lmzjms's picture
Upload 591 files
9206300
raw
history blame
9.1 kB
from utils.hparams import hparams
import torch
from torch import nn
import torch.nn.functional as F
from modules.commons.conv import TextConvEncoder, ConvBlocks
from modules.commons.common_layers import Embedding
from modules.fastspeech.tts_modules import LayerNorm, PitchPredictor, LengthRegulator
from modules.commons.rel_transformer import RelTransformerEncoder, BERTRelTransformerEncoder
from modules.commons.align_ops import clip_mel2token_to_multiple, expand_states
from utils.pitch_utils import denorm_f0, f0_to_coarse
FS_ENCODERS = {
'rel_fft': lambda hp, dict: RelTransformerEncoder(
len(dict), hp['hidden_size'], hp['hidden_size'],
hp['ffn_hidden_size'], hp['num_heads'], hp['enc_layers'],
hp['enc_ffn_kernel_size'], hp['dropout'], prenet=hp['enc_prenet'], pre_ln=hp['enc_pre_ln']),
}
FS_DECODERS = {
'conv': lambda hp: ConvBlocks(hp['hidden_size'], hp['hidden_size'], hp['dec_dilations'],
hp['dec_kernel_size'], layers_in_block=hp['layers_in_block'],
norm_type=hp['enc_dec_norm'], dropout=hp['dropout'],
post_net_kernel=hp.get('dec_post_net_kernel', 3)),
}
class DurationPredictor(torch.nn.Module):
def __init__(self, idim, n_layers=2, n_chans=384, kernel_size=3, dropout_rate=0.1, offset=1.0):
super(DurationPredictor, self).__init__()
self.offset = offset
self.conv = torch.nn.ModuleList()
self.kernel_size = kernel_size
for idx in range(n_layers):
in_chans = idim if idx == 0 else n_chans
self.conv += [torch.nn.Sequential(
torch.nn.Conv1d(in_chans, n_chans, kernel_size, stride=1, padding=kernel_size // 2),
torch.nn.ReLU(),
LayerNorm(n_chans, dim=1),
torch.nn.Dropout(dropout_rate)
)]
self.linear = nn.Sequential(torch.nn.Linear(n_chans, 1), nn.Softplus())
def forward(self, x, x_padding=None):
x = x.transpose(1, -1) # (B, idim, Tmax)
for f in self.conv:
x = f(x) # (B, C, Tmax)
if x_padding is not None:
x = x * (1 - x_padding.float())[:, None, :]
x = self.linear(x.transpose(1, -1)) # [B, T, C]
x = x * (1 - x_padding.float())[:, :, None] # (B, T, C)
x = x[..., 0] # (B, Tmax)
return x
class FastSpeech(nn.Module):
def __init__(self, dict_size, out_dims=None):
super().__init__()
self.enc_layers = hparams['enc_layers']
self.dec_layers = hparams['dec_layers']
self.hidden_size = hparams['hidden_size']
if hparams.get("use_bert") is True:
self.ph_encoder = BERTRelTransformerEncoder(dict_size, hparams['hidden_size'], hparams['hidden_size'],
hparams['ffn_hidden_size'], hparams['num_heads'], hparams['enc_layers'],
hparams['enc_ffn_kernel_size'], hparams['dropout'], prenet=hparams['enc_prenet'], pre_ln=hparams['enc_pre_ln'])
else:
self.ph_encoder = FS_ENCODERS[hparams['encoder_type']](hparams, dict_size)
self.decoder = FS_DECODERS[hparams['decoder_type']](hparams)
self.out_dims = hparams['audio_num_mel_bins'] if out_dims is None else out_dims
self.mel_out = nn.Linear(self.hidden_size, self.out_dims, bias=True)
if hparams['use_spk_id']:
self.spk_id_proj = Embedding(hparams['num_spk'], self.hidden_size)
if hparams['use_spk_embed']:
self.spk_embed_proj = nn.Linear(256, self.hidden_size, bias=True)
predictor_hidden = hparams['predictor_hidden'] if hparams['predictor_hidden'] > 0 else self.hidden_size
self.dur_predictor = DurationPredictor(
self.hidden_size,
n_chans=predictor_hidden,
n_layers=hparams['dur_predictor_layers'],
dropout_rate=hparams['predictor_dropout'],
kernel_size=hparams['dur_predictor_kernel'])
self.length_regulator = LengthRegulator()
if hparams['use_pitch_embed']:
self.pitch_embed = Embedding(300, self.hidden_size, 0)
self.pitch_predictor = PitchPredictor(
self.hidden_size, n_chans=predictor_hidden,
n_layers=5, dropout_rate=0.1, odim=2,
kernel_size=hparams['predictor_kernel'])
if hparams['dec_inp_add_noise']:
self.z_channels = hparams['z_channels']
self.dec_inp_noise_proj = nn.Linear(self.hidden_size + self.z_channels, self.hidden_size)
def forward(self, txt_tokens, mel2ph=None, spk_embed=None, spk_id=None,
f0=None, uv=None, infer=False, **kwargs):
ret = {}
src_nonpadding = (txt_tokens > 0).float()[:, :, None]
style_embed = self.forward_style_embed(spk_embed, spk_id)
use_bert = hparams.get("use_bert") is True
if use_bert:
encoder_out = self.encoder(txt_tokens, bert_feats=kwargs['bert_feats'], ph2word=kwargs['ph2word'],
ret=ret) * src_nonpadding + style_embed
else:
encoder_out = self.encoder(txt_tokens) * src_nonpadding + style_embed
# add dur
dur_inp = (encoder_out + style_embed) * src_nonpadding
mel2ph = self.forward_dur(dur_inp, mel2ph, txt_tokens, ret)
tgt_nonpadding = (mel2ph > 0).float()[:, :, None]
decoder_inp = expand_states(encoder_out, mel2ph)
# add pitch embed
if hparams['use_pitch_embed']:
pitch_inp = (decoder_inp + style_embed) * tgt_nonpadding
decoder_inp = decoder_inp + self.forward_pitch(pitch_inp, f0, uv, mel2ph, ret, encoder_out)
# decoder input
ret['decoder_inp'] = decoder_inp = (decoder_inp + style_embed) * tgt_nonpadding
if hparams['dec_inp_add_noise']:
B, T, _ = decoder_inp.shape
z = kwargs.get('adv_z', torch.randn([B, T, self.z_channels])).to(decoder_inp.device)
ret['adv_z'] = z
decoder_inp = torch.cat([decoder_inp, z], -1)
decoder_inp = self.dec_inp_noise_proj(decoder_inp) * tgt_nonpadding
ret['mel_out'] = self.forward_decoder(decoder_inp, tgt_nonpadding, ret, infer=infer, **kwargs)
return ret
def forward_style_embed(self, spk_embed=None, spk_id=None):
# add spk embed
style_embed = 0
if hparams['use_spk_embed']:
style_embed = style_embed + self.spk_embed_proj(spk_embed)[:, None, :]
if hparams['use_spk_id']:
style_embed = style_embed + self.spk_id_proj(spk_id)[:, None, :]
return style_embed
def forward_dur(self, dur_input, mel2ph, txt_tokens, ret):
"""
:param dur_input: [B, T_txt, H]
:param mel2ph: [B, T_mel]
:param txt_tokens: [B, T_txt]
:param ret:
:return:
"""
src_padding = txt_tokens == 0
if hparams['predictor_grad'] != 1:
dur_input = dur_input.detach() + hparams['predictor_grad'] * (dur_input - dur_input.detach())
dur = self.dur_predictor(dur_input, src_padding)
ret['dur'] = dur
if mel2ph is None:
mel2ph = self.length_regulator(dur, src_padding).detach()
ret['mel2ph'] = mel2ph = clip_mel2token_to_multiple(mel2ph, hparams['frames_multiple'])
return mel2ph
def forward_pitch(self, decoder_inp, f0, uv, mel2ph, ret, encoder_out=None):
if hparams['pitch_type'] == 'frame':
pitch_pred_inp = decoder_inp
pitch_padding = mel2ph == 0
else:
pitch_pred_inp = encoder_out
pitch_padding = encoder_out.abs().sum(-1) == 0
uv = None
if hparams['predictor_grad'] != 1:
pitch_pred_inp = pitch_pred_inp.detach() + \
hparams['predictor_grad'] * (pitch_pred_inp - pitch_pred_inp.detach())
ret['pitch_pred'] = pitch_pred = self.pitch_predictor(pitch_pred_inp)
use_uv = hparams['pitch_type'] == 'frame' and hparams['use_uv']
if f0 is None:
f0 = pitch_pred[:, :, 0]
if use_uv:
uv = pitch_pred[:, :, 1] > 0
f0_denorm = denorm_f0(f0, uv if use_uv else None, pitch_padding=pitch_padding)
pitch = f0_to_coarse(f0_denorm) # start from 0 [B, T_txt]
ret['f0_denorm'] = f0_denorm
ret['f0_denorm_pred'] = denorm_f0(
pitch_pred[:, :, 0], (pitch_pred[:, :, 1] > 0) if use_uv else None,
pitch_padding=pitch_padding)
if hparams['pitch_type'] == 'ph':
pitch = torch.gather(F.pad(pitch, [1, 0]), 1, mel2ph)
ret['f0_denorm'] = torch.gather(F.pad(ret['f0_denorm'], [1, 0]), 1, mel2ph)
ret['f0_denorm_pred'] = torch.gather(F.pad(ret['f0_denorm_pred'], [1, 0]), 1, mel2ph)
pitch_embed = self.pitch_embed(pitch)
return pitch_embed
def forward_decoder(self, decoder_inp, tgt_nonpadding, ret, infer, **kwargs):
x = decoder_inp # [B, T, H]
x = self.decoder(x)
x = self.mel_out(x)
return x * tgt_nonpadding