Spaces:
Build error
Build error
import torch.optim | |
import torch.utils.data | |
import numpy as np | |
import torch | |
import torch.optim | |
import torch.utils.data | |
import torch.distributions | |
from text_to_speech.utils.audio.pitch.utils import norm_interp_f0, denorm_f0 | |
from text_to_speech.utils.commons.dataset_utils import BaseDataset, collate_1d_or_2d | |
from text_to_speech.utils.commons.indexed_datasets import IndexedDataset | |
from text_to_speech.utils.commons.hparams import hparams | |
import random | |
class BaseSpeechDataset(BaseDataset): | |
def __init__(self, prefix, shuffle=False, items=None, data_dir=None): | |
super().__init__(shuffle) | |
from text_to_speech.utils.commons.hparams import hparams | |
self.data_dir = hparams['binary_data_dir'] if data_dir is None else data_dir | |
self.prefix = prefix | |
self.hparams = hparams | |
self.indexed_ds = None | |
if items is not None: | |
self.indexed_ds = items | |
self.sizes = [1] * len(items) | |
self.avail_idxs = list(range(len(self.sizes))) | |
else: | |
self.sizes = np.load(f'{self.data_dir}/{self.prefix}_lengths.npy') | |
if prefix == 'test' and len(hparams['test_ids']) > 0: | |
self.avail_idxs = hparams['test_ids'] | |
else: | |
self.avail_idxs = list(range(len(self.sizes))) | |
if prefix == 'train' and hparams['min_frames'] > 0: | |
self.avail_idxs = [x for x in self.avail_idxs if self.sizes[x] >= hparams['min_frames']] | |
try: | |
self.sizes = [self.sizes[i] for i in self.avail_idxs] | |
except: | |
tmp_sizes = [] | |
for i in self.avail_idxs: | |
try: | |
tmp_sizes.append(self.sizes[i]) | |
except: | |
continue | |
self.sizes = tmp_sizes | |
def _get_item(self, index): | |
if hasattr(self, 'avail_idxs') and self.avail_idxs is not None: | |
index = self.avail_idxs[index] | |
if self.indexed_ds is None: | |
self.indexed_ds = IndexedDataset(f'{self.data_dir}/{self.prefix}') | |
return self.indexed_ds[index] | |
def __getitem__(self, index): | |
hparams = self.hparams | |
item = self._get_item(index) | |
assert len(item['mel']) == self.sizes[index], (len(item['mel']), self.sizes[index]) | |
max_frames = hparams['max_frames'] | |
spec = torch.Tensor(item['mel'])[:max_frames] | |
max_frames = spec.shape[0] // hparams['frames_multiple'] * hparams['frames_multiple'] | |
spec = spec[:max_frames] | |
ph_token = torch.LongTensor(item['ph_token'][:hparams['max_input_tokens']]) | |
sample = { | |
"id": index, | |
"item_name": item['item_name'], | |
"text": item['txt'], | |
"txt_token": ph_token, | |
"mel": spec, | |
"mel_nonpadding": spec.abs().sum(-1) > 0, | |
} | |
if hparams['use_spk_embed']: | |
sample["spk_embed"] = torch.Tensor(item['spk_embed']) | |
if hparams['use_spk_id']: | |
sample["spk_id"] = int(item['spk_id']) | |
return sample | |
def collater(self, samples): | |
if len(samples) == 0: | |
return {} | |
hparams = self.hparams | |
ids = [s['id'] for s in samples] | |
item_names = [s['item_name'] for s in samples] | |
text = [s['text'] for s in samples] | |
txt_tokens = collate_1d_or_2d([s['txt_token'] for s in samples], 0) | |
mels = collate_1d_or_2d([s['mel'] for s in samples], 0.0) | |
txt_lengths = torch.LongTensor([s['txt_token'].numel() for s in samples]) | |
mel_lengths = torch.LongTensor([s['mel'].shape[0] for s in samples]) | |
batch = { | |
'id': ids, | |
'item_name': item_names, | |
'nsamples': len(samples), | |
'text': text, | |
'txt_tokens': txt_tokens, | |
'txt_lengths': txt_lengths, | |
'mels': mels, | |
'mel_lengths': mel_lengths, | |
} | |
if hparams['use_spk_embed']: | |
spk_embed = torch.stack([s['spk_embed'] for s in samples]) | |
batch['spk_embed'] = spk_embed | |
if hparams['use_spk_id']: | |
spk_ids = torch.LongTensor([s['spk_id'] for s in samples]) | |
batch['spk_ids'] = spk_ids | |
return batch | |
class FastSpeechDataset(BaseSpeechDataset): | |
def __getitem__(self, index): | |
sample = super(FastSpeechDataset, self).__getitem__(index) | |
item = self._get_item(index) | |
hparams = self.hparams | |
mel = sample['mel'] | |
T = mel.shape[0] | |
ph_token = sample['txt_token'] | |
sample['mel2ph'] = mel2ph = torch.LongTensor(item['mel2ph'])[:T] | |
if hparams['use_pitch_embed']: | |
assert 'f0' in item | |
pitch = torch.LongTensor(item.get(hparams.get('pitch_key', 'pitch')))[:T] | |
f0, uv = norm_interp_f0(item["f0"][:T]) | |
uv = torch.FloatTensor(uv) | |
f0 = torch.FloatTensor(f0) | |
if hparams['pitch_type'] == 'ph': | |
if "f0_ph" in item: | |
f0 = torch.FloatTensor(item['f0_ph']) | |
else: | |
f0 = denorm_f0(f0, None) | |
f0_phlevel_sum = torch.zeros_like(ph_token).float().scatter_add(0, mel2ph - 1, f0) | |
f0_phlevel_num = torch.zeros_like(ph_token).float().scatter_add( | |
0, mel2ph - 1, torch.ones_like(f0)).clamp_min(1) | |
f0_ph = f0_phlevel_sum / f0_phlevel_num | |
f0, uv = norm_interp_f0(f0_ph) | |
else: | |
f0, uv, pitch = None, None, None | |
sample["f0"], sample["uv"], sample["pitch"] = f0, uv, pitch | |
return sample | |
def collater(self, samples): | |
if len(samples) == 0: | |
return {} | |
batch = super(FastSpeechDataset, self).collater(samples) | |
hparams = self.hparams | |
if hparams['use_pitch_embed']: | |
f0 = collate_1d_or_2d([s['f0'] for s in samples], 0.0) | |
pitch = collate_1d_or_2d([s['pitch'] for s in samples]) | |
uv = collate_1d_or_2d([s['uv'] for s in samples]) | |
else: | |
f0, uv, pitch = None, None, None | |
mel2ph = collate_1d_or_2d([s['mel2ph'] for s in samples], 0.0) | |
batch.update({ | |
'mel2ph': mel2ph, | |
'pitch': pitch, | |
'f0': f0, | |
'uv': uv, | |
}) | |
return batch | |
class FastSpeechWordDataset(FastSpeechDataset): | |
def __init__(self, prefix, shuffle=False, items=None, data_dir=None): | |
super().__init__(prefix, shuffle, items, data_dir) | |
# BERT contrastive loss & mlm loss | |
# from transformers import AutoTokenizer | |
# if hparams['ds_name'] in ['ljspeech', 'libritts']: | |
# self.tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') | |
# elif hparams['ds_name'] == 'biaobei': | |
# self.tokenizer = AutoTokenizer.from_pretrained('bert-base-chinese') | |
# else: | |
# raise NotImplementedError() | |
# self.mlm_probability = 0.15 | |
# if hparams.get("cl_ds_name") is None: | |
# pass | |
# elif hparams['cl_ds_name'] == "wiki": | |
# from experimental_yerfor.simcse_datasets import WikiDataset | |
# self.cl_dataset = WikiDataset(prefix=prefix) | |
# shuffle = True if prefix == 'train' else False | |
# endless = True | |
# num_workers = None if prefix == 'train' else 0 | |
# self.cl_dataloader = self.cl_dataset.build_dataloader(shuffle=shuffle, max_tokens=hparams.get("cl_max_tokens", 3200), | |
# max_sentences=hparams.get("cl_max_sentences", 64), endless=endless, num_workers=num_workers) | |
# self.cl_dl_iter = iter(self.cl_dataloader) | |
# elif hparams['cl_ds_name'] == "nli": | |
# from experimental_yerfor.simcse_datasets import NLIDataset | |
# self.cl_dataset = NLIDataset(prefix=prefix) | |
# shuffle = True if prefix == 'train' else False | |
# endless = True | |
# num_workers = None if prefix == 'train' else 0 | |
# self.cl_dataloader = self.cl_dataset.build_dataloader(shuffle=shuffle, max_tokens=hparams.get("cl_max_tokens", 4800), | |
# max_sentences=hparams.get("cl_max_sentences", 128), endless=endless, num_workers=num_workers) | |
# self.cl_dl_iter = iter(self.cl_dataloader) | |
def __getitem__(self, index): | |
sample = super().__getitem__(index) | |
item = self._get_item(index) | |
max_frames = sample['mel'].shape[0] | |
if 'word' in item: | |
sample['words'] = item['word'] | |
sample["ph_words"] = item["ph_gb_word"] | |
sample["word_tokens"] = torch.LongTensor(item["word_token"]) | |
else: | |
sample['words'] = item['words'] | |
sample["ph_words"] = " ".join(item["ph_words"]) | |
sample["word_tokens"] = torch.LongTensor(item["word_tokens"]) | |
sample["mel2word"] = torch.LongTensor(item.get("mel2word"))[:max_frames] | |
sample["ph2word"] = torch.LongTensor(item['ph2word'][:self.hparams['max_input_tokens']]) | |
# SyntaSpeech related features | |
# sample['dgl_graph'] = item['dgl_graph'] | |
# sample['edge_types'] = item['edge_types'] | |
# BERT related features | |
# sample['bert_token'] = item['bert_token'] | |
# sample['bert_input_ids'] = torch.LongTensor(item['bert_input_ids']) | |
# sample['bert_token2word'] = torch.LongTensor(item['bert_token2word']) | |
# sample['bert_attention_mask'] = torch.LongTensor(item['bert_attention_mask']) | |
# sample['bert_token_type_ids'] = torch.LongTensor(item['bert_token_type_ids']) | |
return sample | |
def collater(self, samples): | |
samples = [s for s in samples if s is not None] | |
batch = super().collater(samples) | |
ph_words = [s['ph_words'] for s in samples] | |
batch['ph_words'] = ph_words | |
word_tokens = collate_1d_or_2d([s['word_tokens'] for s in samples], 0) | |
batch['word_tokens'] = word_tokens | |
mel2word = collate_1d_or_2d([s['mel2word'] for s in samples], 0) | |
batch['mel2word'] = mel2word | |
ph2word = collate_1d_or_2d([s['ph2word'] for s in samples], 0) | |
batch['ph2word'] = ph2word | |
batch['words'] = [s['words'] for s in samples] | |
batch['word_lengths'] = torch.LongTensor([len(s['word_tokens']) for s in samples]) | |
if self.hparams['use_word_input']: # always False | |
batch['txt_tokens'] = batch['word_tokens'] | |
batch['txt_lengths'] = torch.LongTensor([s['word_tokens'].numel() for s in samples]) | |
batch['mel2ph'] = batch['mel2word'] | |
# SyntaSpeech | |
# graph_lst, etypes_lst = [], [] # new features for Graph-based SDP | |
# for s in samples: | |
# graph_lst.append(s['dgl_graph']) | |
# etypes_lst.append(s['edge_types']) | |
# batch.update({ | |
# 'graph_lst': graph_lst, | |
# 'etypes_lst': etypes_lst, | |
# }) | |
# BERT | |
# batch['bert_feats'] = {} | |
# batch['bert_feats']['bert_tokens'] = [s['bert_token'] for s in samples] | |
# bert_input_ids = collate_1d_or_2d([s['bert_input_ids'] for s in samples], 0) | |
# batch['bert_feats']['bert_input_ids'] = bert_input_ids | |
# bert_token2word = collate_1d_or_2d([s['bert_token2word'] for s in samples], 0) | |
# batch['bert_feats']['bert_token2word'] = bert_token2word | |
# bert_attention_mask = collate_1d_or_2d([s['bert_attention_mask'] for s in samples], 0) | |
# batch['bert_feats']['bert_attention_mask'] = bert_attention_mask | |
# bert_token_type_ids = collate_1d_or_2d([s['bert_token_type_ids'] for s in samples], 0) | |
# batch['bert_feats']['bert_token_type_ids'] = bert_token_type_ids | |
# BERT contrastive loss & mlm loss & electra loss | |
# if hparams.get("cl_ds_name") is None: | |
# batch['cl_feats'] = {} | |
# batch['cl_feats']['cl_input_ids'] = batch['bert_feats']['bert_input_ids'].unsqueeze(1).repeat([1,2,1]) | |
# batch['cl_feats']['cl_token2word'] = batch['bert_feats']['bert_token2word'].unsqueeze(1).repeat([1,2,1]) | |
# batch['cl_feats']['cl_attention_mask'] = batch['bert_feats']['bert_attention_mask'].unsqueeze(1).repeat([1,2,1]) | |
# batch['cl_feats']['cl_token_type_ids'] = batch['bert_feats']['bert_token_type_ids'].unsqueeze(1).repeat([1,2,1]) | |
# bs, _, t = batch['cl_feats']['cl_input_ids'].shape | |
# mlm_input_ids, mlm_labels = self.mask_tokens(batch['bert_feats']['bert_input_ids'].reshape([bs, t])) | |
# batch['cl_feats']["mlm_input_ids"] = mlm_input_ids.reshape([bs, t]) | |
# batch['cl_feats']["mlm_labels"] = mlm_labels.reshape([bs, t]) | |
# batch['cl_feats']["mlm_attention_mask"] = batch['bert_feats']['bert_attention_mask'] | |
# elif hparams['cl_ds_name'] in ["wiki", "nli"]: | |
# try: | |
# cl_feats = self.cl_dl_iter.__next__() | |
# except: | |
# self.cl_dl_iter = iter(self.cl_dataloader) | |
# cl_feats = self.cl_dl_iter.__next__() | |
# batch['cl_feats'] = cl_feats | |
return batch | |
# def mask_tokens(self, inputs, special_tokens_mask=None): | |
# """ | |
# Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. | |
# """ | |
# inputs = inputs.clone() | |
# labels = inputs.clone() | |
# # We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`) | |
# probability_matrix = torch.full(labels.shape, self.mlm_probability) | |
# if special_tokens_mask is None: | |
# special_tokens_mask = [ | |
# self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist() | |
# ] | |
# special_tokens_mask = torch.tensor(special_tokens_mask, dtype=torch.bool) | |
# else: | |
# special_tokens_mask = special_tokens_mask.bool() | |
# probability_matrix.masked_fill_(special_tokens_mask, value=0.0) | |
# masked_indices = torch.bernoulli(probability_matrix).bool() | |
# labels[~masked_indices] = -100 # We only compute loss on masked tokens | |
# # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK]) | |
# indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices | |
# inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token) | |
# # 10% of the time, we replace masked input tokens with random word | |
# indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced | |
# random_words = torch.randint(len(self.tokenizer), labels.shape, dtype=torch.long) | |
# inputs[indices_random] = random_words[indices_random] | |
# # The rest of the time (10% of the time) we keep the masked input tokens unchanged | |
# return inputs, labels | |