AudioGPT / NeuralSeq /tasks /tts /dataset_utils.py
lmzjms's picture
Upload 591 files
9206300
raw
history blame
11.9 kB
from utils.cwt import get_lf0_cwt
import torch.optim
import torch.utils.data
import importlib
from utils.indexed_datasets import IndexedDataset
from utils.pitch_utils import norm_interp_f0, denorm_f0, f0_to_coarse
import numpy as np
from tasks.base_task import BaseDataset
import torch
import torch.optim
import torch.utils.data
import utils
import torch.distributions
from utils.hparams import hparams
from resemblyzer import VoiceEncoder
import json
from data_gen.tts.data_gen_utils import build_phone_encoder
class BaseTTSDataset(BaseDataset):
def __init__(self, prefix, shuffle=False, test_items=None, test_sizes=None, data_dir=None):
super().__init__(shuffle)
self.data_dir = hparams['binary_data_dir'] if data_dir is None else data_dir
self.prefix = prefix
self.hparams = hparams
self.indexed_ds = None
self.ext_mel2ph = None
def load_size():
self.sizes = np.load(f'{self.data_dir}/{self.prefix}_lengths.npy')
if prefix == 'test':
if test_items is not None:
self.indexed_ds, self.sizes = test_items, test_sizes
else:
load_size()
if hparams['num_test_samples'] > 0:
self.avail_idxs = [x for x in range(hparams['num_test_samples']) \
if x < len(self.sizes)]
if len(hparams['test_ids']) > 0:
self.avail_idxs = hparams['test_ids'] + self.avail_idxs
else:
self.avail_idxs = list(range(len(self.sizes)))
else:
load_size()
self.avail_idxs = list(range(len(self.sizes)))
if hparams['min_frames'] > 0:
self.avail_idxs = [
x for x in self.avail_idxs if self.sizes[x] >= hparams['min_frames']]
self.sizes = [self.sizes[i] for i in self.avail_idxs]
def _get_item(self, index):
if hasattr(self, 'avail_idxs') and self.avail_idxs is not None:
index = self.avail_idxs[index]
if self.indexed_ds is None:
self.indexed_ds = IndexedDataset(f'{self.data_dir}/{self.prefix}')
return self.indexed_ds[index]
def __getitem__(self, index):
hparams = self.hparams
item = self._get_item(index)
assert len(item['mel']) == self.sizes[index], (len(item['mel']), self.sizes[index])
max_frames = hparams['max_frames']
spec = torch.Tensor(item['mel'])[:max_frames]
max_frames = spec.shape[0] // hparams['frames_multiple'] * hparams['frames_multiple']
spec = spec[:max_frames]
phone = torch.LongTensor(item['phone'][:hparams['max_input_tokens']])
sample = {
"id": index,
"item_name": item['item_name'],
"text": item['txt'],
"txt_token": phone,
"mel": spec,
"mel_nonpadding": spec.abs().sum(-1) > 0,
}
if hparams['use_spk_embed']:
sample["spk_embed"] = torch.Tensor(item['spk_embed'])
if hparams['use_spk_id']:
sample["spk_id"] = int(item['spk_id'])
return sample
def collater(self, samples):
if len(samples) == 0:
return {}
hparams = self.hparams
id = torch.LongTensor([s['id'] for s in samples])
item_names = [s['item_name'] for s in samples]
text = [s['text'] for s in samples]
txt_tokens = utils.collate_1d([s['txt_token'] for s in samples], 0)
mels = utils.collate_2d([s['mel'] for s in samples], 0.0)
txt_lengths = torch.LongTensor([s['txt_token'].numel() for s in samples])
mel_lengths = torch.LongTensor([s['mel'].shape[0] for s in samples])
batch = {
'id': id,
'item_name': item_names,
'nsamples': len(samples),
'text': text,
'txt_tokens': txt_tokens,
'txt_lengths': txt_lengths,
'mels': mels,
'mel_lengths': mel_lengths,
}
if hparams['use_spk_embed']:
spk_embed = torch.stack([s['spk_embed'] for s in samples])
batch['spk_embed'] = spk_embed
if hparams['use_spk_id']:
spk_ids = torch.LongTensor([s['spk_id'] for s in samples])
batch['spk_ids'] = spk_ids
return batch
class FastSpeechDataset(BaseTTSDataset):
def __init__(self, prefix, shuffle=False, test_items=None, test_sizes=None, data_dir=None):
super().__init__(prefix, shuffle, test_items, test_sizes, data_dir)
self.f0_mean, self.f0_std = hparams.get('f0_mean', None), hparams.get('f0_std', None)
if prefix == 'test' and hparams['test_input_dir'] != '':
self.data_dir = hparams['test_input_dir']
self.indexed_ds = IndexedDataset(f'{self.data_dir}/{self.prefix}')
self.indexed_ds = sorted(self.indexed_ds, key=lambda item: item['item_name'])
items = {}
for i in range(len(self.indexed_ds)):
speaker = self.indexed_ds[i]['item_name'].split('_')[0]
if speaker not in items.keys():
items[speaker] = [i]
else:
items[speaker].append(i)
sort_item = sorted(items.values(), key=lambda item_pre_speaker: len(item_pre_speaker), reverse=True)
self.avail_idxs = [n for a in sort_item for n in a][:hparams['num_test_samples']]
self.indexed_ds, self.sizes = self.load_test_inputs()
self.avail_idxs = [i for i in range(hparams['num_test_samples'])]
if hparams['pitch_type'] == 'cwt':
_, hparams['cwt_scales'] = get_lf0_cwt(np.ones(10))
def __getitem__(self, index):
sample = super(FastSpeechDataset, self).__getitem__(index)
item = self._get_item(index)
hparams = self.hparams
max_frames = hparams['max_frames']
spec = sample['mel']
T = spec.shape[0]
phone = sample['txt_token']
sample['energy'] = (spec.exp() ** 2).sum(-1).sqrt()
sample['mel2ph'] = mel2ph = torch.LongTensor(item['mel2ph'])[:T] if 'mel2ph' in item else None
if hparams['use_pitch_embed']:
assert 'f0' in item
if hparams.get('normalize_pitch', False):
f0 = item["f0"]
if len(f0 > 0) > 0 and f0[f0 > 0].std() > 0:
f0[f0 > 0] = (f0[f0 > 0] - f0[f0 > 0].mean()) / f0[f0 > 0].std() * hparams['f0_std'] + \
hparams['f0_mean']
f0[f0 > 0] = f0[f0 > 0].clip(min=60, max=500)
pitch = f0_to_coarse(f0)
pitch = torch.LongTensor(pitch[:max_frames])
else:
pitch = torch.LongTensor(item.get("pitch"))[:max_frames] if "pitch" in item else None
f0, uv = norm_interp_f0(item["f0"][:max_frames], hparams)
uv = torch.FloatTensor(uv)
f0 = torch.FloatTensor(f0)
if hparams['pitch_type'] == 'cwt':
cwt_spec = torch.Tensor(item['cwt_spec'])[:max_frames]
f0_mean = item.get('f0_mean', item.get('cwt_mean'))
f0_std = item.get('f0_std', item.get('cwt_std'))
sample.update({"cwt_spec": cwt_spec, "f0_mean": f0_mean, "f0_std": f0_std})
elif hparams['pitch_type'] == 'ph':
if "f0_ph" in item:
f0 = torch.FloatTensor(item['f0_ph'])
else:
f0 = denorm_f0(f0, None, hparams)
f0_phlevel_sum = torch.zeros_like(phone).float().scatter_add(0, mel2ph - 1, f0)
f0_phlevel_num = torch.zeros_like(phone).float().scatter_add(
0, mel2ph - 1, torch.ones_like(f0)).clamp_min(1)
f0_ph = f0_phlevel_sum / f0_phlevel_num
f0, uv = norm_interp_f0(f0_ph, hparams)
else:
f0 = uv = torch.zeros_like(mel2ph)
pitch = None
sample["f0"], sample["uv"], sample["pitch"] = f0, uv, pitch
if hparams['use_spk_embed']:
sample["spk_embed"] = torch.Tensor(item['spk_embed'])
if hparams['use_spk_id']:
sample["spk_id"] = item['spk_id']
return sample
def collater(self, samples):
if len(samples) == 0:
return {}
hparams = self.hparams
batch = super(FastSpeechDataset, self).collater(samples)
f0 = utils.collate_1d([s['f0'] for s in samples], 0.0)
pitch = utils.collate_1d([s['pitch'] for s in samples]) if samples[0]['pitch'] is not None else None
uv = utils.collate_1d([s['uv'] for s in samples])
energy = utils.collate_1d([s['energy'] for s in samples], 0.0)
mel2ph = utils.collate_1d([s['mel2ph'] for s in samples], 0.0) \
if samples[0]['mel2ph'] is not None else None
batch.update({
'mel2ph': mel2ph,
'energy': energy,
'pitch': pitch,
'f0': f0,
'uv': uv,
})
if hparams['pitch_type'] == 'cwt':
cwt_spec = utils.collate_2d([s['cwt_spec'] for s in samples])
f0_mean = torch.Tensor([s['f0_mean'] for s in samples])
f0_std = torch.Tensor([s['f0_std'] for s in samples])
batch.update({'cwt_spec': cwt_spec, 'f0_mean': f0_mean, 'f0_std': f0_std})
return batch
def load_test_inputs(self):
binarizer_cls = hparams.get("binarizer_cls", 'data_gen.tts.base_binarizerr.BaseBinarizer')
pkg = ".".join(binarizer_cls.split(".")[:-1])
cls_name = binarizer_cls.split(".")[-1]
binarizer_cls = getattr(importlib.import_module(pkg), cls_name)
ph_set_fn = f"{hparams['binary_data_dir']}/phone_set.json"
ph_set = json.load(open(ph_set_fn, 'r'))
print("| phone set: ", ph_set)
phone_encoder = build_phone_encoder(hparams['binary_data_dir'])
word_encoder = None
voice_encoder = VoiceEncoder().cuda()
encoder = [phone_encoder, word_encoder]
sizes = []
items = []
for i in range(len(self.avail_idxs)):
item = self._get_item(i)
item2tgfn = f"{hparams['test_input_dir'].replace('binary', 'processed')}/mfa_outputs/{item['item_name']}.TextGrid"
item = binarizer_cls.process_item(item['item_name'], item['ph'], item['txt'], item2tgfn,
item['wav_fn'], item['spk_id'], encoder, hparams['binarization_args'])
item['spk_embed'] = voice_encoder.embed_utterance(item['wav']) \
if hparams['binarization_args']['with_spk_embed'] else None # 判断是否保存embedding文件
items.append(item)
sizes.append(item['len'])
return items, sizes
class FastSpeechWordDataset(FastSpeechDataset):
def __getitem__(self, index):
sample = super(FastSpeechWordDataset, self).__getitem__(index)
item = self._get_item(index)
max_frames = hparams['max_frames']
sample["ph_words"] = item["ph_words"]
sample["word_tokens"] = torch.LongTensor(item["word_tokens"])
sample["mel2word"] = torch.LongTensor(item.get("mel2word"))[:max_frames]
sample["ph2word"] = torch.LongTensor(item['ph2word'][:hparams['max_input_tokens']])
return sample
def collater(self, samples):
batch = super(FastSpeechWordDataset, self).collater(samples)
ph_words = [s['ph_words'] for s in samples]
batch['ph_words'] = ph_words
word_tokens = utils.collate_1d([s['word_tokens'] for s in samples], 0)
batch['word_tokens'] = word_tokens
mel2word = utils.collate_1d([s['mel2word'] for s in samples], 0)
batch['mel2word'] = mel2word
ph2word = utils.collate_1d([s['ph2word'] for s in samples], 0)
batch['ph2word'] = ph2word
return batch