log())
                else: # top-k sampling
                    k = int(top_num)
                    tmp = torch.empty_like(logprob).fill_(float('-inf'))
                    topk, indices = torch.topk(logprob, k, dim=1)
                    tmp = tmp.scatter(1, indices, topk)
                    logprob = tmp
            word = torch.distributions.Categorical(logits=logprob.detach()).sample()
            sampled_logprob = logprob.gather(1, word.unsqueeze(-1)).squeeze(1)
        word = word.detach().long()
        # sampled_logprob: [N,], word: [N,]
        return {"word": word, "probs": sampled_logprob}

    def beam_search(self, input_dict):
        output = self.prepare_output(input_dict)
        max_length = input_dict["max_length"]
        beam_size = input_dict["beam_size"]
        if input_dict["n_best"]:
            n_best_size = input_dict["n_best_size"]
            batch_size, max_length = output["seq"].size()
            output["seq"] = torch.full((batch_size, n_best_size, max_length),
                                        self.end_idx, dtype=torch.long)
            
        temp = input_dict["temp"]
        # instance by instance beam seach
        for i in range(output["seq"].size(0)):
            output_i = self.prepare_beamsearch_output(input_dict)
            input_dict["sample_idx"] = i
            for t in range(max_length):
                input_dict["t"] = t
                output_t = self.beamsearch_step(input_dict, output_i)
                #######################################
                # merge with previous beam and select the current max prob beam
                #######################################
                logit_t = output_t["logit"]
                if logit_t.size(1) == 1:
                    logit_t = logit_t.squeeze(1)
                elif logit_t.size(1) > 1:
                    logit_t = logit_t[:, -1, :]
                else:
                    raise Exception("no logit output")
                logprob_t = torch.log_softmax(logit_t, dim=1)
                logprob_t = torch.log_softmax(logprob_t / temp, dim=1)
                logprob_t = output_i["topk_logprob"].unsqueeze(1) + logprob_t
                if t == 0: # for the first step, all k seq will have the same probs
                    topk_logprob, topk_words = logprob_t[0].topk(
                        beam_size, 0, True, True)
                else: # unroll and find top logprob, and their unrolled indices
                    topk_logprob, topk_words = logprob_t.view(-1).topk(
                        beam_size, 0, True, True)
                topk_words = topk_words.cpu()
                output_i["topk_logprob"] = topk_logprob
                # output_i["prev_words_beam"] = topk_words // self.vocab_size  # [beam_size,]
                output_i["prev_words_beam"] = torch.div(topk_words, self.vocab_size,
                                                        rounding_mode='trunc')
                output_i["next_word"] = topk_words % self.vocab_size  # [beam_size,]
                if t == 0:
                    output_i["seq"] = output_i["next_word"].unsqueeze(1)
                else:
                    output_i["seq"] = torch.cat([
                        output_i["seq"][output_i["prev_words_beam"]],
                        output_i["next_word"].unsqueeze(1)], dim=1)

                # add finished beams to results
                is_end = output_i["next_word"] == self.end_idx
                if t == max_length - 1:
                    is_end.fill_(1)
                
                for beam_idx in range(beam_size):
                    if is_end[beam_idx]:
                        final_beam = {
                            "seq": output_i["seq"][beam_idx].clone(),
                            "score": output_i["topk_logprob"][beam_idx].item()
                        }
                        final_beam["score"] = final_beam["score"] / (t + 1)
                        output_i["done_beams"].append(final_beam)
                output_i["topk_logprob"][is_end] -= 1000

                self.beamsearch_process_step(output_i, output_t)

            self.beamsearch_process(output, output_i, input_dict)
        return output

    def prepare_beamsearch_output(self, input_dict):
        beam_size = input_dict["beam_size"]
        device = input_dict["fc_emb"].device
        output = {
            "topk_logprob": torch.zeros(beam_size).to(device),
            "seq": None,
            "prev_words_beam": None,
            "next_word": None,
            "done_beams": [],
        }
        return output

    def beamsearch_step(self, input_dict, output_i):
        decoder_input = self.prepare_beamsearch_decoder_input(input_dict, output_i)
        output_t = self.decoder(decoder_input)
        output_t["t"] = input_dict["t"]
        return output_t

    def prepare_beamsearch_decoder_input(self, input_dict, output_i):
        raise NotImplementedError
            
    def beamsearch_process_step(self, output_i, output_t):
        pass

    def beamsearch_process(self, output, output_i, input_dict):
        i = input_dict["sample_idx"]
        done_beams = sorted(output_i["done_beams"], key=lambda x: -x["score"])
        if input_dict["n_best"]:
            done_beams = done_beams[:input_dict["n_best_size"]]
            for out_idx, done_beam in enumerate(done_beams):
                seq = done_beam["seq"]
                output["seq"][i][out_idx, :len(seq)] = seq
        else:
            seq = done_beams[0]["seq"]
            output["seq"][i][:len(seq)] = seq
    
    def diverse_beam_search(self, input_dict):
        
        def add_diversity(seq_table, logprob, t, divm, diversity_lambda, bdash):
            local_time = t - divm
            unaug_logprob = logprob.clone()

            if divm > 0:
                change = torch.zeros(logprob.size(-1))
                for prev_choice in range(divm):
                    prev_decisions = seq_table[prev_choice][..., local_time]
                    for prev_labels in range(bdash):
                        change.scatter_add_(0, prev_decisions[prev_labels], change.new_ones(1))

                change = change.to(logprob.device)
                logprob = logprob - repeat_tensor(change, bdash) * diversity_lambda

            return logprob, unaug_logprob

        output = self.prepare_output(input_dict)
        group_size = input_dict["group_size"]
        batch_size = output["seq"].size(0)
        beam_size = input_dict["beam_size"]
        bdash = beam_size // group_size
        input_dict["bdash"] = bdash
        diversity_lambda = input_dict["diversity_lambda"]
        device = input_dict["fc_emb"].device
        max_length = input_dict["max_length"]
        temp = input_dict["temp"]
        group_nbest = input_dict["group_nbest"]
        batch_size, max_length = output["seq"].size()
        if group_nbest:
            output["seq"] = torch.full((batch_size, beam_size, max_length),
                                        self.end_idx, dtype=torch.long)
        else:
            output["seq"] = torch.full((batch_size, group_size, max_length),
                                        self.end_idx, dtype=torch.long)


        for i in range(batch_size):
            input_dict["sample_idx"] = i
            seq_table = [torch.LongTensor(bdash, 0) for _ in range(group_size)] # group_size x [bdash, 0]
            logprob_table = [torch.zeros(bdash).to(device) for _ in range(group_size)]
            done_beams_table = [[] for _ in range(group_size)]

            output_i = {
                "prev_words_beam": [None for _ in range(group_size)],
                "next_word": [None for _ in range(group_size)],
                "state": [None for _ in range(group_size)]
            }

            for t in range(max_length + group_size - 1):
                input_dict["t"] = t
                for divm in range(group_size):
                    input_dict["divm"] = divm
                    if t >= divm and t <= max_length + divm - 1:
                        local_time = t - divm
                        decoder_input = self.prepare_dbs_decoder_input(input_dict, output_i)
                        output_t = self.decoder(decoder_input)
                        output_t["divm"] = divm
                        logit_t = output_t["logit"]
                        if logit_t.size(1) == 1:
                            logit_t = logit_t.squeeze(1)
                        elif logit_t.size(1) > 1:
                            logit_t = logit_t[:, -1, :]
                        else:
                            raise Exception("no logit output")
                        logprob_t = torch.log_softmax(logit_t, dim=1)
                        logprob_t = torch.log_softmax(logprob_t / temp, dim=1)
                        logprob_t, unaug_logprob_t = add_diversity(seq_table, logprob_t, t, divm, diversity_lambda, bdash)
                        logprob_t = logprob_table[divm].unsqueeze(-1) + logprob_t
                        if local_time == 0: # for the first step, all k seq will have the same probs
                            topk_logprob, topk_words = logprob_t[0].topk(
                                bdash, 0, True, True)
                        else: # unroll and find top logprob, and their unrolled indices
                            topk_logprob, topk_words = logprob_t.view(-1).topk(
                                bdash, 0, True, True)
                        topk_words = topk_words.cpu()
                        logprob_table[divm] = topk_logprob
                        output_i["prev_words_beam"][divm] = topk_words // self.vocab_size  # [bdash,]
                        output_i["next_word"][divm] = topk_words % self.vocab_size  # [bdash,]
                        if local_time > 0:
                            seq_table[divm] = seq_table[divm][output_i["prev_words_beam"][divm]]
                        seq_table[divm] = torch.cat([
                            seq_table[divm],
                            output_i["next_word"][divm].unsqueeze(-1)], -1)

                        is_end = seq_table[divm][:, t-divm] == self.end_idx
                        assert seq_table[divm].shape[-1] == t - divm + 1
                        if t == max_length + divm - 1:
                            is_end.fill_(1)
                        for beam_idx in range(bdash):
                            if is_end[beam_idx]:
                                final_beam = {
                                    "seq": seq_table[divm][beam_idx].clone(),
                                    "score": logprob_table[divm][beam_idx].item()
                                }
                                final_beam["score"] = final_beam["score"] / (t - divm + 1)
                                done_beams_table[divm].append(final_beam)
                        logprob_table[divm][is_end] -= 1000
                        self.dbs_process_step(output_i, output_t)
            done_beams_table = [sorted(done_beams_table[divm], key=lambda x: -x["score"])[:bdash] for divm in range(group_size)]
            if group_nbest:
                done_beams = sum(done_beams_table, [])
            else:
                done_beams = [group_beam[0] for group_beam in done_beams_table]
            for _, done_beam in enumerate(done_beams):
                output["seq"][i, _, :len(done_beam["seq"])] = done_beam["seq"]

        return output
            
    def prepare_dbs_decoder_input(self, input_dict, output_i):
        raise NotImplementedError

    def dbs_process_step(self, output_i, output_t):
        pass


class CaptionSequenceModel(nn.Module):

    def __init__(self, model, seq_output_size):
        super().__init__()
        self.model = model
        if model.decoder.d_model != seq_output_size:
            self.output_transform = nn.Linear(model.decoder.d_model, seq_output_size)
        else:
            self.output_transform = lambda x: x

    def forward(self, input_dict):
        output = self.model(input_dict)

        if input_dict["mode"] == "train":
            lens = input_dict["cap_len"] - 1
            # seq_outputs: [N, d_model]
        elif input_dict["mode"] == "inference":
            if "sample_method" in input_dict and input_dict["sample_method"] == "beam":
                return output
            seq = output["seq"]
            lens = torch.where(seq == self.model.end_idx, torch.zeros_like(seq), torch.ones_like(seq)).sum(dim=1)
        else:
            raise Exception("mode should be either 'train' or 'inference'")
        seq_output = mean_with_lens(output["embed"], lens)
        seq_output = self.output_transform(seq_output)
        output["seq_output"] = seq_output
        return output