lmzjms's picture
Upload 591 files
9206300
raw
history blame
16.8 kB
import filecmp
import os
import traceback
import numpy as np
import pandas as pd
import torch
import torch.distributed as dist
import torch.nn.functional as F
import torch.optim
import torch.utils.data
import yaml
from tqdm import tqdm
import utils
from tasks.tts.dataset_utils import BaseSpeechDataset
from tasks.tts.utils. import parse_mel_losses, parse_dataset_configs, load_data_preprocessor, load_data_binarizer
from tasks.tts.vocoder_infer.base_vocoder import BaseVocoder, get_vocoder_cls
from text_to_speech.utils.audio.align import mel2token_to_dur
from text_to_speech.utils.audio.io import save_wav
from text_to_speech.utils.audio.pitch_extractors import extract_pitch_simple
from text_to_speech.utils.commons.base_task import BaseTask
from text_to_speech.utils.commons.ckpt_utils import load_ckpt
from text_to_speech.utils.commons.dataset_utils import data_loader, BaseConcatDataset
from text_to_speech.utils.commons.hparams import hparams
from text_to_speech.utils.commons.multiprocess_utils import MultiprocessManager
from text_to_speech.utils.commons.tensor_utils import tensors_to_scalars
from text_to_speech.utils.metrics.ssim import ssim
from text_to_speech.utils.nn.model_utils import print_arch
from text_to_speech.utils.nn.schedulers import RSQRTSchedule, NoneSchedule, WarmupSchedule
from text_to_speech.utils.nn.seq_utils import weights_nonzero_speech
from text_to_speech.utils.plot.plot import spec_to_figure
from text_to_speech.utils.text.text_encoder import build_token_encoder
import matplotlib.pyplot as plt
class SpeechBaseTask(BaseTask):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.dataset_cls = BaseSpeechDataset
self.vocoder = None
data_dir = hparams['binary_data_dir']
if not hparams['use_word_input']:
self.token_encoder = build_token_encoder(f'{data_dir}/phone_set.json')
else:
self.token_encoder = build_token_encoder(f'{data_dir}/word_set.json')
self.padding_idx = self.token_encoder.pad()
self.eos_idx = self.token_encoder.eos()
self.seg_idx = self.token_encoder.seg()
self.saving_result_pool = None
self.saving_results_futures = None
self.mel_losses = parse_mel_losses()
self.max_tokens, self.max_sentences, \
self.max_valid_tokens, self.max_valid_sentences = parse_dataset_configs()
##########################
# datasets
##########################
@data_loader
def train_dataloader(self):
if hparams['train_sets'] != '':
train_sets = hparams['train_sets'].split("|")
# check if all train_sets have the same spk map and dictionary
binary_data_dir = hparams['binary_data_dir']
file_to_cmp = ['phone_set.json']
if os.path.exists(f'{binary_data_dir}/word_set.json'):
file_to_cmp.append('word_set.json')
if hparams['use_spk_id']:
file_to_cmp.append('spk_map.json')
for f in file_to_cmp:
for ds_name in train_sets:
base_file = os.path.join(binary_data_dir, f)
ds_file = os.path.join(ds_name, f)
assert filecmp.cmp(base_file, ds_file), \
f'{f} in {ds_name} is not same with that in {binary_data_dir}.'
train_dataset = BaseConcatDataset([
self.dataset_cls(prefix='train', shuffle=True, data_dir=ds_name) for ds_name in train_sets])
else:
train_dataset = self.dataset_cls(prefix=hparams['train_set_name'], shuffle=True)
return self.build_dataloader(train_dataset, True, self.max_tokens, self.max_sentences,
endless=hparams['endless_ds'])
@data_loader
def val_dataloader(self):
valid_dataset = self.dataset_cls(prefix=hparams['valid_set_name'], shuffle=False)
return self.build_dataloader(valid_dataset, False, self.max_valid_tokens, self.max_valid_sentences,
batch_by_size=False)
@data_loader
def test_dataloader(self):
test_dataset = self.dataset_cls(prefix=hparams['test_set_name'], shuffle=False)
self.test_dl = self.build_dataloader(
test_dataset, False, self.max_valid_tokens, self.max_valid_sentences, batch_by_size=False)
return self.test_dl
def build_dataloader(self, dataset, shuffle, max_tokens=None, max_sentences=None,
required_batch_size_multiple=-1, endless=False, batch_by_size=True):
devices_cnt = torch.cuda.device_count()
if devices_cnt == 0:
devices_cnt = 1
if required_batch_size_multiple == -1:
required_batch_size_multiple = devices_cnt
def shuffle_batches(batches):
np.random.shuffle(batches)
return batches
if max_tokens is not None:
max_tokens *= devices_cnt
if max_sentences is not None:
max_sentences *= devices_cnt
indices = dataset.ordered_indices()
if batch_by_size:
batch_sampler = utils.commons.dataset_utils.batch_by_size(
indices, dataset.num_tokens, max_tokens=max_tokens, max_sentences=max_sentences,
required_batch_size_multiple=required_batch_size_multiple,
)
else:
batch_sampler = []
for i in range(0, len(indices), max_sentences):
batch_sampler.append(indices[i:i + max_sentences])
if shuffle:
batches = shuffle_batches(list(batch_sampler))
if endless:
batches = [b for _ in range(1000) for b in shuffle_batches(list(batch_sampler))]
else:
batches = batch_sampler
if endless:
batches = [b for _ in range(1000) for b in batches]
num_workers = dataset.num_workers
if self.trainer.use_ddp:
num_replicas = dist.get_world_size()
rank = dist.get_rank()
batches = [x[rank::num_replicas] for x in batches if len(x) % num_replicas == 0]
return torch.utils.data.DataLoader(dataset,
collate_fn=dataset.collater,
batch_sampler=batches,
num_workers=num_workers,
pin_memory=False)
##########################
# scheduler and optimizer
##########################
def build_model(self):
self.build_tts_model()
if hparams['load_ckpt'] != '':
load_ckpt(self.model, hparams['load_ckpt'])
print_arch(self.model)
return self.model
def build_tts_model(self):
raise NotImplementedError
def build_scheduler(self, optimizer):
if hparams['scheduler'] == 'rsqrt':
return RSQRTSchedule(optimizer, hparams['lr'], hparams['warmup_updates'], hparams['hidden_size'])
elif hparams['scheduler'] == 'warmup':
return WarmupSchedule(optimizer, hparams['lr'], hparams['warmup_updates'])
elif hparams['scheduler'] == 'step_lr':
return torch.optim.lr_scheduler.StepLR(
optimizer=optimizer, step_size=500, gamma=0.998)
else:
return NoneSchedule(optimizer, hparams['lr'])
def build_optimizer(self, model):
self.optimizer = optimizer = torch.optim.AdamW(
model.parameters(),
lr=hparams['lr'],
betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']),
weight_decay=hparams['weight_decay'])
return optimizer
##########################
# training and validation
##########################
def _training_step(self, sample, batch_idx, _):
loss_output, _ = self.run_model(sample)
total_loss = sum([v for v in loss_output.values() if isinstance(v, torch.Tensor) and v.requires_grad])
loss_output['batch_size'] = sample['txt_tokens'].size()[0]
return total_loss, loss_output
def run_model(self, sample, infer=False):
"""
:param sample: a batch of data
:param infer: bool, run in infer mode
:return:
if not infer:
return losses, model_out
if infer:
return model_out
"""
raise NotImplementedError
def validation_start(self):
self.vocoder = get_vocoder_cls(hparams['vocoder'])()
def validation_step(self, sample, batch_idx):
outputs = {}
outputs['losses'] = {}
outputs['losses'], model_out = self.run_model(sample)
outputs['total_loss'] = sum(outputs['losses'].values())
outputs['nsamples'] = sample['nsamples']
outputs = tensors_to_scalars(outputs)
if self.global_step % hparams['valid_infer_interval'] == 0 \
and batch_idx < hparams['num_valid_plots']:
self.save_valid_result(sample, batch_idx, model_out)
return outputs
def validation_end(self, outputs):
self.vocoder = None
return super(SpeechBaseTask, self).validation_end(outputs)
def save_valid_result(self, sample, batch_idx, model_out):
raise NotImplementedError
##########################
# losses
##########################
def add_mel_loss(self, mel_out, target, losses, postfix=''):
for loss_name, lambd in self.mel_losses.items():
losses[f'{loss_name}{postfix}'] = getattr(self, f'{loss_name}_loss')(mel_out, target) * lambd
def l1_loss(self, decoder_output, target):
# decoder_output : B x T x n_mel
# target : B x T x n_mel
l1_loss = F.l1_loss(decoder_output, target, reduction='none')
weights = weights_nonzero_speech(target)
l1_loss = (l1_loss * weights).sum() / weights.sum()
return l1_loss
def mse_loss(self, decoder_output, target):
# decoder_output : B x T x n_mel
# target : B x T x n_mel
assert decoder_output.shape == target.shape
mse_loss = F.mse_loss(decoder_output, target, reduction='none')
weights = weights_nonzero_speech(target)
mse_loss = (mse_loss * weights).sum() / weights.sum()
return mse_loss
def ssim_loss(self, decoder_output, target, bias=6.0):
# decoder_output : B x T x n_mel
# target : B x T x n_mel
assert decoder_output.shape == target.shape
weights = weights_nonzero_speech(target)
decoder_output = decoder_output[:, None] + bias
target = target[:, None] + bias
ssim_loss = 1 - ssim(decoder_output, target, size_average=False)
ssim_loss = (ssim_loss * weights).sum() / weights.sum()
return ssim_loss
def plot_mel(self, batch_idx, spec_out, spec_gt=None, name=None, title='', f0s=None, dur_info=None):
vmin = hparams['mel_vmin']
vmax = hparams['mel_vmax']
if len(spec_out.shape) == 3:
spec_out = spec_out[0]
if isinstance(spec_out, torch.Tensor):
spec_out = spec_out.cpu().numpy()
if spec_gt is not None:
if len(spec_gt.shape) == 3:
spec_gt = spec_gt[0]
if isinstance(spec_gt, torch.Tensor):
spec_gt = spec_gt.cpu().numpy()
max_len = max(len(spec_gt), len(spec_out))
if max_len - len(spec_gt) > 0:
spec_gt = np.pad(spec_gt, [[0, max_len - len(spec_gt)], [0, 0]], mode='constant',
constant_values=vmin)
if max_len - len(spec_out) > 0:
spec_out = np.pad(spec_out, [[0, max_len - len(spec_out)], [0, 0]], mode='constant',
constant_values=vmin)
spec_out = np.concatenate([spec_out, spec_gt], -1)
name = f'mel_val_{batch_idx}' if name is None else name
self.logger.add_figure(name, spec_to_figure(
spec_out, vmin, vmax, title=title, f0s=f0s, dur_info=dur_info), self.global_step)
##########################
# testing
##########################
def test_start(self):
self.saving_result_pool = MultiprocessManager(int(os.getenv('N_PROC', os.cpu_count())))
self.saving_results_futures = []
self.gen_dir = os.path.join(
hparams['work_dir'], f'generated_{self.trainer.global_step}_{hparams["gen_dir_name"]}')
self.vocoder: BaseVocoder = get_vocoder_cls(hparams['vocoder'])()
os.makedirs(self.gen_dir, exist_ok=True)
os.makedirs(f'{self.gen_dir}/wavs', exist_ok=True)
os.makedirs(f'{self.gen_dir}/plot', exist_ok=True)
if hparams.get('save_mel_npy', False):
os.makedirs(f'{self.gen_dir}/mel_npy', exist_ok=True)
def test_step(self, sample, batch_idx):
"""
:param sample:
:param batch_idx:
:return:
"""
assert sample['txt_tokens'].shape[0] == 1, 'only support batch_size=1 in inference'
outputs = self.run_model(sample, infer=True)
text = sample['text'][0]
item_name = sample['item_name'][0]
tokens = sample['txt_tokens'][0].cpu().numpy()
mel_gt = sample['mels'][0].cpu().numpy()
mel_pred = outputs['mel_out'][0].cpu().numpy()
str_phs = self.token_encoder.decode(tokens, strip_padding=True)
base_fn = f'[{self.results_id:06d}][{item_name.replace("%", "_")}][%s]'
if text is not None:
base_fn += text.replace(":", "$3A")[:80]
base_fn = base_fn.replace(' ', '_')
gen_dir = self.gen_dir
wav_pred = self.vocoder.spec2wav(mel_pred)
self.saving_result_pool.add_job(self.save_result, args=[
wav_pred, mel_pred, base_fn % 'P', gen_dir, str_phs])
if hparams['save_gt']:
wav_gt = self.vocoder.spec2wav(mel_gt)
self.saving_result_pool.add_job(self.save_result, args=[
wav_gt, mel_gt, base_fn % 'G', gen_dir, str_phs])
print(f"Pred_shape: {mel_pred.shape}, gt_shape: {mel_gt.shape}")
return {
'item_name': item_name,
'text': text,
'ph_tokens': self.token_encoder.decode(tokens.tolist()),
'wav_fn_pred': base_fn % 'P',
'wav_fn_gt': base_fn % 'G',
}
@staticmethod
def save_result(wav_out, mel, base_fn, gen_dir, str_phs=None, mel2ph=None, alignment=None):
save_wav(wav_out, f'{gen_dir}/wavs/{base_fn}.wav', hparams['audio_sample_rate'],
norm=hparams['out_wav_norm'])
fig = plt.figure(figsize=(14, 10))
spec_vmin = hparams['mel_vmin']
spec_vmax = hparams['mel_vmax']
heatmap = plt.pcolor(mel.T, vmin=spec_vmin, vmax=spec_vmax)
fig.colorbar(heatmap)
try:
f0 = extract_pitch_simple(wav_out)
f0 = f0 / 10 * (f0 > 0)
plt.plot(f0, c='white', linewidth=1, alpha=0.6)
if mel2ph is not None and str_phs is not None:
decoded_txt = str_phs.split(" ")
dur = mel2token_to_dur(torch.LongTensor(mel2ph)[None, :], len(decoded_txt))[0].numpy()
dur = [0] + list(np.cumsum(dur))
for i in range(len(dur) - 1):
shift = (i % 20) + 1
plt.text(dur[i], shift, decoded_txt[i])
plt.hlines(shift, dur[i], dur[i + 1], colors='b' if decoded_txt[i] != '|' else 'black')
plt.vlines(dur[i], 0, 5, colors='b' if decoded_txt[i] != '|' else 'black',
alpha=1, linewidth=1)
plt.tight_layout()
plt.savefig(f'{gen_dir}/plot/{base_fn}.png', format='png')
plt.close(fig)
if hparams.get('save_mel_npy', False):
np.save(f'{gen_dir}/mel_npy/{base_fn}', mel)
if alignment is not None:
fig, ax = plt.subplots(figsize=(12, 16))
im = ax.imshow(alignment, aspect='auto', origin='lower',
interpolation='none')
decoded_txt = str_phs.split(" ")
ax.set_yticks(np.arange(len(decoded_txt)))
ax.set_yticklabels(list(decoded_txt), fontsize=6)
fig.colorbar(im, ax=ax)
fig.savefig(f'{gen_dir}/attn_plot/{base_fn}_attn.png', format='png')
plt.close(fig)
except Exception:
traceback.print_exc()
return None
def test_end(self, outputs):
pd.DataFrame(outputs).to_csv(f'{self.gen_dir}/meta.csv')
for _1, _2 in tqdm(self.saving_result_pool.get_results(), total=len(self.saving_result_pool)):
pass
return {}