File size: 17,448 Bytes
3d2e945
 
 
 
 
 
 
3075f9b
cb578af
5bdaf18
e1b797b
 
3075f9b
 
 
 
 
 
 
3d2e945
 
3075f9b
3d2e945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fe0f7e
3d2e945
9e43f21
82b4d1d
9fe0f7e
3d2e945
9e43f21
 
 
1d93965
 
 
 
 
9e43f21
3d2e945
 
 
 
 
 
 
 
 
 
 
1d93965
3d2e945
 
edf6130
406619f
04e3d86
edf6130
406619f
 
1d93965
329cb64
 
 
 
 
 
1d93965
329cb64
3d2e945
489cbec
335ec14
edf6130
3d2e945
 
1d93965
3d2e945
 
 
 
1d93965
3d2e945
 
 
1d93965
3d2e945
489cbec
3d2e945
 
 
1d93965
3d2e945
 
 
 
 
 
 
 
1d93965
 
88ae081
 
 
3d2e945
88ae081
 
 
3d2e945
 
 
 
1d93965
3d2e945
cf7e296
 
 
3d2e945
 
 
 
 
 
cf7e296
 
3d2e945
 
 
 
88ae081
 
 
3d2e945
88ae081
3d2e945
489cbec
8cfe9bf
 
1d93965
3d2e945
 
 
 
 
1d93965
3075f9b
489cbec
3d2e945
 
 
 
 
 
 
 
 
 
 
1d93965
 
 
 
 
 
 
 
 
 
 
9fe0f7e
3d2e945
 
3075f9b
c53fc43
9e43f21
 
 
 
 
 
079bd31
 
 
 
e6175f3
 
 
9e43f21
1d93965
 
b84694b
1d93965
9fe0f7e
9ada147
9fe0f7e
 
 
 
1d93965
 
 
 
96be766
3d2e945
8cfe9bf
 
 
1d93965
8cfe9bf
1caaea1
1d93965
 
 
 
 
 
 
 
 
9fe0f7e
c0b8384
 
 
 
 
 
 
 
 
 
 
9fe0f7e
 
 
3d2e945
1d93965
 
3d2e945
1d93965
b79129e
1d93965
 
 
 
 
 
 
 
 
3d2e945
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
from langchain.agents.initialize import initialize_agent
from langchain.agents.tools import Tool
from langchain.chains.conversation.memory import ConversationBufferMemory
from langchain.llms.openai import OpenAI
from audio_foundation_models import *
import gradio as gr

_DESCRIPTION = '# [AudioGPT](https://github.com/AIGC-Audio/AudioGPT)'
_DESCRIPTION += '\n<p>This is a demo to the work <a href="https://github.com/AIGC-Audio/AudioGPT" style="text-decoration: underline;" target="_blank">AudioGPT: Understanding and Generating Speech, Music, Sound, and Talking Head</a>. </p>'
_DESCRIPTION += '\n<p>This model can only be used for non-commercial purposes.'
if (SPACE_ID := os.getenv('SPACE_ID')) is not None:
    _DESCRIPTION += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'


AUDIO_CHATGPT_PREFIX = """AudioGPT
AudioGPT can not directly read audios, but it has a list of tools to finish different speech, audio, and singing voice tasks. Each audio will have a file name formed as "audio/xxx.wav". When talking about audios, AudioGPT is very strict to the file name and will never fabricate nonexistent files. 
AudioGPT is able to use tools in a sequence, and is loyal to the tool observation outputs rather than faking the audio content and audio file name. It will remember to provide the file name from the last tool observation, if a new audio is generated.
Human may provide new audios to AudioGPT with a description. The description helps AudioGPT to understand this audio, but AudioGPT should use tools to finish following tasks, rather than directly imagine from the description.
Overall, AudioGPT is a powerful audio dialogue assistant tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. 
TOOLS:
------
AudioGPT has access to the following tools:"""

AUDIO_CHATGPT_FORMAT_INSTRUCTIONS = """To use a tool, please use the following format:
```
Thought: Do I need to use a tool? Yes
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
```
When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format:
```
Thought: Do I need to use a tool? No
{ai_prefix}: [your response here]
```
"""

AUDIO_CHATGPT_SUFFIX = """You are very strict to the filename correctness and will never fake a file name if not exists.
You will remember to provide the audio file name loyally if it's provided in the last tool observation.
Begin!
Previous conversation history:
{chat_history}
New input: {input}
Thought: Do I need to use a tool? {agent_scratchpad}"""

def cut_dialogue_history(history_memory, keep_last_n_words = 500):
    tokens = history_memory.split()
    n_tokens = len(tokens)
    print(f"history_memory:{history_memory}, n_tokens: {n_tokens}")
    if n_tokens < keep_last_n_words:
        return history_memory
    else:
        paragraphs = history_memory.split('\n')
        last_n_tokens = n_tokens
        while last_n_tokens >= keep_last_n_words:
            last_n_tokens = last_n_tokens - len(paragraphs[0].split(' '))
            paragraphs = paragraphs[1:]
        return '\n' + '\n'.join(paragraphs)

class ConversationBot:
    def __init__(self, load_dict):
        print("Initializing AudioGPT")
        self.tools = []
        self.memory = ConversationBufferMemory(memory_key="chat_history", output_key='output')
        self.models = dict()
        for class_name, device in load_dict.items():
            self.models[class_name] = globals()[class_name](device=device)
        for class_name, instance in self.models.items():
            for e in dir(instance):
                if e.startswith('inference'):
                    func = getattr(instance, e)
                    self.tools.append(Tool(name=func.name, description=func.description, func=func))

    def run_text(self, text, state):
        print("===============Running run_text =============")
        print("Inputs:", text, state)
        print("======>Previous memory:\n %s" % self.agent.memory)
        self.agent.memory.buffer = cut_dialogue_history(self.agent.memory.buffer, keep_last_n_words=500)
        res = self.agent({"input": text})
        if res['intermediate_steps'] == []:
            print("======>Current memory:\n %s" % self.agent.memory)
            response = res['output']
            state = state + [(text, response)]
            print("Outputs:", state)
            return state, state, gr.Audio.update(visible=False), gr.Image.update(visible=False), gr.Button.update(visible=False)
        else:
            tool = res['intermediate_steps'][0][0].tool
            if tool == "Generate Image From User Input Text":
                res['output'] = res['output'].replace("\\", "/")
                response = re.sub('(image/\S*png)', lambda m: f'![](/file={m.group(0)})*{m.group(0)}*', res['output'])
                state = state + [(text, response)]
                print(f"\nProcessed run_text, Input text: {text}\nCurrent state: {state}\n"
                      f"Current Memory: {self.agent.memory.buffer}")
                return state, state, gr.Audio.update(visible=False), gr.Image.update(visible=False), gr.Button.update(visible=False)
            elif tool == "Detect The Sound Event From The Audio":
                image_filename = res['intermediate_steps'][0][1]
                response = res['output'] + f"![](/file={image_filename})*{image_filename}*"
                state = state + [(text, response)]
                print(f"\nProcessed run_text, Input text: {text}\nCurrent state: {state}\n"
                      f"Current Memory: {self.agent.memory.buffer}")
                return state, state, gr.Audio.update(visible=False), gr.Image.update(visible=False), gr.Button.update(visible=False)        
            elif tool == "Generate Text From The Audio" or tool == "Transcribe speech" or tool == "Target Sound Detection":
                print("======>Current memory:\n %s" % self.agent.memory)
                response = re.sub('(image/\S*png)', lambda m: f'![](/file={m.group(0)})*{m.group(0)}*', res['output'])
                image_filename = res['intermediate_steps'][0][1]
                #response = res['output'] + f"![](/file={image_filename})*{image_filename}*"
                state = state + [(text, response)]
                print("Outputs:", state)
                return state, state, gr.Audio.update(visible=False), gr.Image.update(visible=False), gr.Button.update(visible=False)
            elif tool == "Audio Inpainting":
                audio_filename = res['intermediate_steps'][0][0].tool_input
                image_filename = res['intermediate_steps'][0][1]
                print("======>Current memory:\n %s" % self.agent.memory)
                print(res)
                response = res['output']
                state = state + [(text, response)]
                print("Outputs:", state)
                return state, state, gr.Audio.update(value=audio_filename,visible=True), gr.Image.update(value=image_filename,visible=True), gr.Button.update(visible=True)
            print("======>Current memory:\n %s" % self.agent.memory)
            response = re.sub('(image/\S*png)', lambda m: f'![](/file={m.group(0)})*{m.group(0)}*', res['output'])
            audio_filename = res['intermediate_steps'][0][1]
            state = state + [(text, response)]
            print("Outputs:", state)
            return state, state, gr.Audio.update(value=audio_filename,visible=True), gr.Image.update(visible=False), gr.Button.update(visible=False)

    def run_image_or_audio(self, file, state, txt):
        file_type = file.name[-3:]
        if file_type == "wav":
            print("===============Running run_audio =============")
            print("Inputs:", file, state)
            print("======>Previous memory:\n %s" % self.agent.memory)
            audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
            audio_load = whisper.load_audio(file.name)
            soundfile.write(audio_filename, audio_load, samplerate = 16000)
            description = self.models['A2T'].inference(audio_filename)
            Human_prompt = "\nHuman: provide an audio named {}. The description is: {}. This information helps you to understand this audio, but you should use tools to finish following tasks, " \
                           "rather than directly imagine from my description. If you understand, say \"Received\". \n".format(audio_filename, description)
            AI_prompt = "Received.  "
            self.agent.memory.buffer = self.agent.memory.buffer + Human_prompt + 'AI: ' + AI_prompt
            # AI_prompt = "Received.  "
            # self.agent.memory.buffer = self.agent.memory.buffer + 'AI: ' + AI_prompt
            print("======>Current memory:\n %s" % self.agent.memory)
            #state = state + [(f"<audio src=audio_filename controls=controls></audio>*{audio_filename}*", AI_prompt)]
            state = state + [(f"*{audio_filename}*", AI_prompt)]
            print("Outputs:", state)
            return state, state, txt + ' ' + audio_filename + ' ', gr.Audio.update(value=audio_filename,visible=True)
        else:
            # print("===============Running run_image =============")
            # print("Inputs:", file, state)
            # print("======>Previous memory:\n %s" % self.agent.memory)
            image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
            print("======>Auto Resize Image...")
            img = Image.open(file.name)
            width, height = img.size
            ratio = min(512 / width, 512 / height)
            width_new, height_new = (round(width * ratio), round(height * ratio))
            width_new = int(np.round(width_new / 64.0)) * 64
            height_new = int(np.round(height_new / 64.0)) * 64
            img = img.resize((width_new, height_new))
            img = img.convert('RGB')
            img.save(image_filename, "PNG")
            print(f"Resize image form {width}x{height} to {width_new}x{height_new}")
            description = self.models['ImageCaptioning'].inference(image_filename)
            Human_prompt = "\nHuman: provide an audio named {}. The description is: {}. This information helps you to understand this audio, but you should use tools to finish following tasks, " \
                           "rather than directly imagine from my description. If you understand, say \"Received\". \n".format(image_filename, description)
            AI_prompt = "Received.  "
            self.agent.memory.buffer = self.agent.memory.buffer + Human_prompt + 'AI: ' + AI_prompt
            print("======>Current memory:\n %s" % self.agent.memory)
            state = state + [(f"![](/file={image_filename})*{image_filename}*", AI_prompt)]
            print(f"\nProcessed run_image, Input image: {image_filename}\nCurrent state: {state}\n"
                  f"Current Memory: {self.agent.memory.buffer}")
            return state, state, txt + f'{txt} {image_filename} ', gr.Audio.update(visible=False)

    def inpainting(self, state, audio_filename, image_filename):
        print("===============Running inpainting =============")
        print("Inputs:", state)
        print("======>Previous memory:\n %s" % self.agent.memory)
        # inpaint = Inpaint(device="cpu")
        new_image_filename, new_audio_filename = self.models['Inpaint'].predict(audio_filename, image_filename)
        AI_prompt = "Here are the predict audio and the mel spectrum." + f"*{new_audio_filename}*" + f"![](/file={new_image_filename})*{new_image_filename}*"
        self.agent.memory.buffer = self.agent.memory.buffer + 'AI: ' + AI_prompt
        print("======>Current memory:\n %s" % self.agent.memory)
        state = state + [(f"Audio Inpainting", AI_prompt)]
        print("Outputs:", state)
        return state, state, gr.Image.update(visible=False), gr.Audio.update(value=new_audio_filename, visible=True), gr.Button.update(visible=False)
    def clear_audio(self):
        return gr.Audio.update(value=None, visible=False)
    def clear_image(self):
        return gr.Image.update(value=None, visible=False)
    def clear_button(self):
        return gr.Button.update(visible=False)
    def init_agent(self, openai_api_key):
        self.llm = OpenAI(temperature=0, openai_api_key=openai_api_key)
        self.agent = initialize_agent(
            self.tools,
            self.llm,
            agent="conversational-react-description",
            verbose=True,
            memory=self.memory,
            return_intermediate_steps=True,
            agent_kwargs={'prefix': AUDIO_CHATGPT_PREFIX, 'format_instructions': AUDIO_CHATGPT_FORMAT_INSTRUCTIONS, 'suffix': AUDIO_CHATGPT_SUFFIX}, )
        return gr.update(visible = True)



if __name__ == '__main__':
    bot = ConversationBot({'ImageCaptioning': 'cuda:0',
                           'T2A': 'cuda:0',
                           'I2A': 'cuda:0',
                           'TTS': 'cpu',
                           'T2S': 'cpu',
                           'ASR': 'cuda:0',
                           'A2T': 'cpu',
                           'Inpaint': 'cuda:0',
                           'SoundDetection': 'cpu',
                           'Binaural': 'cuda:0',
                           'SoundExtraction': 'cuda:0',
                           'TargetSoundDetection': 'cuda:0',
                           'Speech_Enh_SC': 'cuda:0',
                           'Speech_SS': 'cuda:0'
                           })
    with gr.Blocks(css="#chatbot {overflow:auto; height:500px;}") as demo:
        gr.Markdown(_DESCRIPTION)

        with gr.Row():
            openai_api_key_textbox = gr.Textbox(
                placeholder="Paste your OpenAI API key here to start AudioGPT(sk-...) and press Enter ↵️",
                show_label=False,
                lines=1,
                type="password",
            )

        chatbot = gr.Chatbot(elem_id="chatbot", label="AudioGPT")
        state = gr.State([])
        with gr.Row(visible = False) as input_raws:
            with gr.Column(scale=0.7):
                txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter, or upload an image").style(container=False)
            with gr.Column(scale=0.1, min_width=0):
                run = gr.Button("🏃‍♂️Run")
            with gr.Column(scale=0.1, min_width=0):
                clear = gr.Button("🔄Clear️")
            with gr.Column(scale=0.1, min_width=0):
                btn = gr.UploadButton("🖼️/🎙️ Upload", file_types=["image","audio"])
        with gr.Row():        
            with gr.Column():
                outaudio = gr.Audio(visible=False)
        with gr.Row():           
            with gr.Column():
                show_mel = gr.Image(type="filepath",tool='sketch',visible=False)
        with gr.Row():           
            with gr.Column():        
                run_button = gr.Button("Predict Masked Place",visible=False)
        gr.Examples(
            examples=["Generate a speech with text 'here we go'",
                      "Transcribe this speech",
                      "Transfer the mono speech to a binaural one",
                      "Generate an audio of a dog barking",
                      "Generate an audio of this uploaded image",
                      "Give me the description of this audio",
                      "I want to inpaint it",
                      "What events does this audio include?",
                      "When did the thunder happen in this audio?",
                      "Extract the thunder event from this audio",
                      "Generate a piece of singing voice. Text sequence is 小酒窝长睫毛AP是你最美的记号. Note sequence is C#4/Db4 | F#4/Gb4 | G#4/Ab4 | A#4/Bb4 F#4/Gb4 | F#4/Gb4 C#4/Db4 | C#4/Db4 | rest | C#4/Db4 | A#4/Bb4 | G#4/Ab4 | A#4/Bb4 | G#4/Ab4 | F4 | C#4/Db4. Note duration sequence is 0.407140 | 0.376190 | 0.242180 | 0.509550 0.183420 | 0.315400 0.235020 | 0.361660 | 0.223070 | 0.377270 | 0.340550 | 0.299620 | 0.344510 | 0.283770 | 0.323390 | 0.360340.",
                      ],
            inputs=txt
        )

        openai_api_key_textbox.submit(bot.init_agent, [openai_api_key_textbox], [input_raws])    
        txt.submit(bot.run_text, [txt, state], [chatbot, state, outaudio, show_mel, run_button])
        txt.submit(lambda: "", None, txt)
        run.click(bot.run_text, [txt, state], [chatbot, state, outaudio, show_mel, run_button])
        run.click(lambda: "", None, txt)
        btn.upload(bot.run_image_or_audio, [btn, state, txt], [chatbot, state, txt, outaudio])
        run_button.click(bot.inpainting, [state, outaudio, show_mel], [chatbot, state, show_mel, outaudio, run_button])
        clear.click(bot.memory.clear)
        clear.click(lambda: [], None, chatbot)
        clear.click(lambda: [], None, state)
        clear.click(lambda:None, None, txt)
        clear.click(bot.clear_button, None, run_button)
        clear.click(bot.clear_image, None, show_mel)
        clear.click(bot.clear_audio, None, outaudio)
        demo.launch(server_name="0.0.0.0", server_port=7860)