AudioGPT / text_to_speech /TTS_binding.py
lmzjms's picture
Upload 591 files
9206300
raw
history blame
4.95 kB
import torch
import os
class TTSInference:
def __init__(self, device=None):
print("Initializing TTS model to %s" % device)
from .tasks.tts.tts_utils import load_data_preprocessor
from .utils.commons.hparams import set_hparams
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.hparams = set_hparams("text_to_speech/checkpoints/ljspeech/ps_adv_baseline/config.yaml")
self.device = device
self.data_dir = 'text_to_speech/checkpoints/ljspeech/data_info'
self.preprocessor, self.preprocess_args = load_data_preprocessor()
self.ph_encoder, self.word_encoder = self.preprocessor.load_dict(self.data_dir)
self.spk_map = self.preprocessor.load_spk_map(self.data_dir)
self.model = self.build_model()
self.model.eval()
self.model.to(self.device)
self.vocoder = self.build_vocoder()
self.vocoder.eval()
self.vocoder.to(self.device)
print("TTS loaded!")
def build_model(self):
from .utils.commons.ckpt_utils import load_ckpt
from .modules.tts.portaspeech.portaspeech import PortaSpeech
ph_dict_size = len(self.ph_encoder)
word_dict_size = len(self.word_encoder)
model = PortaSpeech(ph_dict_size, word_dict_size, self.hparams)
load_ckpt(model, 'text_to_speech/checkpoints/ljspeech/ps_adv_baseline', 'model')
model.to(self.device)
with torch.no_grad():
model.store_inverse_all()
model.eval()
return model
def forward_model(self, inp):
sample = self.input_to_batch(inp)
with torch.no_grad():
output = self.model(
sample['txt_tokens'],
sample['word_tokens'],
ph2word=sample['ph2word'],
word_len=sample['word_lengths'].max(),
infer=True,
forward_post_glow=True,
spk_id=sample.get('spk_ids')
)
mel_out = output['mel_out']
wav_out = self.run_vocoder(mel_out)
wav_out = wav_out.cpu().numpy()
return wav_out[0]
def build_vocoder(self):
from .utils.commons.hparams import set_hparams
from .modules.vocoder.hifigan.hifigan import HifiGanGenerator
from .utils.commons.ckpt_utils import load_ckpt
base_dir = 'text_to_speech/checkpoints/hifi_lj'
config_path = f'{base_dir}/config.yaml'
config = set_hparams(config_path, global_hparams=False)
vocoder = HifiGanGenerator(config)
load_ckpt(vocoder, base_dir, 'model_gen')
return vocoder
def run_vocoder(self, c):
c = c.transpose(2, 1)
y = self.vocoder(c)[:, 0]
return y
def preprocess_input(self, inp):
"""
:param inp: {'text': str, 'item_name': (str, optional), 'spk_name': (str, optional)}
:return:
"""
preprocessor, preprocess_args = self.preprocessor, self.preprocess_args
text_raw = inp['text']
item_name = inp.get('item_name', '<ITEM_NAME>')
spk_name = inp.get('spk_name', '<SINGLE_SPK>')
ph, txt, word, ph2word, ph_gb_word = preprocessor.txt_to_ph(
preprocessor.txt_processor, text_raw, preprocess_args)
word_token = self.word_encoder.encode(word)
ph_token = self.ph_encoder.encode(ph)
spk_id = self.spk_map[spk_name]
item = {'item_name': item_name, 'text': txt, 'ph': ph, 'spk_id': spk_id,
'ph_token': ph_token, 'word_token': word_token, 'ph2word': ph2word,
'ph_words':ph_gb_word, 'words': word}
item['ph_len'] = len(item['ph_token'])
return item
def input_to_batch(self, item):
item_names = [item['item_name']]
text = [item['text']]
ph = [item['ph']]
txt_tokens = torch.LongTensor(item['ph_token'])[None, :].to(self.device)
txt_lengths = torch.LongTensor([txt_tokens.shape[1]]).to(self.device)
word_tokens = torch.LongTensor(item['word_token'])[None, :].to(self.device)
word_lengths = torch.LongTensor([txt_tokens.shape[1]]).to(self.device)
ph2word = torch.LongTensor(item['ph2word'])[None, :].to(self.device)
spk_ids = torch.LongTensor(item['spk_id'])[None, :].to(self.device)
batch = {
'item_name': item_names,
'text': text,
'ph': ph,
'txt_tokens': txt_tokens,
'txt_lengths': txt_lengths,
'word_tokens': word_tokens,
'word_lengths': word_lengths,
'ph2word': ph2word,
'spk_ids': spk_ids,
}
return batch
def postprocess_output(self, output):
return output
def infer_once(self, inp):
inp = self.preprocess_input(inp)
output = self.forward_model(inp)
output = self.postprocess_output(output)
return output