AudioGPT / audio_foundation_models.py
lmzjms's picture
Update audio_foundation_models.py
6316c92
raw
history blame
21.8 kB
import sys
import os
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'NeuralSeq'))
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'text_to_audio/Make_An_Audio'))
import matplotlib
import librosa
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation
import torch
from diffusers import StableDiffusionPipeline
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
import re
import uuid
import soundfile
from diffusers import StableDiffusionInpaintPipeline
from PIL import Image
import numpy as np
from omegaconf import OmegaConf
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
import cv2
import einops
from einops import repeat
from pytorch_lightning import seed_everything
import random
from ldm.util import instantiate_from_config
from ldm.data.extract_mel_spectrogram import TRANSFORMS_16000
from pathlib import Path
from vocoder.hifigan.modules import VocoderHifigan
from vocoder.bigvgan.models import VocoderBigVGAN
from ldm.models.diffusion.ddim import DDIMSampler
from wav_evaluation.models.CLAPWrapper import CLAPWrapper
from inference.svs.ds_e2e import DiffSingerE2EInfer
from audio_to_text.inference_waveform import AudioCapModel
import whisper
from text_to_speech.TTS_binding import TTSInference
from inference.svs.ds_e2e import DiffSingerE2EInfer
from inference.tts.GenerSpeech import GenerSpeechInfer
from utils.hparams import set_hparams
from utils.hparams import hparams as hp
from utils.os_utils import move_file
import scipy.io.wavfile as wavfile
def initialize_model(config, ckpt, device):
config = OmegaConf.load(config)
model = instantiate_from_config(config.model)
model.load_state_dict(torch.load(ckpt,map_location='cpu')["state_dict"], strict=False)
model = model.to(device)
model.cond_stage_model.to(model.device)
model.cond_stage_model.device = model.device
sampler = DDIMSampler(model)
return sampler
def initialize_model_inpaint(config, ckpt):
config = OmegaConf.load(config)
model = instantiate_from_config(config.model)
model.load_state_dict(torch.load(ckpt,map_location='cpu')["state_dict"], strict=False)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
print(model.device,device,model.cond_stage_model.device)
sampler = DDIMSampler(model)
return sampler
def select_best_audio(prompt,wav_list):
clap_model = CLAPWrapper('text_to_audio/Make_An_Audio/useful_ckpts/CLAP/CLAP_weights_2022.pth','text_to_audio/Make_An_Audio/useful_ckpts/CLAP/config.yml',use_cuda=torch.cuda.is_available())
text_embeddings = clap_model.get_text_embeddings([prompt])
score_list = []
for data in wav_list:
sr,wav = data
audio_embeddings = clap_model.get_audio_embeddings([(torch.FloatTensor(wav),sr)], resample=True)
score = clap_model.compute_similarity(audio_embeddings, text_embeddings,use_logit_scale=False).squeeze().cpu().numpy()
score_list.append(score)
max_index = np.array(score_list).argmax()
print(score_list,max_index)
return wav_list[max_index]
class T2I:
def __init__(self, device):
print("Initializing T2I to %s" % device)
self.device = device
self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
self.text_refine_tokenizer = AutoTokenizer.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion")
self.text_refine_model = AutoModelForCausalLM.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion")
self.text_refine_gpt2_pipe = pipeline("text-generation", model=self.text_refine_model, tokenizer=self.text_refine_tokenizer, device=self.device)
self.pipe.to(device)
def inference(self, text):
image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
refined_text = self.text_refine_gpt2_pipe(text)[0]["generated_text"]
print(f'{text} refined to {refined_text}')
image = self.pipe(refined_text).images[0]
image.save(image_filename)
print(f"Processed T2I.run, text: {text}, image_filename: {image_filename}")
return image_filename
class ImageCaptioning:
def __init__(self, device):
print("Initializing ImageCaptioning to %s" % device)
self.device = device
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(self.device)
def inference(self, image_path):
inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device)
out = self.model.generate(**inputs)
captions = self.processor.decode(out[0], skip_special_tokens=True)
return captions
class T2A:
def __init__(self, device):
print("Initializing Make-An-Audio to %s" % device)
self.device = device
self.sampler = initialize_model('text_to_audio/Make_An_Audio/configs/text-to-audio/txt2audio_args.yaml', 'text_to_audio/Make_An_Audio/useful_ckpts/ta40multi_epoch=000085.ckpt', device=device)
self.vocoder = VocoderBigVGAN('text_to_audio/Make_An_Audio/vocoder/logs/bigv16k53w',device=device)
def txt2audio(self, text, seed = 55, scale = 1.5, ddim_steps = 100, n_samples = 3, W = 624, H = 80):
SAMPLE_RATE = 16000
prng = np.random.RandomState(seed)
start_code = prng.randn(n_samples, self.sampler.model.first_stage_model.embed_dim, H // 8, W // 8)
start_code = torch.from_numpy(start_code).to(device=self.device, dtype=torch.float32)
uc = self.sampler.model.get_learned_conditioning(n_samples * [""])
c = self.sampler.model.get_learned_conditioning(n_samples * [text])
shape = [self.sampler.model.first_stage_model.embed_dim, H//8, W//8] # (z_dim, 80//2^x, 848//2^x)
samples_ddim, _ = self.sampler.sample(S = ddim_steps,
conditioning = c,
batch_size = n_samples,
shape = shape,
verbose = False,
unconditional_guidance_scale = scale,
unconditional_conditioning = uc,
x_T = start_code)
x_samples_ddim = self.sampler.model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0) # [0, 1]
wav_list = []
for idx,spec in enumerate(x_samples_ddim):
wav = self.vocoder.vocode(spec)
wav_list.append((SAMPLE_RATE,wav))
best_wav = select_best_audio(text, wav_list)
return best_wav
def inference(self, text, seed = 55, scale = 1.5, ddim_steps = 100, n_samples = 3, W = 624, H = 80):
melbins,mel_len = 80,624
with torch.no_grad():
result = self.txt2audio(
text = text,
H = melbins,
W = mel_len
)
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
soundfile.write(audio_filename, result[1], samplerate = 16000)
print(f"Processed T2I.run, text: {text}, audio_filename: {audio_filename}")
return audio_filename
class I2A:
def __init__(self, device):
print("Initializing Make-An-Audio-Image to %s" % device)
self.device = device
self.sampler = initialize_model('text_to_audio/Make_An_Audio/configs/img_to_audio/img2audio_args.yaml', 'text_to_audio/Make_An_Audio/useful_ckpts/ta54_epoch=000216.ckpt', device=device)
self.vocoder = VocoderBigVGAN('text_to_audio/Make_An_Audio/vocoder/logs/bigv16k53w',device=device)
def img2audio(self, image, seed = 55, scale = 3, ddim_steps = 100, W = 624, H = 80):
SAMPLE_RATE = 16000
n_samples = 1 # only support 1 sample
prng = np.random.RandomState(seed)
start_code = prng.randn(n_samples, self.sampler.model.first_stage_model.embed_dim, H // 8, W // 8)
start_code = torch.from_numpy(start_code).to(device=self.device, dtype=torch.float32)
uc = self.sampler.model.get_learned_conditioning(n_samples * [""])
#image = Image.fromarray(image)
image = Image.open(image)
image = self.sampler.model.cond_stage_model.preprocess(image).unsqueeze(0)
image_embedding = self.sampler.model.cond_stage_model.forward_img(image)
c = image_embedding.repeat(n_samples, 1, 1)# shape:[1,77,1280],即还没有变成句子embedding,仍是每个单词的embedding
shape = [self.sampler.model.first_stage_model.embed_dim, H//8, W//8] # (z_dim, 80//2^x, 848//2^x)
samples_ddim, _ = self.sampler.sample(S=ddim_steps,
conditioning=c,
batch_size=n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=scale,
unconditional_conditioning=uc,
x_T=start_code)
x_samples_ddim = self.sampler.model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0) # [0, 1]
wav_list = []
for idx,spec in enumerate(x_samples_ddim):
wav = self.vocoder.vocode(spec)
wav_list.append((SAMPLE_RATE,wav))
best_wav = wav_list[0]
return best_wav
def inference(self, image, seed = 55, scale = 3, ddim_steps = 100, W = 624, H = 80):
melbins,mel_len = 80,624
with torch.no_grad():
result = self.img2audio(
image=image,
H=melbins,
W=mel_len
)
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
soundfile.write(audio_filename, result[1], samplerate = 16000)
print(f"Processed I2a.run, image_filename: {image}, audio_filename: {audio_filename}")
return audio_filename
class TTS:
def __init__(self, device=None):
self.inferencer = TTSInference(device)
def inference(self, text):
global temp_audio_filename
inp = {"text": text}
out = self.inferencer.infer_once(inp)
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
soundfile.write(audio_filename, out, samplerate = 22050)
return audio_filename
class T2S:
def __init__(self, device= None):
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print("Initializing DiffSinger to %s" % device)
self.device = device
self.exp_name = 'checkpoints/0831_opencpop_ds1000'
self.config= 'NeuralSeq/egs/egs_bases/svs/midi/e2e/opencpop/ds1000.yaml'
self.set_model_hparams()
self.pipe = DiffSingerE2EInfer(self.hp, device)
self.default_inp = {
'text': '你 说 你 不 SP 懂 为 何 在 这 时 牵 手 AP',
'notes': 'D#4/Eb4 | D#4/Eb4 | D#4/Eb4 | D#4/Eb4 | rest | D#4/Eb4 | D4 | D4 | D4 | D#4/Eb4 | F4 | D#4/Eb4 | D4 | rest',
'notes_duration': '0.113740 | 0.329060 | 0.287950 | 0.133480 | 0.150900 | 0.484730 | 0.242010 | 0.180820 | 0.343570 | 0.152050 | 0.266720 | 0.280310 | 0.633300 | 0.444590'
}
def set_model_hparams(self):
set_hparams(config=self.config, exp_name=self.exp_name, print_hparams=False)
self.hp = hp
def inference(self, inputs):
self.set_model_hparams()
val = inputs.split(",")
key = ['text', 'notes', 'notes_duration']
if inputs == '' or len(val) < len(key):
inp = self.default_inp
else:
inp = {k:v for k,v in zip(key,val)}
wav = self.pipe.infer_once(inp)
wav *= 32767
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
wavfile.write(audio_filename, self.hp['audio_sample_rate'], wav.astype(np.int16))
print(f"Processed T2S.run, audio_filename: {audio_filename}")
return audio_filename
class TTS_OOD:
def __init__(self, device):
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print("Initializing GenerSpeech to %s" % device)
self.device = device
self.exp_name = 'checkpoints/GenerSpeech'
self.config = 'NeuralSeq/modules/GenerSpeech/config/generspeech.yaml'
self.set_model_hparams()
self.pipe = GenerSpeechInfer(self.hp, device)
def set_model_hparams(self):
set_hparams(config=self.config, exp_name=self.exp_name, print_hparams=False)
f0_stats_fn = f'{hp["binary_data_dir"]}/train_f0s_mean_std.npy'
if os.path.exists(f0_stats_fn):
hp['f0_mean'], hp['f0_std'] = np.load(f0_stats_fn)
hp['f0_mean'] = float(hp['f0_mean'])
hp['f0_std'] = float(hp['f0_std'])
hp['emotion_encoder_path'] = 'checkpoints/Emotion_encoder.pt'
self.hp = hp
def inference(self, inputs):
self.set_model_hparams()
key = ['ref_audio', 'text']
val = inputs.split(",")
inp = {k: v for k, v in zip(key, val)}
print(inp)
wav = self.pipe.infer_once(inp)
wav *= 32767
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
wavfile.write(audio_filename, self.hp['audio_sample_rate'], wav.astype(np.int16))
print(
f"Processed GenerSpeech.run. Input text:{val[1]}. Input reference audio: {val[0]}. Output Audio_filename: {audio_filename}")
return audio_filename
class Inpaint:
def __init__(self, device):
print("Initializing Make-An-Audio-inpaint to %s" % device)
self.device = device
self.sampler = initialize_model_inpaint('text_to_audio/Make_An_Audio/configs/inpaint/txt2audio_args.yaml', 'text_to_audio/Make_An_Audio/useful_ckpts/inpaint7_epoch00047.ckpt')
self.vocoder = VocoderBigVGAN('./vocoder/logs/bigv16k53w',device=device)
self.cmap_transform = matplotlib.cm.viridis
def make_batch_sd(self, mel, mask, num_samples=1):
mel = torch.from_numpy(mel)[None,None,...].to(dtype=torch.float32)
mask = torch.from_numpy(mask)[None,None,...].to(dtype=torch.float32)
masked_mel = (1 - mask) * mel
mel = mel * 2 - 1
mask = mask * 2 - 1
masked_mel = masked_mel * 2 -1
batch = {
"mel": repeat(mel.to(device=self.device), "1 ... -> n ...", n=num_samples),
"mask": repeat(mask.to(device=self.device), "1 ... -> n ...", n=num_samples),
"masked_mel": repeat(masked_mel.to(device=self.device), "1 ... -> n ...", n=num_samples),
}
return batch
def gen_mel(self, input_audio_path):
SAMPLE_RATE = 16000
sr, ori_wav = wavfile.read(input_audio_path)
print("gen_mel")
print(sr,ori_wav.shape,ori_wav)
ori_wav = ori_wav.astype(np.float32, order='C') / 32768.0 # order='C'是以C语言格式存储,不用管
if len(ori_wav.shape)==2:# stereo
ori_wav = librosa.to_mono(ori_wav.T)# gradio load wav shape could be (wav_len,2) but librosa expects (2,wav_len)
print(sr,ori_wav.shape,ori_wav)
ori_wav = librosa.resample(ori_wav,orig_sr = sr,target_sr = SAMPLE_RATE)
mel_len,hop_size = 848,256
input_len = mel_len * hop_size
if len(ori_wav) < input_len:
input_wav = np.pad(ori_wav,(0,mel_len*hop_size),constant_values=0)
else:
input_wav = ori_wav[:input_len]
mel = TRANSFORMS_16000(input_wav)
return mel
def gen_mel_audio(self, input_audio):
SAMPLE_RATE = 16000
sr,ori_wav = input_audio
print("gen_mel_audio")
print(sr,ori_wav.shape,ori_wav)
ori_wav = ori_wav.astype(np.float32, order='C') / 32768.0 # order='C'是以C语言格式存储,不用管
if len(ori_wav.shape)==2:# stereo
ori_wav = librosa.to_mono(ori_wav.T)# gradio load wav shape could be (wav_len,2) but librosa expects (2,wav_len)
print(sr,ori_wav.shape,ori_wav)
ori_wav = librosa.resample(ori_wav,orig_sr = sr,target_sr = SAMPLE_RATE)
mel_len,hop_size = 848,256
input_len = mel_len * hop_size
if len(ori_wav) < input_len:
input_wav = np.pad(ori_wav,(0,mel_len*hop_size),constant_values=0)
else:
input_wav = ori_wav[:input_len]
mel = TRANSFORMS_16000(input_wav)
return mel
def show_mel_fn(self, input_audio_path):
crop_len = 500 # the full mel cannot be showed due to gradio's Image bug when using tool='sketch'
crop_mel = self.gen_mel(input_audio_path)[:,:crop_len]
color_mel = self.cmap_transform(crop_mel)
image = Image.fromarray((color_mel*255).astype(np.uint8))
image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
image.save(image_filename)
return image_filename
def inpaint(self, batch, seed, ddim_steps, num_samples=1, W=512, H=512):
model = self.sampler.model
prng = np.random.RandomState(seed)
start_code = prng.randn(num_samples, model.first_stage_model.embed_dim, H // 8, W // 8)
start_code = torch.from_numpy(start_code).to(device=self.device, dtype=torch.float32)
c = model.get_first_stage_encoding(model.encode_first_stage(batch["masked_mel"]))
cc = torch.nn.functional.interpolate(batch["mask"],
size=c.shape[-2:])
c = torch.cat((c, cc), dim=1) # (b,c+1,h,w) 1 is mask
shape = (c.shape[1]-1,)+c.shape[2:]
samples_ddim, _ = self.sampler.sample(S=ddim_steps,
conditioning=c,
batch_size=c.shape[0],
shape=shape,
verbose=False)
x_samples_ddim = model.decode_first_stage(samples_ddim)
mask = batch["mask"]# [-1,1]
mel = torch.clamp((batch["mel"]+1.0)/2.0,min=0.0, max=1.0)
mask = torch.clamp((batch["mask"]+1.0)/2.0,min=0.0, max=1.0)
predicted_mel = torch.clamp((x_samples_ddim+1.0)/2.0,min=0.0, max=1.0)
inpainted = (1-mask)*mel+mask*predicted_mel
inpainted = inpainted.cpu().numpy().squeeze()
inapint_wav = self.vocoder.vocode(inpainted)
return inpainted, inapint_wav
def inference(self, input_audio, mel_and_mask, seed = 55, ddim_steps = 100):
SAMPLE_RATE = 16000
torch.set_grad_enabled(False)
mel_img = Image.open(mel_and_mask['image'])
mask_img = Image.open(mel_and_mask["mask"])
show_mel = np.array(mel_img.convert("L"))/255 # 由于展示的mel只展示了一部分,所以需要重新从音频生成mel
mask = np.array(mask_img.convert("L"))/255
mel_bins,mel_len = 80,848
input_mel = self.gen_mel_audio(input_audio)[:,:mel_len]# 由于展示的mel只展示了一部分,所以需要重新从音频生成mel
mask = np.pad(mask,((0,0),(0,mel_len-mask.shape[1])),mode='constant',constant_values=0)# 将mask填充到原来的mel的大小
print(mask.shape,input_mel.shape)
with torch.no_grad():
batch = self.make_batch_sd(input_mel,mask,num_samples=1)
inpainted,gen_wav = self.inpaint(
batch=batch,
seed=seed,
ddim_steps=ddim_steps,
num_samples=1,
H=mel_bins, W=mel_len
)
inpainted = inpainted[:,:show_mel.shape[1]]
color_mel = self.cmap_transform(inpainted)
input_len = int(input_audio[1].shape[0] * SAMPLE_RATE / input_audio[0])
gen_wav = (gen_wav * 32768).astype(np.int16)[:input_len]
image = Image.fromarray((color_mel*255).astype(np.uint8))
image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
image.save(image_filename)
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
soundfile.write(audio_filename, gen_wav, samplerate = 16000)
return image_filename, audio_filename
class ASR:
def __init__(self, device):
print("Initializing Whisper to %s" % device)
self.device = device
self.model = whisper.load_model("base", device=device)
def inference(self, audio_path):
audio = whisper.load_audio(audio_path)
audio = whisper.pad_or_trim(audio)
mel = whisper.log_mel_spectrogram(audio).to(self.device)
_, probs = self.model.detect_language(mel)
options = whisper.DecodingOptions()
result = whisper.decode(self.model, mel, options)
return result.text
class A2T:
def __init__(self, device):
print("Initializing Audio-To-Text Model to %s" % device)
self.device = device
self.model = AudioCapModel("audio_to_text/audiocaps_cntrstv_cnn14rnn_trm")
def inference(self, audio_path):
audio = whisper.load_audio(audio_path)
caption_text = self.model(audio)
return caption_text[0]