AudioGPT / NeuralSeq /data_gen /tts /data_gen_utils.py
lmzjms's picture
Upload 591 files
9206300
raw
history blame
13.4 kB
import warnings
warnings.filterwarnings("ignore")
import parselmouth
import os
import torch
from skimage.transform import resize
from utils.text_encoder import TokenTextEncoder
from utils.pitch_utils import f0_to_coarse
import struct
import webrtcvad
from scipy.ndimage.morphology import binary_dilation
import librosa
import numpy as np
from utils import audio
import pyloudnorm as pyln
import re
import json
from collections import OrderedDict
PUNCS = '!,.?;:'
int16_max = (2 ** 15) - 1
def trim_long_silences(path, sr=None, return_raw_wav=False, norm=True, vad_max_silence_length=12):
"""
Ensures that segments without voice in the waveform remain no longer than a
threshold determined by the VAD parameters in params.py.
:param wav: the raw waveform as a numpy array of floats
:param vad_max_silence_length: Maximum number of consecutive silent frames a segment can have.
:return: the same waveform with silences trimmed away (length <= original wav length)
"""
## Voice Activation Detection
# Window size of the VAD. Must be either 10, 20 or 30 milliseconds.
# This sets the granularity of the VAD. Should not need to be changed.
sampling_rate = 16000
wav_raw, sr = librosa.core.load(path, sr=sr)
if norm:
meter = pyln.Meter(sr) # create BS.1770 meter
loudness = meter.integrated_loudness(wav_raw)
wav_raw = pyln.normalize.loudness(wav_raw, loudness, -20.0)
if np.abs(wav_raw).max() > 1.0:
wav_raw = wav_raw / np.abs(wav_raw).max()
wav = librosa.resample(wav_raw, sr, sampling_rate, res_type='kaiser_best')
vad_window_length = 30 # In milliseconds
# Number of frames to average together when performing the moving average smoothing.
# The larger this value, the larger the VAD variations must be to not get smoothed out.
vad_moving_average_width = 8
# Compute the voice detection window size
samples_per_window = (vad_window_length * sampling_rate) // 1000
# Trim the end of the audio to have a multiple of the window size
wav = wav[:len(wav) - (len(wav) % samples_per_window)]
# Convert the float waveform to 16-bit mono PCM
pcm_wave = struct.pack("%dh" % len(wav), *(np.round(wav * int16_max)).astype(np.int16))
# Perform voice activation detection
voice_flags = []
vad = webrtcvad.Vad(mode=3)
for window_start in range(0, len(wav), samples_per_window):
window_end = window_start + samples_per_window
voice_flags.append(vad.is_speech(pcm_wave[window_start * 2:window_end * 2],
sample_rate=sampling_rate))
voice_flags = np.array(voice_flags)
# Smooth the voice detection with a moving average
def moving_average(array, width):
array_padded = np.concatenate((np.zeros((width - 1) // 2), array, np.zeros(width // 2)))
ret = np.cumsum(array_padded, dtype=float)
ret[width:] = ret[width:] - ret[:-width]
return ret[width - 1:] / width
audio_mask = moving_average(voice_flags, vad_moving_average_width)
audio_mask = np.round(audio_mask).astype(np.bool)
# Dilate the voiced regions
audio_mask = binary_dilation(audio_mask, np.ones(vad_max_silence_length + 1))
audio_mask = np.repeat(audio_mask, samples_per_window)
audio_mask = resize(audio_mask, (len(wav_raw),)) > 0
if return_raw_wav:
return wav_raw, audio_mask, sr
return wav_raw[audio_mask], audio_mask, sr
def process_utterance(wav_path,
fft_size=1024,
hop_size=256,
win_length=1024,
window="hann",
num_mels=80,
fmin=80,
fmax=7600,
eps=1e-6,
sample_rate=22050,
loud_norm=False,
min_level_db=-100,
return_linear=False,
trim_long_sil=False, vocoder='pwg'):
if isinstance(wav_path, str):
if trim_long_sil:
wav, _, _ = trim_long_silences(wav_path, sample_rate)
else:
wav, _ = librosa.core.load(wav_path, sr=sample_rate)
else:
wav = wav_path
if loud_norm:
meter = pyln.Meter(sample_rate) # create BS.1770 meter
loudness = meter.integrated_loudness(wav)
wav = pyln.normalize.loudness(wav, loudness, -22.0)
if np.abs(wav).max() > 1:
wav = wav / np.abs(wav).max()
# get amplitude spectrogram
x_stft = librosa.stft(wav, n_fft=fft_size, hop_length=hop_size,
win_length=win_length, window=window, pad_mode="constant")
spc = np.abs(x_stft) # (n_bins, T)
# get mel basis
fmin = 0 if fmin == -1 else fmin
fmax = sample_rate / 2 if fmax == -1 else fmax
mel_basis = librosa.filters.mel(sample_rate, fft_size, num_mels, fmin, fmax)
mel = mel_basis @ spc
if vocoder == 'pwg':
mel = np.log10(np.maximum(eps, mel)) # (n_mel_bins, T)
else:
assert False, f'"{vocoder}" is not in ["pwg"].'
l_pad, r_pad = audio.librosa_pad_lr(wav, fft_size, hop_size, 1)
wav = np.pad(wav, (l_pad, r_pad), mode='constant', constant_values=0.0)
wav = wav[:mel.shape[1] * hop_size]
if not return_linear:
return wav, mel
else:
spc = audio.amp_to_db(spc)
spc = audio.normalize(spc, {'min_level_db': min_level_db})
return wav, mel, spc
def get_pitch(wav_data, mel, hparams):
"""
:param wav_data: [T]
:param mel: [T, 80]
:param hparams:
:return:
"""
time_step = hparams['hop_size'] / hparams['audio_sample_rate'] * 1000
f0_min = 80
f0_max = 750
if hparams['hop_size'] == 128:
pad_size = 4
elif hparams['hop_size'] == 256:
pad_size = 2
else:
assert False
f0 = parselmouth.Sound(wav_data, hparams['audio_sample_rate']).to_pitch_ac(
time_step=time_step / 1000, voicing_threshold=0.6,
pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
lpad = pad_size * 2
rpad = len(mel) - len(f0) - lpad
f0 = np.pad(f0, [[lpad, rpad]], mode='constant')
# mel and f0 are extracted by 2 different libraries. we should force them to have the same length.
# Attention: we find that new version of some libraries could cause ``rpad'' to be a negetive value...
# Just to be sure, we recommend users to set up the same environments as them in requirements_auto.txt (by Anaconda)
delta_l = len(mel) - len(f0)
assert np.abs(delta_l) <= 8
if delta_l > 0:
f0 = np.concatenate([f0, [f0[-1]] * delta_l], 0)
f0 = f0[:len(mel)]
pitch_coarse = f0_to_coarse(f0)
return f0, pitch_coarse
def remove_empty_lines(text):
"""remove empty lines"""
assert (len(text) > 0)
assert (isinstance(text, list))
text = [t.strip() for t in text]
if "" in text:
text.remove("")
return text
class TextGrid(object):
def __init__(self, text):
text = remove_empty_lines(text)
self.text = text
self.line_count = 0
self._get_type()
self._get_time_intval()
self._get_size()
self.tier_list = []
self._get_item_list()
def _extract_pattern(self, pattern, inc):
"""
Parameters
----------
pattern : regex to extract pattern
inc : increment of line count after extraction
Returns
-------
group : extracted info
"""
try:
group = re.match(pattern, self.text[self.line_count]).group(1)
self.line_count += inc
except AttributeError:
raise ValueError("File format error at line %d:%s" % (self.line_count, self.text[self.line_count]))
return group
def _get_type(self):
self.file_type = self._extract_pattern(r"File type = \"(.*)\"", 2)
def _get_time_intval(self):
self.xmin = self._extract_pattern(r"xmin = (.*)", 1)
self.xmax = self._extract_pattern(r"xmax = (.*)", 2)
def _get_size(self):
self.size = int(self._extract_pattern(r"size = (.*)", 2))
def _get_item_list(self):
"""Only supports IntervalTier currently"""
for itemIdx in range(1, self.size + 1):
tier = OrderedDict()
item_list = []
tier_idx = self._extract_pattern(r"item \[(.*)\]:", 1)
tier_class = self._extract_pattern(r"class = \"(.*)\"", 1)
if tier_class != "IntervalTier":
raise NotImplementedError("Only IntervalTier class is supported currently")
tier_name = self._extract_pattern(r"name = \"(.*)\"", 1)
tier_xmin = self._extract_pattern(r"xmin = (.*)", 1)
tier_xmax = self._extract_pattern(r"xmax = (.*)", 1)
tier_size = self._extract_pattern(r"intervals: size = (.*)", 1)
for i in range(int(tier_size)):
item = OrderedDict()
item["idx"] = self._extract_pattern(r"intervals \[(.*)\]", 1)
item["xmin"] = self._extract_pattern(r"xmin = (.*)", 1)
item["xmax"] = self._extract_pattern(r"xmax = (.*)", 1)
item["text"] = self._extract_pattern(r"text = \"(.*)\"", 1)
item_list.append(item)
tier["idx"] = tier_idx
tier["class"] = tier_class
tier["name"] = tier_name
tier["xmin"] = tier_xmin
tier["xmax"] = tier_xmax
tier["size"] = tier_size
tier["items"] = item_list
self.tier_list.append(tier)
def toJson(self):
_json = OrderedDict()
_json["file_type"] = self.file_type
_json["xmin"] = self.xmin
_json["xmax"] = self.xmax
_json["size"] = self.size
_json["tiers"] = self.tier_list
return json.dumps(_json, ensure_ascii=False, indent=2)
def get_mel2ph(tg_fn, ph, mel, hparams):
ph_list = ph.split(" ")
with open(tg_fn, "r") as f:
tg = f.readlines()
tg = remove_empty_lines(tg)
tg = TextGrid(tg)
tg = json.loads(tg.toJson())
split = np.ones(len(ph_list) + 1, np.float) * -1
tg_idx = 0
ph_idx = 0
tg_align = [x for x in tg['tiers'][-1]['items']]
tg_align_ = []
for x in tg_align:
x['xmin'] = float(x['xmin'])
x['xmax'] = float(x['xmax'])
if x['text'] in ['sil', 'sp', '', 'SIL', 'PUNC']:
x['text'] = ''
if len(tg_align_) > 0 and tg_align_[-1]['text'] == '':
tg_align_[-1]['xmax'] = x['xmax']
continue
tg_align_.append(x)
tg_align = tg_align_
tg_len = len([x for x in tg_align if x['text'] != ''])
ph_len = len([x for x in ph_list if not is_sil_phoneme(x)])
assert tg_len == ph_len, (tg_len, ph_len, tg_align, ph_list, tg_fn)
while tg_idx < len(tg_align) or ph_idx < len(ph_list):
if tg_idx == len(tg_align) and is_sil_phoneme(ph_list[ph_idx]):
split[ph_idx] = 1e8
ph_idx += 1
continue
x = tg_align[tg_idx]
if x['text'] == '' and ph_idx == len(ph_list):
tg_idx += 1
continue
assert ph_idx < len(ph_list), (tg_len, ph_len, tg_align, ph_list, tg_fn)
ph = ph_list[ph_idx]
if x['text'] == '' and not is_sil_phoneme(ph):
assert False, (ph_list, tg_align)
if x['text'] != '' and is_sil_phoneme(ph):
ph_idx += 1
else:
assert (x['text'] == '' and is_sil_phoneme(ph)) \
or x['text'].lower() == ph.lower() \
or x['text'].lower() == 'sil', (x['text'], ph)
split[ph_idx] = x['xmin']
if ph_idx > 0 and split[ph_idx - 1] == -1 and is_sil_phoneme(ph_list[ph_idx - 1]):
split[ph_idx - 1] = split[ph_idx]
ph_idx += 1
tg_idx += 1
assert tg_idx == len(tg_align), (tg_idx, [x['text'] for x in tg_align])
assert ph_idx >= len(ph_list) - 1, (ph_idx, ph_list, len(ph_list), [x['text'] for x in tg_align], tg_fn)
mel2ph = np.zeros([mel.shape[0]], np.int)
split[0] = 0
split[-1] = 1e8
for i in range(len(split) - 1):
assert split[i] != -1 and split[i] <= split[i + 1], (split[:-1],)
split = [int(s * hparams['audio_sample_rate'] / hparams['hop_size'] + 0.5) for s in split]
for ph_idx in range(len(ph_list)):
mel2ph[split[ph_idx]:split[ph_idx + 1]] = ph_idx + 1
mel2ph_torch = torch.from_numpy(mel2ph)
T_t = len(ph_list)
dur = mel2ph_torch.new_zeros([T_t + 1]).scatter_add(0, mel2ph_torch, torch.ones_like(mel2ph_torch))
dur = dur[1:].numpy()
return mel2ph, dur
def build_phone_encoder(data_dir):
phone_list_file = os.path.join(data_dir, 'phone_set.json')
phone_list = json.load(open(phone_list_file))
return TokenTextEncoder(None, vocab_list=phone_list, replace_oov=',')
def build_word_encoder(data_dir):
word_list_file = os.path.join(data_dir, 'word_set.json')
word_list = json.load(open(word_list_file))
return TokenTextEncoder(None, vocab_list=word_list, replace_oov=',')
def is_sil_phoneme(p):
return not p[0].isalpha()
def build_token_encoder(token_list_file):
token_list = json.load(open(token_list_file))
return TokenTextEncoder(None, vocab_list=token_list, replace_oov='<UNK>')