Spaces:
Build error
Build error
from torch import nn | |
import copy | |
import torch | |
from utils.hparams import hparams | |
from modules.GenerSpeech.model.wavenet import WN | |
import math | |
from modules.fastspeech.tts_modules import LayerNorm | |
import torch.nn.functional as F | |
from utils.tts_utils import group_hidden_by_segs, sequence_mask | |
from scipy.cluster.vq import kmeans2 | |
from torch.nn import functional as F | |
class VQEmbeddingEMA(nn.Module): | |
def __init__(self, n_embeddings, embedding_dim, commitment_cost=0.25, decay=0.999, epsilon=1e-5, | |
print_vq_prob=False): | |
super(VQEmbeddingEMA, self).__init__() | |
self.commitment_cost = commitment_cost | |
self.n_embeddings = n_embeddings | |
self.decay = decay | |
self.epsilon = epsilon | |
self.print_vq_prob = print_vq_prob | |
self.register_buffer('data_initialized', torch.zeros(1)) | |
init_bound = 1 / 512 | |
embedding = torch.Tensor(n_embeddings, embedding_dim) | |
embedding.uniform_(-init_bound, init_bound) | |
self.register_buffer("embedding", embedding) | |
self.register_buffer("ema_count", torch.zeros(n_embeddings)) | |
self.register_buffer("ema_weight", self.embedding.clone()) | |
def encode(self, x): | |
B, T, _ = x.shape | |
M, D = self.embedding.size() | |
x_flat = x.detach().reshape(-1, D) | |
distances = torch.addmm(torch.sum(self.embedding ** 2, dim=1) + | |
torch.sum(x_flat ** 2, dim=1, keepdim=True), | |
x_flat, self.embedding.t(), | |
alpha=-2.0, beta=1.0) # [B*T_mel, N_vq] | |
indices = torch.argmin(distances.float(), dim=-1) # [B*T_mel] | |
quantized = F.embedding(indices, self.embedding) | |
quantized = quantized.view_as(x) | |
return x_flat, quantized, indices | |
def forward(self, x): | |
""" | |
:param x: [B, T, D] | |
:return: [B, T, D] | |
""" | |
B, T, _ = x.shape | |
M, D = self.embedding.size() | |
if self.training and self.data_initialized.item() == 0: | |
print('| running kmeans in VQVAE') # data driven initialization for the embeddings | |
x_flat = x.detach().reshape(-1, D) | |
rp = torch.randperm(x_flat.size(0)) | |
kd = kmeans2(x_flat[rp].data.cpu().numpy(), self.n_embeddings, minit='points') | |
self.embedding.copy_(torch.from_numpy(kd[0])) | |
x_flat, quantized, indices = self.encode(x) | |
encodings = F.one_hot(indices, M).float() | |
self.ema_weight.copy_(torch.matmul(encodings.t(), x_flat)) | |
self.ema_count.copy_(torch.sum(encodings, dim=0)) | |
x_flat, quantized, indices = self.encode(x) | |
encodings = F.one_hot(indices, M).float() | |
indices = indices.reshape(B, T) | |
if self.training and self.data_initialized.item() != 0: | |
self.ema_count = self.decay * self.ema_count + (1 - self.decay) * torch.sum(encodings, dim=0) | |
n = torch.sum(self.ema_count) | |
self.ema_count = (self.ema_count + self.epsilon) / (n + M * self.epsilon) * n | |
dw = torch.matmul(encodings.t(), x_flat) | |
self.ema_weight = self.decay * self.ema_weight + (1 - self.decay) * dw | |
self.embedding = self.ema_weight / self.ema_count.unsqueeze(-1) | |
self.data_initialized.fill_(1) | |
e_latent_loss = F.mse_loss(x, quantized.detach(), reduction='none') | |
nonpadding = (x.abs().sum(-1) > 0).float() | |
e_latent_loss = (e_latent_loss.mean(-1) * nonpadding).sum() / nonpadding.sum() | |
loss = self.commitment_cost * e_latent_loss | |
quantized = x + (quantized - x).detach() | |
avg_probs = torch.mean(encodings, dim=0) | |
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10))) | |
if self.print_vq_prob: | |
print("| VQ code avg_probs: ", avg_probs) | |
return quantized, loss, indices, perplexity | |
class CrossAttenLayer(nn.Module): | |
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1): | |
super(CrossAttenLayer, self).__init__() | |
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) | |
self.linear1 = nn.Linear(d_model, dim_feedforward) | |
self.dropout1 = nn.Dropout(dropout) | |
self.norm1 = nn.LayerNorm(d_model) | |
self.linear2 = nn.Linear(dim_feedforward, d_model) | |
self.dropout2 = nn.Dropout(dropout) | |
self.norm2 = nn.LayerNorm(d_model) | |
self.activation = nn.ReLU() | |
def forward(self, src, local_emotion, emotion_key_padding_mask=None, forcing=False): | |
# src: (Tph, B, 256) local_emotion: (Temo, B, 256) emotion_key_padding_mask: (B, Temo) | |
if forcing: | |
maxlength = src.shape[0] | |
k = local_emotion.shape[0] / src.shape[0] | |
lengths1 = torch.ceil(torch.tensor([i for i in range(maxlength)]).to(src.device) * k) + 1 | |
lengths2 = torch.floor(torch.tensor([i for i in range(maxlength)]).to(src.device) * k) - 1 | |
mask1 = sequence_mask(lengths1, local_emotion.shape[0]) | |
mask2 = sequence_mask(lengths2, local_emotion.shape[0]) | |
mask = mask1.float() - mask2.float() | |
attn_emo = mask.repeat(src.shape[1], 1, 1) # (B, Tph, Temo) | |
src2 = torch.matmul(local_emotion.permute(1, 2, 0), attn_emo.float().transpose(1, 2)).permute(2, 0, 1) | |
else: | |
src2, attn_emo = self.multihead_attn(src, local_emotion, local_emotion, key_padding_mask=emotion_key_padding_mask) | |
src = src + self.dropout1(src2) | |
src = self.norm1(src) | |
src2 = self.linear2(self.activation(self.linear1(src))) | |
src = src + self.dropout2(src2) | |
src = self.norm2(src) | |
return src, attn_emo | |
class ProsodyAligner(nn.Module): | |
def __init__(self, num_layers, guided_sigma=0.3, guided_layers=None, norm=None): | |
super(ProsodyAligner, self).__init__() | |
self.layers = nn.ModuleList([CrossAttenLayer(d_model=hparams['hidden_size'], nhead=2) for _ in range(num_layers)]) | |
self.num_layers = num_layers | |
self.norm = norm | |
self.guided_sigma = guided_sigma | |
self.guided_layers = guided_layers if guided_layers is not None else num_layers | |
def forward(self, src, local_emotion, src_key_padding_mask=None, emotion_key_padding_mask=None, forcing=False): | |
output = src | |
guided_loss = 0 | |
attn_emo_list = [] | |
for i, mod in enumerate(self.layers): | |
# output: (Tph, B, 256), global_emotion: (1, B, 256), local_emotion: (Temo, B, 256) mask: None, src_key_padding_mask: (B, Tph), | |
# emotion_key_padding_mask: (B, Temo) | |
output, attn_emo = mod(output, local_emotion, emotion_key_padding_mask=emotion_key_padding_mask, forcing=forcing) | |
attn_emo_list.append(attn_emo.unsqueeze(1)) | |
# attn_emo: (B, Tph, Temo) attn: (B, Tph, Tph) | |
if i < self.guided_layers and src_key_padding_mask is not None: | |
s_length = (~src_key_padding_mask).float().sum(-1) # B | |
emo_length = (~emotion_key_padding_mask).float().sum(-1) | |
attn_w_emo = _make_guided_attention_mask(src_key_padding_mask.size(-1), s_length, emotion_key_padding_mask.size(-1), emo_length, self.guided_sigma) | |
g_loss_emo = attn_emo * attn_w_emo # N, L, S | |
non_padding_mask = (~src_key_padding_mask).unsqueeze(-1) & (~emotion_key_padding_mask).unsqueeze(1) | |
guided_loss = g_loss_emo[non_padding_mask].mean() + guided_loss | |
if self.norm is not None: | |
output = self.norm(output) | |
return output, guided_loss, attn_emo_list | |
def _make_guided_attention_mask(ilen, rilen, olen, rolen, sigma): | |
grid_x, grid_y = torch.meshgrid(torch.arange(ilen, device=rilen.device), torch.arange(olen, device=rolen.device)) | |
grid_x = grid_x.unsqueeze(0).expand(rilen.size(0), -1, -1) | |
grid_y = grid_y.unsqueeze(0).expand(rolen.size(0), -1, -1) | |
rilen = rilen.unsqueeze(1).unsqueeze(1) | |
rolen = rolen.unsqueeze(1).unsqueeze(1) | |
return 1.0 - torch.exp( | |
-((grid_y.float() / rolen - grid_x.float() / rilen) ** 2) / (2 * (sigma ** 2)) | |
) | |
class LocalStyleAdaptor(nn.Module): | |
def __init__(self, hidden_size, num_vq_codes=64, padding_idx=0): | |
super(LocalStyleAdaptor, self).__init__() | |
self.encoder = ConvBlocks(80, hidden_size, [1] * 5, 5, dropout=hparams['vae_dropout']) | |
self.n_embed = num_vq_codes | |
self.vqvae = VQEmbeddingEMA(self.n_embed, hidden_size, commitment_cost=hparams['lambda_commit']) | |
self.wavenet = WN(hidden_channels=80, gin_channels=80, kernel_size=3, dilation_rate=1, n_layers=4) | |
self.padding_idx = padding_idx | |
self.hidden_size = hidden_size | |
def forward(self, ref_mels, mel2ph=None, no_vq=False): | |
""" | |
:param ref_mels: [B, T, 80] | |
:return: [B, 1, H] | |
""" | |
padding_mask = ref_mels[:, :, 0].eq(self.padding_idx).data | |
ref_mels = self.wavenet(ref_mels.transpose(1, 2), x_mask=(~padding_mask).unsqueeze(1).repeat([1, 80, 1])).transpose(1, 2) | |
if mel2ph is not None: | |
ref_ph, _ = group_hidden_by_segs(ref_mels, mel2ph, torch.max(mel2ph)) | |
else: | |
ref_ph = ref_mels | |
prosody = self.encoder(ref_ph) | |
if no_vq: | |
return prosody | |
z, vq_loss, vq_tokens, ppl = self.vqvae(prosody) | |
vq_loss = vq_loss.mean() | |
return z, vq_loss, ppl | |
class LambdaLayer(nn.Module): | |
def __init__(self, lambd): | |
super(LambdaLayer, self).__init__() | |
self.lambd = lambd | |
def forward(self, x): | |
return self.lambd(x) | |
class Conv1d(nn.Conv1d): | |
"""A wrapper around nn.Conv1d, that works on (batch, time, channels)""" | |
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, dilation=1, groups=1, bias=True, padding=0): | |
super(Conv1d, self).__init__(in_channels=in_channels, out_channels=out_channels, | |
kernel_size=kernel_size, stride=stride, dilation=dilation, | |
groups=groups, bias=bias, padding=padding) | |
def forward(self, x): | |
return super().forward(x.transpose(2, 1)).transpose(2, 1) | |
def init_weights_func(m): | |
classname = m.__class__.__name__ | |
if classname.find("Conv1d") != -1: | |
torch.nn.init.xavier_uniform_(m.weight) | |
class ResidualBlock(nn.Module): | |
"""Implements conv->PReLU->norm n-times""" | |
def __init__(self, channels, kernel_size, dilation, n=2, norm_type='bn', dropout=0.0, | |
c_multiple=2, ln_eps=1e-12): | |
super(ResidualBlock, self).__init__() | |
if norm_type == 'bn': | |
norm_builder = lambda: nn.BatchNorm1d(channels) | |
elif norm_type == 'in': | |
norm_builder = lambda: nn.InstanceNorm1d(channels, affine=True) | |
elif norm_type == 'gn': | |
norm_builder = lambda: nn.GroupNorm(8, channels) | |
elif norm_type == 'ln': | |
norm_builder = lambda: LayerNorm(channels, dim=1, eps=ln_eps) | |
else: | |
norm_builder = lambda: nn.Identity() | |
self.blocks = [ | |
nn.Sequential( | |
norm_builder(), | |
nn.Conv1d(channels, c_multiple * channels, kernel_size, dilation=dilation, | |
padding=(dilation * (kernel_size - 1)) // 2), | |
LambdaLayer(lambda x: x * kernel_size ** -0.5), | |
nn.GELU(), | |
nn.Conv1d(c_multiple * channels, channels, 1, dilation=dilation), | |
) | |
for i in range(n) | |
] | |
self.blocks = nn.ModuleList(self.blocks) | |
self.dropout = dropout | |
def forward(self, x): | |
nonpadding = (x.abs().sum(1) > 0).float()[:, None, :] | |
for b in self.blocks: | |
x_ = b(x) | |
if self.dropout > 0 and self.training: | |
x_ = F.dropout(x_, self.dropout, training=self.training) | |
x = x + x_ | |
x = x * nonpadding | |
return x | |
class Pad(nn.ZeroPad2d): | |
def __init__(self, kernel_size, dilation): | |
pad_total = dilation * (kernel_size - 1) | |
begin = pad_total // 2 | |
end = pad_total - begin | |
super(Pad, self).__init__((begin, end, begin, end)) | |
class ZeroTemporalPad(nn.ZeroPad2d): | |
"""Pad sequences to equal lentgh in the temporal dimension""" | |
def __init__(self, kernel_size, dilation, causal=False): | |
total_pad = (dilation * (kernel_size - 1)) | |
if causal: | |
super(ZeroTemporalPad, self).__init__((total_pad, 0)) | |
else: | |
begin = total_pad // 2 | |
end = total_pad - begin | |
super(ZeroTemporalPad, self).__init__((begin, end)) | |
class ConvBlocks(nn.Module): | |
"""Decodes the expanded phoneme encoding into spectrograms""" | |
def __init__(self, channels, out_dims, dilations, kernel_size, | |
norm_type='ln', layers_in_block=2, c_multiple=2, | |
dropout=0.0, ln_eps=1e-5, init_weights=True): | |
super(ConvBlocks, self).__init__() | |
self.res_blocks = nn.Sequential( | |
*[ResidualBlock(channels, kernel_size, d, | |
n=layers_in_block, norm_type=norm_type, c_multiple=c_multiple, | |
dropout=dropout, ln_eps=ln_eps) | |
for d in dilations], | |
) | |
if norm_type == 'bn': | |
norm = nn.BatchNorm1d(channels) | |
elif norm_type == 'in': | |
norm = nn.InstanceNorm1d(channels, affine=True) | |
elif norm_type == 'gn': | |
norm = nn.GroupNorm(8, channels) | |
elif norm_type == 'ln': | |
norm = LayerNorm(channels, dim=1, eps=ln_eps) | |
self.last_norm = norm | |
self.post_net1 = nn.Conv1d(channels, out_dims, kernel_size=3, padding=1) | |
if init_weights: | |
self.apply(init_weights_func) | |
def forward(self, x): | |
""" | |
:param x: [B, T, H] | |
:return: [B, T, H] | |
""" | |
x = x.transpose(1, 2) | |
nonpadding = (x.abs().sum(1) > 0).float()[:, None, :] | |
x = self.res_blocks(x) * nonpadding | |
x = self.last_norm(x) * nonpadding | |
x = self.post_net1(x) * nonpadding | |
return x.transpose(1, 2) | |
class TextConvEncoder(ConvBlocks): | |
def __init__(self, embed_tokens, channels, out_dims, dilations, kernel_size, | |
norm_type='ln', layers_in_block=2, c_multiple=2, | |
dropout=0.0, ln_eps=1e-5, init_weights=True): | |
super().__init__(channels, out_dims, dilations, kernel_size, | |
norm_type, layers_in_block, c_multiple, | |
dropout, ln_eps, init_weights) | |
self.embed_tokens = embed_tokens | |
self.embed_scale = math.sqrt(channels) | |
def forward(self, txt_tokens): | |
""" | |
:param txt_tokens: [B, T] | |
:return: { | |
'encoder_out': [B x T x C] | |
} | |
""" | |
x = self.embed_scale * self.embed_tokens(txt_tokens) | |
return super().forward(x) | |
class ConditionalConvBlocks(ConvBlocks): | |
def __init__(self, channels, g_channels, out_dims, dilations, kernel_size, | |
norm_type='ln', layers_in_block=2, c_multiple=2, | |
dropout=0.0, ln_eps=1e-5, init_weights=True, is_BTC=True): | |
super().__init__(channels, out_dims, dilations, kernel_size, | |
norm_type, layers_in_block, c_multiple, | |
dropout, ln_eps, init_weights) | |
self.g_prenet = nn.Conv1d(g_channels, channels, 3, padding=1) | |
self.is_BTC = is_BTC | |
if init_weights: | |
self.g_prenet.apply(init_weights_func) | |
def forward(self, x, g, x_mask): | |
if self.is_BTC: | |
x = x.transpose(1, 2) | |
g = g.transpose(1, 2) | |
x_mask = x_mask.transpose(1, 2) | |
x = x + self.g_prenet(g) | |
x = x * x_mask | |
if not self.is_BTC: | |
x = x.transpose(1, 2) | |
x = super(ConditionalConvBlocks, self).forward(x) # input needs to be BTC | |
if not self.is_BTC: | |
x = x.transpose(1, 2) | |
return x | |