Spaces:
Build error
Build error
import os | |
import torch | |
import torch.nn.functional as F | |
import torch.nn as nn | |
import numpy as np | |
from text_to_speech.modules.tts.syntaspeech.multi_window_disc import Discriminator | |
from tasks.tts.fs import FastSpeechTask | |
from text_to_speech.modules.tts.fs import FastSpeech | |
from text_to_speech.utils.audio.align import mel2token_to_dur | |
from text_to_speech.utils.commons.hparams import hparams | |
from text_to_speech.utils.nn.model_utils import num_params | |
from text_to_speech.utils.commons.tensor_utils import tensors_to_scalars | |
from text_to_speech.utils.audio.pitch.utils import denorm_f0, norm_f0 | |
from text_to_speech.utils.audio.pitch_extractors import get_pitch | |
from text_to_speech.utils.metrics.dtw import dtw as DTW | |
from text_to_speech.utils.plot.plot import spec_to_figure | |
from text_to_speech.utils.text.text_encoder import build_token_encoder | |
class FastSpeechAdvTask(FastSpeechTask): | |
def __init__(self): | |
super().__init__() | |
self.build_disc_model() | |
self.mse_loss_fn = torch.nn.MSELoss() | |
def build_tts_model(self): | |
dict_size = len(self.token_encoder) | |
self.model = FastSpeech(dict_size, hparams) | |
self.gen_params = [p for p in self.model.parameters() if p.requires_grad] | |
self.dp_params = [p for k, p in self.model.named_parameters() if (('dur_predictor' in k) and p.requires_grad)] | |
self.gen_params_except_dp = [p for k, p in self.model.named_parameters() if (('dur_predictor' not in k) and p.requires_grad)] | |
self.bert_params = [p for k, p in self.model.named_parameters() if (('bert' in k) and p.requires_grad)] | |
self.gen_params_except_bert_and_dp = [p for k, p in self.model.named_parameters() if ('dur_predictor' not in k) and ('bert' not in k) and p.requires_grad ] | |
self.use_bert = True if len(self.bert_params) > 0 else False | |
def build_disc_model(self): | |
disc_win_num = hparams['disc_win_num'] | |
h = hparams['mel_disc_hidden_size'] | |
self.mel_disc = Discriminator( | |
time_lengths=[32, 64, 128][:disc_win_num], | |
freq_length=80, hidden_size=h, kernel=(3, 3) | |
) | |
self.disc_params = list(self.mel_disc.parameters()) | |
def _training_step(self, sample, batch_idx, optimizer_idx): | |
loss_output = {} | |
loss_weights = {} | |
disc_start = self.global_step >= hparams["disc_start_steps"] and hparams['lambda_mel_adv'] > 0 | |
if optimizer_idx == 0: | |
####################### | |
# Generator # | |
####################### | |
loss_output, model_out = self.run_model(sample, infer=False) | |
self.model_out_gt = self.model_out = \ | |
{k: v.detach() for k, v in model_out.items() if isinstance(v, torch.Tensor)} | |
if disc_start: | |
mel_p = model_out['mel_out'] | |
if hasattr(self.model, 'out2mel'): | |
mel_p = self.model.out2mel(mel_p) | |
o_ = self.mel_disc(mel_p) | |
p_, pc_ = o_['y'], o_['y_c'] | |
if p_ is not None: | |
loss_output['a'] = self.mse_loss_fn(p_, p_.new_ones(p_.size())) | |
loss_weights['a'] = hparams['lambda_mel_adv'] | |
if pc_ is not None: | |
loss_output['ac'] = self.mse_loss_fn(pc_, pc_.new_ones(pc_.size())) | |
loss_weights['ac'] = hparams['lambda_mel_adv'] | |
else: | |
####################### | |
# Discriminator # | |
####################### | |
if disc_start and self.global_step % hparams['disc_interval'] == 0: | |
model_out = self.model_out_gt | |
mel_g = sample['mels'] | |
mel_p = model_out['mel_out'] | |
o = self.mel_disc(mel_g) | |
p, pc = o['y'], o['y_c'] | |
o_ = self.mel_disc(mel_p) | |
p_, pc_ = o_['y'], o_['y_c'] | |
if p_ is not None: | |
loss_output["r"] = self.mse_loss_fn(p, p.new_ones(p.size())) | |
loss_output["f"] = self.mse_loss_fn(p_, p_.new_zeros(p_.size())) | |
if pc_ is not None: | |
loss_output["rc"] = self.mse_loss_fn(pc, pc.new_ones(pc.size())) | |
loss_output["fc"] = self.mse_loss_fn(pc_, pc_.new_zeros(pc_.size())) | |
else: | |
return None | |
total_loss = sum([loss_weights.get(k, 1) * v for k, v in loss_output.items() if isinstance(v, torch.Tensor) and v.requires_grad]) | |
loss_output['batch_size'] = sample['txt_tokens'].size()[0] | |
return total_loss, loss_output | |
def validation_start(self): | |
self.vocoder = None | |
def validation_step(self, sample, batch_idx): | |
outputs = {} | |
outputs['losses'] = {} | |
outputs['losses'], model_out = self.run_model(sample) | |
outputs['total_loss'] = sum(outputs['losses'].values()) | |
outputs['nsamples'] = sample['nsamples'] | |
outputs = tensors_to_scalars(outputs) | |
if self.global_step % hparams['valid_infer_interval'] == 0 \ | |
and batch_idx < hparams['num_valid_plots']: | |
valid_results = self.save_valid_result(sample, batch_idx, model_out) | |
# wav_gt = valid_results['wav_gt'] | |
mel_gt = valid_results['mel_gt'] | |
# wav_pred = valid_results['wav_pred'] | |
mel_pred = valid_results['mel_pred'] | |
# f0_pred_, _ = get_pitch(wav_pred, mel_pred, hparams) | |
# f0_gt_, _ = get_pitch(wav_gt, mel_gt, hparams) | |
# manhattan_distance = lambda x, y: np.abs(x - y) | |
# dist, cost, acc, path = DTW(f0_pred_, f0_gt_, manhattan_distance) | |
# outputs['losses']['f0_dtw'] = dist / len(f0_gt_) | |
return outputs | |
def save_valid_result(self, sample, batch_idx, model_out): | |
sr = hparams['audio_sample_rate'] | |
f0_gt = None | |
mel_out = model_out['mel_out'] | |
if sample.get('f0') is not None: | |
f0_gt = denorm_f0(sample['f0'][0].cpu(), sample['uv'][0].cpu()) | |
self.plot_mel(batch_idx, sample['mels'], mel_out, f0s=f0_gt) | |
# if self.global_step > 0: | |
if self.vocoder is not None: | |
wav_pred = self.vocoder.spec2wav(mel_out[0].cpu(), f0=f0_gt) | |
self.logger.add_audio(f'wav_val_{batch_idx}', wav_pred, self.global_step, sr) | |
# with gt duration | |
model_out = self.run_model(sample, infer=True, infer_use_gt_dur=True) | |
dur_info = self.get_plot_dur_info(sample, model_out) | |
del dur_info['dur_pred'] | |
if self.vocoder is not None: | |
wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu(), f0=f0_gt) | |
self.logger.add_audio(f'wav_gdur_{batch_idx}', wav_pred, self.global_step, sr) | |
self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'][0], f'mel_gdur_{batch_idx}', | |
dur_info=dur_info, f0s=f0_gt) | |
# with pred duration | |
if not hparams['use_gt_dur']: | |
model_out = self.run_model(sample, infer=True, infer_use_gt_dur=False) | |
dur_info = self.get_plot_dur_info(sample, model_out) | |
self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'][0], f'mel_pdur_{batch_idx}', | |
dur_info=dur_info, f0s=f0_gt) | |
if self.vocoder is not None: | |
wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu(), f0=f0_gt) | |
self.logger.add_audio(f'wav_pdur_{batch_idx}', wav_pred, self.global_step, sr) | |
# gt wav | |
mel_gt = sample['mels'][0].cpu() | |
if self.vocoder is not None: | |
wav_gt = self.vocoder.spec2wav(mel_gt, f0=f0_gt) | |
if self.global_step <= hparams['valid_infer_interval']: | |
self.logger.add_audio(f'wav_gt_{batch_idx}', wav_gt, self.global_step, sr) | |
# add attn plot | |
# if self.global_step > 0 and hparams['dur_level'] == 'word': | |
# self.logger.add_figure(f'attn_{batch_idx}', spec_to_figure(model_out['attn'][0]), self.global_step) | |
return {'mel_gt': mel_gt, 'mel_pred': model_out['mel_out'][0].cpu()} | |
# return {'wav_gt': wav_gt, 'wav_pred': wav_pred, 'mel_gt': mel_gt, 'mel_pred': model_out['mel_out'][0].cpu()} | |
def get_plot_dur_info(self, sample, model_out): | |
# if hparams['dur_level'] == 'word': | |
# T_txt = sample['word_lengths'].max() | |
# dur_gt = mel2token_to_dur(sample['mel2word'], T_txt)[0] | |
# dur_pred = model_out['dur'] if 'dur' in model_out else dur_gt | |
# txt = sample['ph_words'][0].split(" ") | |
# else: | |
T_txt = sample['txt_tokens'].shape[1] | |
dur_gt = mel2token_to_dur(sample['mel2ph'], T_txt)[0] | |
dur_pred = model_out['dur'] if 'dur' in model_out else dur_gt | |
txt = self.token_encoder.decode(sample['txt_tokens'][0].cpu().numpy()) | |
txt = txt.split(" ") | |
return {'dur_gt': dur_gt, 'dur_pred': dur_pred, 'txt': txt} | |
def build_optimizer(self, model): | |
optimizer_gen = torch.optim.AdamW( | |
self.gen_params, | |
lr=hparams['lr'], | |
betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']), | |
weight_decay=hparams['weight_decay']) | |
optimizer_disc = torch.optim.AdamW( | |
self.disc_params, | |
lr=hparams['disc_lr'], | |
betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']), | |
**hparams["discriminator_optimizer_params"]) if len(self.disc_params) > 0 else None | |
return [optimizer_gen, optimizer_disc] | |
def build_scheduler(self, optimizer): | |
return [ | |
FastSpeechTask.build_scheduler(self, optimizer[0]), # Generator Scheduler | |
torch.optim.lr_scheduler.StepLR(optimizer=optimizer[1], # Discriminator Scheduler | |
**hparams["discriminator_scheduler_params"]), | |
] | |
def on_before_optimization(self, opt_idx): | |
if opt_idx == 0: | |
nn.utils.clip_grad_norm_(self.dp_params, hparams['clip_grad_norm']) | |
if self.use_bert: | |
nn.utils.clip_grad_norm_(self.bert_params, hparams['clip_grad_norm']) | |
nn.utils.clip_grad_norm_(self.gen_params_except_bert_and_dp, hparams['clip_grad_norm']) | |
else: | |
nn.utils.clip_grad_norm_(self.gen_params_except_dp, hparams['clip_grad_norm']) | |
else: | |
nn.utils.clip_grad_norm_(self.disc_params, hparams["clip_grad_norm"]) | |
def on_after_optimization(self, epoch, batch_idx, optimizer, optimizer_idx): | |
if self.scheduler is not None: | |
self.scheduler[0].step(self.global_step // hparams['accumulate_grad_batches']) | |
self.scheduler[1].step(self.global_step // hparams['accumulate_grad_batches']) | |
############ | |
# infer | |
############ | |
def test_start(self): | |
super().test_start() | |
if hparams.get('save_attn', False): | |
os.makedirs(f'{self.gen_dir}/attn', exist_ok=True) | |
self.model.store_inverse_all() | |
def test_step(self, sample, batch_idx): | |
assert sample['txt_tokens'].shape[0] == 1, 'only support batch_size=1 in inference' | |
outputs = self.run_model(sample, infer=True) | |
text = sample['text'][0] | |
item_name = sample['item_name'][0] | |
tokens = sample['txt_tokens'][0].cpu().numpy() | |
mel_gt = sample['mels'][0].cpu().numpy() | |
mel_pred = outputs['mel_out'][0].cpu().numpy() | |
mel2ph = sample['mel2ph'][0].cpu().numpy() | |
mel2ph_pred = None | |
str_phs = self.token_encoder.decode(tokens, strip_padding=True) | |
base_fn = f'[{batch_idx:06d}][{item_name.replace("%", "_")}][%s]' | |
if text is not None: | |
base_fn += text.replace(":", "$3A")[:80] | |
base_fn = base_fn.replace(' ', '_') | |
gen_dir = self.gen_dir | |
wav_pred = self.vocoder.spec2wav(mel_pred) | |
self.saving_result_pool.add_job(self.save_result, args=[ | |
wav_pred, mel_pred, base_fn % 'P', gen_dir, str_phs, mel2ph_pred]) | |
if hparams['save_gt']: | |
wav_gt = self.vocoder.spec2wav(mel_gt) | |
self.saving_result_pool.add_job(self.save_result, args=[ | |
wav_gt, mel_gt, base_fn % 'G', gen_dir, str_phs, mel2ph]) | |
if hparams.get('save_attn', False): | |
attn = outputs['attn'][0].cpu().numpy() | |
np.save(f'{gen_dir}/attn/{item_name}.npy', attn) | |
# save f0 for pitch dtw | |
f0_pred_, _ = get_pitch(wav_pred, mel_pred, hparams) | |
f0_gt_, _ = get_pitch(wav_gt, mel_gt, hparams) | |
np.save(f'{gen_dir}/f0/{item_name}.npy', f0_pred_) | |
np.save(f'{gen_dir}/f0/{item_name}_gt.npy', f0_gt_) | |
print(f"Pred_shape: {mel_pred.shape}, gt_shape: {mel_gt.shape}") | |
return { | |
'item_name': item_name, | |
'text': text, | |
'ph_tokens': self.token_encoder.decode(tokens.tolist()), | |
'wav_fn_pred': base_fn % 'P', | |
'wav_fn_gt': base_fn % 'G', | |
} | |