lmzjms's picture
Upload 591 files
9206300
raw
history blame
13.9 kB
import math
import torch
from torch import nn
from torch.nn import Linear
from utils.hparams import hparams
from modules.commons.conv import ConvBlocks, ConditionalConvBlocks
from modules.commons.common_layers import Embedding
from modules.commons.rel_transformer import RelTransformerEncoder
from modules.commons.transformer import MultiheadAttention, FFTBlocks
from modules.commons.align_ops import clip_mel2token_to_multiple, build_word_mask, expand_states, mel2ph_to_mel2word
from modules.tts.fastspeech import FS_DECODERS, FastSpeech
from modules.portaspeech.fvae import SyntaFVAE, FVAE
from utils.nn.seq_utils import group_hidden_by_segs
from modules.fastspeech.tts_modules import SyntaDurationPredictor
class SinusoidalPosEmb(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, x):
"""
:param x: [B, T]
:return: [B, T, H]
"""
device = x.device
half_dim = self.dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
emb = x[:, :, None] * emb[None, :]
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
return emb
class SyntaSpeech(FastSpeech):
def __init__(self, ph_dict_size, word_dict_size, out_dims=None):
super().__init__(ph_dict_size, out_dims)
# build linguistic encoder
if hparams['num_spk'] > 1:
self.spk_embed_proj = Embedding(hparams['num_spk'], self.hidden_size)
if hparams['use_word_encoder']:
self.word_encoder = RelTransformerEncoder(
word_dict_size, self.hidden_size, self.hidden_size, self.hidden_size, 2,
hparams['word_enc_layers'], hparams['enc_ffn_kernel_size'])
if hparams['dur_level'] == 'word':
if hparams['word_encoder_type'] == 'rel_fft':
self.ph2word_encoder = RelTransformerEncoder(
0, self.hidden_size, self.hidden_size, self.hidden_size, 2,
hparams['word_enc_layers'], hparams['enc_ffn_kernel_size'])
if hparams['word_encoder_type'] == 'fft':
self.ph2word_encoder = FFTBlocks(
self.hidden_size, hparams['word_enc_layers'], 1, num_heads=hparams['num_heads'])
self.sin_pos = SinusoidalPosEmb(self.hidden_size)
self.enc_pos_proj = nn.Linear(2 * self.hidden_size, self.hidden_size)
self.dec_query_proj = nn.Linear(2 * self.hidden_size, self.hidden_size)
self.dec_res_proj = nn.Linear(2 * self.hidden_size, self.hidden_size)
self.attn = MultiheadAttention(self.hidden_size, 1, encoder_decoder_attention=True, bias=False)
self.attn.enable_torch_version = False
if hparams['text_encoder_postnet']:
self.text_encoder_postnet = ConvBlocks(
self.hidden_size, self.hidden_size, [1] * 3, 5, layers_in_block=2)
else:
self.sin_pos = SinusoidalPosEmb(self.hidden_size)
predictor_hidden = hparams['predictor_hidden'] if hparams['predictor_hidden'] > 0 else self.hidden_size
self.dur_predictor = SyntaDurationPredictor(
self.hidden_size,
n_chans=predictor_hidden,
n_layers=hparams['dur_predictor_layers'],
dropout_rate=hparams['predictor_dropout'],
kernel_size=hparams['dur_predictor_kernel'])
# build VAE decoder
if hparams['use_fvae']:
del self.decoder
del self.mel_out
if hparams.get("use_gae_in_prior", True):
self.fvae = SyntaFVAE(
c_in_out=self.out_dims,
hidden_size=hparams['fvae_enc_dec_hidden'], c_latent=hparams['latent_size'],
kernel_size=hparams['fvae_kernel_size'],
enc_n_layers=hparams['fvae_enc_n_layers'],
dec_n_layers=hparams['fvae_dec_n_layers'],
c_cond=self.hidden_size,
use_prior_flow=hparams['use_prior_flow'],
flow_hidden=hparams['prior_flow_hidden'],
flow_kernel_size=hparams['prior_flow_kernel_size'],
flow_n_steps=hparams['prior_flow_n_blocks'],
strides=[hparams['fvae_strides']],
encoder_type=hparams['fvae_encoder_type'],
decoder_type=hparams['fvae_decoder_type'],
)
else:
self.fvae = FVAE(
c_in_out=self.out_dims,
hidden_size=hparams['fvae_enc_dec_hidden'], c_latent=hparams['latent_size'],
kernel_size=hparams['fvae_kernel_size'],
enc_n_layers=hparams['fvae_enc_n_layers'],
dec_n_layers=hparams['fvae_dec_n_layers'],
c_cond=self.hidden_size,
use_prior_flow=hparams['use_prior_flow'],
flow_hidden=hparams['prior_flow_hidden'],
flow_kernel_size=hparams['prior_flow_kernel_size'],
flow_n_steps=hparams['prior_flow_n_blocks'],
strides=[hparams['fvae_strides']],
encoder_type=hparams['fvae_encoder_type'],
decoder_type=hparams['fvae_decoder_type'],
)
else:
self.decoder = FS_DECODERS[hparams['decoder_type']](hparams)
self.mel_out = Linear(self.hidden_size, self.out_dims, bias=True)
if hparams['use_pitch_embed']:
self.pitch_embed = Embedding(300, self.hidden_size, 0)
if hparams['add_word_pos']:
self.word_pos_proj = Linear(self.hidden_size, self.hidden_size)
def build_embedding(self, dictionary, embed_dim):
num_embeddings = len(dictionary)
emb = Embedding(num_embeddings, embed_dim, self.padding_idx)
return emb
def forward(self, txt_tokens, word_tokens, ph2word, word_len, mel2word=None, mel2ph=None,
spk_embed=None, spk_id=None, pitch=None, infer=False, tgt_mels=None,
global_step=None, graph_lst=None, etypes_lst=None, *args, **kwargs):
if hparams['use_spk_embed']:
spk_embed = spk_embed
elif hparams['use_spk_id']:
spk_embed = self.spk_embed_proj(spk_id)[:, None, :]
else:
spk_embed = 0
ret = {}
style_embed = self.forward_style_embed(spk_embed, spk_id) # speaker embedding, [B, 1, C]
x, tgt_nonpadding = self.run_text_encoder(
txt_tokens, word_tokens, ph2word, word_len, mel2word, mel2ph, style_embed, ret, graph_lst=graph_lst, etypes_lst=etypes_lst, **kwargs)
x = x + style_embed # it maybe necessary to achieve multi-speaker
x = x * tgt_nonpadding
ret['nonpadding'] = tgt_nonpadding
if hparams['use_pitch_embed']:
x = x + self.pitch_embed(pitch)
ret['decoder_inp'] = x
if infer and (mel2ph is None or mel2word is None):
mel2word = ret['mel2word']
ret['mel_out_fvae'] = ret['mel_out'] = self.run_decoder(x, tgt_nonpadding, ret, infer, tgt_mels, global_step,
mel2word=mel2word, ph2word=ph2word, graph_lst=graph_lst, etypes_lst=etypes_lst)
return ret
def run_text_encoder(self, txt_tokens, word_tokens, ph2word, word_len, mel2word, mel2ph, style_embed, ret, graph_lst, etypes_lst, **kwargs):
word2word = torch.arange(word_len)[None, :].to(ph2word.device) + 1 # [B, T_mel, T_word]
src_nonpadding = (txt_tokens > 0).float()[:, :, None]
use_bert = hparams.get("use_bert") is True
if use_bert:
ph_encoder_out = self.encoder(txt_tokens, bert_feats=kwargs['bert_feats'], ph2word=ph2word,
graph_lst=graph_lst, etypes_lst=etypes_lst,
cl_feats=kwargs['cl_feats'], ret=ret) * src_nonpadding + style_embed
else:
ph_encoder_out = self.encoder(txt_tokens) * src_nonpadding + style_embed
if hparams['use_word_encoder']:
word_encoder_out = self.word_encoder(word_tokens) + style_embed
ph_encoder_out = ph_encoder_out + expand_states(word_encoder_out, ph2word)
dur_input = ph_encoder_out * src_nonpadding
if hparams['dur_level'] == 'word':
word_encoder_out = 0
h_ph_gb_word = group_hidden_by_segs(ph_encoder_out, ph2word, word_len)[0]
word_encoder_out = word_encoder_out + self.ph2word_encoder(h_ph_gb_word)
if hparams['use_word_encoder']:
word_encoder_out = word_encoder_out + self.word_encoder(word_tokens)
mel2word = self.forward_dur(dur_input, mel2word, ret, ph2word=ph2word, word_len=word_len, graph_lst=graph_lst, etypes_lst=etypes_lst)
mel2word = clip_mel2token_to_multiple(mel2word, hparams['frames_multiple'])
ret['mel2word'] = mel2word
tgt_nonpadding = (mel2word > 0).float()[:, :, None]
enc_pos = self.get_pos_embed(word2word, ph2word) # [B, T_ph, H]
dec_pos = self.get_pos_embed(word2word, mel2word) # [B, T_mel, H]
dec_word_mask = build_word_mask(mel2word, ph2word) # [B, T_mel, T_ph]
x, weight = self.attention(ph_encoder_out, enc_pos, word_encoder_out, dec_pos, mel2word, dec_word_mask)
if hparams['add_word_pos']:
x = x + self.word_pos_proj(dec_pos)
ret['attn'] = weight
else:
mel2ph = self.forward_dur(dur_input, mel2ph, ret)
mel2ph = clip_mel2token_to_multiple(mel2ph, hparams['frames_multiple'])
mel2word = mel2ph_to_mel2word(mel2ph, ph2word)
x = expand_states(ph_encoder_out, mel2ph)
if hparams['add_word_pos']:
dec_pos = self.get_pos_embed(word2word, mel2word) # [B, T_mel, H]
x = x + self.word_pos_proj(dec_pos)
tgt_nonpadding = (mel2ph > 0).float()[:, :, None]
if hparams['use_word_encoder']:
x = x + expand_states(word_encoder_out, mel2word)
return x, tgt_nonpadding
def attention(self, ph_encoder_out, enc_pos, word_encoder_out, dec_pos, mel2word, dec_word_mask):
ph_kv = self.enc_pos_proj(torch.cat([ph_encoder_out, enc_pos], -1))
word_enc_out_expend = expand_states(word_encoder_out, mel2word)
word_enc_out_expend = torch.cat([word_enc_out_expend, dec_pos], -1)
if hparams['text_encoder_postnet']:
word_enc_out_expend = self.dec_res_proj(word_enc_out_expend)
word_enc_out_expend = self.text_encoder_postnet(word_enc_out_expend)
dec_q = x_res = word_enc_out_expend
else:
dec_q = self.dec_query_proj(word_enc_out_expend)
x_res = self.dec_res_proj(word_enc_out_expend)
ph_kv, dec_q = ph_kv.transpose(0, 1), dec_q.transpose(0, 1)
x, (weight, _) = self.attn(dec_q, ph_kv, ph_kv, attn_mask=(1 - dec_word_mask) * -1e9)
x = x.transpose(0, 1)
x = x + x_res
return x, weight
def run_decoder(self, x, tgt_nonpadding, ret, infer, tgt_mels=None, global_step=0,
mel2word=None, ph2word=None, graph_lst=None, etypes_lst=None):
if not hparams['use_fvae']:
x = self.decoder(x)
x = self.mel_out(x)
ret['kl'] = 0
return x * tgt_nonpadding
else:
# x is the phoneme encoding
x = x.transpose(1, 2) # [B, H, T]
tgt_nonpadding_BHT = tgt_nonpadding.transpose(1, 2) # [B, H, T]
if infer:
z = self.fvae(cond=x, infer=True, mel2word=mel2word, ph2word=ph2word, graph_lst=graph_lst, etypes_lst=etypes_lst)
else:
tgt_mels = tgt_mels.transpose(1, 2) # [B, 80, T]
z, ret['kl'], ret['z_p'], ret['m_q'], ret['logs_q'] = self.fvae(
tgt_mels, tgt_nonpadding_BHT, cond=x, mel2word=mel2word, ph2word=ph2word, graph_lst=graph_lst, etypes_lst=etypes_lst)
if global_step < hparams['posterior_start_steps']:
z = torch.randn_like(z)
x_recon = self.fvae.decoder(z, nonpadding=tgt_nonpadding_BHT, cond=x).transpose(1, 2)
ret['pre_mel_out'] = x_recon
return x_recon
def forward_dur(self, dur_input, mel2word, ret, **kwargs):
"""
:param dur_input: [B, T_txt, H]
:param mel2ph: [B, T_mel]
:param txt_tokens: [B, T_txt]
:param ret:
:return:
"""
word_len = kwargs['word_len']
ph2word = kwargs['ph2word']
graph_lst = kwargs['graph_lst']
etypes_lst = kwargs['etypes_lst']
src_padding = dur_input.data.abs().sum(-1) == 0
dur_input = dur_input.detach() + hparams['predictor_grad'] * (dur_input - dur_input.detach())
dur = self.dur_predictor(dur_input, src_padding, ph2word, graph_lst, etypes_lst)
B, T_ph = ph2word.shape
dur = torch.zeros([B, word_len.max() + 1]).to(ph2word.device).scatter_add(1, ph2word, dur)
dur = dur[:, 1:]
ret['dur'] = dur
if mel2word is None:
mel2word = self.length_regulator(dur).detach()
return mel2word
def get_pos_embed(self, word2word, x2word):
x_pos = build_word_mask(word2word, x2word).float() # [B, T_word, T_ph]
x_pos = (x_pos.cumsum(-1) / x_pos.sum(-1).clamp(min=1)[..., None] * x_pos).sum(1)
x_pos = self.sin_pos(x_pos.float()) # [B, T_ph, H]
return x_pos
def store_inverse_all(self):
def remove_weight_norm(m):
try:
if hasattr(m, 'store_inverse'):
m.store_inverse()
nn.utils.remove_weight_norm(m)
except ValueError: # this module didn't have weight norm
return
self.apply(remove_weight_norm)