lmzjms's picture
Upload 591 files
9206300
raw
history blame
5.5 kB
import torch
import os
import importlib
from inference.tts.base_tts_infer import BaseTTSInfer
from utils.ckpt_utils import load_ckpt, get_last_checkpoint
from modules.GenerSpeech.model.generspeech import GenerSpeech
from data_gen.tts.emotion import inference as EmotionEncoder
from data_gen.tts.emotion.inference import embed_utterance as Embed_utterance
from data_gen.tts.emotion.inference import preprocess_wav
from data_gen.tts.data_gen_utils import is_sil_phoneme
from resemblyzer import VoiceEncoder
from utils import audio
class GenerSpeechInfer(BaseTTSInfer):
def build_model(self):
model = GenerSpeech(self.ph_encoder)
model.eval()
load_ckpt(model, self.hparams['work_dir'], 'model')
return model
def preprocess_input(self, inp):
"""
:param inp: {'text': str, 'item_name': (str, optional), 'spk_name': (str, optional)}
:return:
"""
# processed text
preprocessor, preprocess_args = self.preprocessor, self.preprocess_args
text_raw = inp['text']
item_name = inp.get('item_name', '<ITEM_NAME>')
ph, txt, word, ph2word, ph_gb_word = preprocessor.txt_to_ph(preprocessor.txt_processor, text_raw, preprocess_args)
ph_token = self.ph_encoder.encode(ph)
# processed ref audio
ref_audio = inp['ref_audio']
processed_ref_audio = 'example/temp.wav'
voice_encoder = VoiceEncoder().cuda()
encoder = [self.ph_encoder, self.word_encoder]
EmotionEncoder.load_model(self.hparams['emotion_encoder_path'])
binarizer_cls = self.hparams.get("binarizer_cls", 'data_gen.tts.base_binarizerr.BaseBinarizer')
pkg = ".".join(binarizer_cls.split(".")[:-1])
cls_name = binarizer_cls.split(".")[-1]
binarizer_cls = getattr(importlib.import_module(pkg), cls_name)
ref_audio_raw, ref_text_raw = self.asr(ref_audio) # prepare text
ph_ref, txt_ref, word_ref, ph2word_ref, ph_gb_word_ref = preprocessor.txt_to_ph(preprocessor.txt_processor, ref_text_raw, preprocess_args)
ph_gb_word_nosil = ["_".join([p for p in w.split("_") if not is_sil_phoneme(p)]) for w in ph_gb_word_ref.split(" ") if not is_sil_phoneme(w)]
phs_for_align = ['SIL'] + ph_gb_word_nosil + ['SIL']
phs_for_align = " ".join(phs_for_align)
# prepare files for alignment
os.system('rm -r example/; mkdir example/')
audio.save_wav(ref_audio_raw, processed_ref_audio, self.hparams['audio_sample_rate'])
with open(f'example/temp.lab', 'w') as f_txt:
f_txt.write(phs_for_align)
os.system(f'mfa align example/ {self.hparams["binary_data_dir"]}/mfa_dict.txt {self.hparams["binary_data_dir"]}/mfa_model.zip example/textgrid/ --clean')
item2tgfn = 'example/textgrid/temp.TextGrid' # prepare textgrid alignment
item = binarizer_cls.process_item(item_name, ph_ref, txt_ref, item2tgfn, processed_ref_audio, 0, 0, encoder, self.hparams['binarization_args'])
item['emo_embed'] = Embed_utterance(preprocess_wav(item['wav_fn']))
item['spk_embed'] = voice_encoder.embed_utterance(item['wav'])
item.update({
'ref_ph': item['ph'],
'ph': ph,
'ph_token': ph_token,
'text': txt
})
return item
def input_to_batch(self, item):
item_names = [item['item_name']]
text = [item['text']]
ph = [item['ph']]
txt_tokens = torch.LongTensor(item['ph_token'])[None, :].to(self.device)
txt_lengths = torch.LongTensor([txt_tokens.shape[1]]).to(self.device)
mels = torch.FloatTensor(item['mel'])[None, :].to(self.device)
f0 = torch.FloatTensor(item['f0'])[None, :].to(self.device)
# uv = torch.FloatTensor(item['uv']).to(self.device)
mel2ph = torch.LongTensor(item['mel2ph'])[None, :].to(self.device)
spk_embed = torch.FloatTensor(item['spk_embed'])[None, :].to(self.device)
emo_embed = torch.FloatTensor(item['emo_embed'])[None, :].to(self.device)
ph2word = torch.LongTensor(item['ph2word'])[None, :].to(self.device)
mel2word = torch.LongTensor(item['mel2word'])[None, :].to(self.device)
word_tokens = torch.LongTensor(item['word_tokens'])[None, :].to(self.device)
batch = {
'item_name': item_names,
'text': text,
'ph': ph,
'mels': mels,
'f0': f0,
'txt_tokens': txt_tokens,
'txt_lengths': txt_lengths,
'spk_embed': spk_embed,
'emo_embed': emo_embed,
'mel2ph': mel2ph,
'ph2word': ph2word,
'mel2word': mel2word,
'word_tokens': word_tokens,
}
return batch
def forward_model(self, inp):
sample = self.input_to_batch(inp)
txt_tokens = sample['txt_tokens'] # [B, T_t]
with torch.no_grad():
output = self.model(txt_tokens, ref_mel2ph=sample['mel2ph'], ref_mel2word=sample['mel2word'], ref_mels=sample['mels'],
spk_embed=sample['spk_embed'], emo_embed=sample['emo_embed'], global_steps=300000, infer=True)
mel_out = output['mel_out']
wav_out = self.run_vocoder(mel_out)
wav_out = wav_out.squeeze().cpu().numpy()
return wav_out
if __name__ == '__main__':
inp = {
'text': 'here we go',
'ref_audio': 'assets/0011_001570.wav'
}
GenerSpeechInfer.example_run(inp)