Spaces:
Build error
Build error
import torch | |
import numpy as np | |
def add_noise_and_scale(front, noise, snr_l=0, snr_h=0, scale_lower=1.0, scale_upper=1.0): | |
""" | |
:param front: front-head audio, like vocal [samples,channel], will be normlized so any scale will be fine | |
:param noise: noise, [samples,channel], any scale | |
:param snr_l: Optional | |
:param snr_h: Optional | |
:param scale_lower: Optional | |
:param scale_upper: Optional | |
:return: scaled front and noise (noisy = front + noise), all_mel_e2e outputs are noramlized within [-1 , 1] | |
""" | |
snr = None | |
noise, front = normalize_energy_torch(noise), normalize_energy_torch(front) # set noise and vocal to equal range [-1,1] | |
# print("normalize:",torch.max(noise),torch.max(front)) | |
if snr_l is not None and snr_h is not None: | |
front, noise, snr = _random_noise(front, noise, snr_l=snr_l, snr_h=snr_h) # remix them with a specific snr | |
noisy, noise, front = unify_energy_torch(noise + front, noise, front) # normalize noisy, noise and vocal energy into [-1,1] | |
# print("unify:", torch.max(noise), torch.max(front), torch.max(noisy)) | |
scale = _random_scale(scale_lower, scale_upper) # random scale these three signal | |
# print("Scale",scale) | |
noisy, noise, front = noisy * scale, noise * scale, front * scale # apply scale | |
# print("after scale", torch.max(noisy), torch.max(noise), torch.max(front), snr, scale) | |
front, noise = _to_numpy(front), _to_numpy(noise) # [num_samples] | |
mixed_wav = front + noise | |
return front, noise, mixed_wav, snr, scale | |
def _random_scale(lower=0.3, upper=0.9): | |
return float(uniform_torch(lower, upper)) | |
def _random_noise(clean, noise, snr_l=None, snr_h=None): | |
snr = uniform_torch(snr_l,snr_h) | |
clean_weight = 10 ** (float(snr) / 20) | |
return clean, noise/clean_weight, snr | |
def _to_numpy(wav): | |
return np.transpose(wav, (1, 0))[0].numpy() # [num_samples] | |
def normalize_energy(audio, alpha = 1): | |
''' | |
:param audio: 1d waveform, [batchsize, *], | |
:param alpha: the value of output range from: [-alpha,alpha] | |
:return: 1d waveform which value range from: [-alpha,alpha] | |
''' | |
val_max = activelev(audio) | |
return (audio / val_max) * alpha | |
def normalize_energy_torch(audio, alpha = 1): | |
''' | |
If the signal is almost empty(determined by threshold), if will only be divided by 2**15 | |
:param audio: 1d waveform, 2**15 | |
:param alpha: the value of output range from: [-alpha,alpha] | |
:return: 1d waveform which value range from: [-alpha,alpha] | |
''' | |
val_max = activelev_torch([audio]) | |
return (audio / val_max) * alpha | |
def unify_energy(*args): | |
max_amp = activelev(args) | |
mix_scale = 1.0/max_amp | |
return [x * mix_scale for x in args] | |
def unify_energy_torch(*args): | |
max_amp = activelev_torch(args) | |
mix_scale = 1.0/max_amp | |
return [x * mix_scale for x in args] | |
def activelev(*args): | |
''' | |
need to update like matlab | |
''' | |
return np.max(np.abs([*args])) | |
def activelev_torch(*args): | |
''' | |
need to update like matlab | |
''' | |
res = [] | |
args = args[0] | |
for each in args: | |
res.append(torch.max(torch.abs(each))) | |
return max(res) | |
def uniform_torch(lower, upper): | |
if(abs(lower-upper)<1e-5): | |
return upper | |
return (upper-lower)*torch.rand(1)+lower | |
if __name__ == "__main__": | |
wav1 = torch.randn(1, 32000) | |
wav2 = torch.randn(1, 32000) | |
target, noise, snr, scale = add_noise_and_scale(wav1, wav2) | |