Spaces:
Build error
Build error
import filecmp | |
import matplotlib | |
from utils.plot import spec_to_figure | |
matplotlib.use('Agg') | |
from data_gen.tts.data_gen_utils import get_pitch | |
from modules.fastspeech.tts_modules import mel2ph_to_dur | |
from tasks.tts.dataset_utils import BaseTTSDataset | |
from utils.tts_utils import sequence_mask | |
from multiprocessing.pool import Pool | |
from tasks.base_task import data_loader, BaseConcatDataset | |
from utils.common_schedulers import RSQRTSchedule, NoneSchedule | |
from vocoders.base_vocoder import get_vocoder_cls, BaseVocoder | |
import os | |
import numpy as np | |
from tqdm import tqdm | |
import torch.distributed as dist | |
from tasks.base_task import BaseTask | |
from utils.hparams import hparams | |
from utils.text_encoder import TokenTextEncoder | |
import json | |
import matplotlib.pyplot as plt | |
import torch | |
import torch.optim | |
import torch.utils.data | |
import utils | |
from utils import audio | |
import pandas as pd | |
class TTSBaseTask(BaseTask): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.dataset_cls = BaseTTSDataset | |
self.max_tokens = hparams['max_tokens'] | |
self.max_sentences = hparams['max_sentences'] | |
self.max_valid_tokens = hparams['max_valid_tokens'] | |
if self.max_valid_tokens == -1: | |
hparams['max_valid_tokens'] = self.max_valid_tokens = self.max_tokens | |
self.max_valid_sentences = hparams['max_valid_sentences'] | |
if self.max_valid_sentences == -1: | |
hparams['max_valid_sentences'] = self.max_valid_sentences = self.max_sentences | |
self.vocoder = None | |
self.phone_encoder = self.build_phone_encoder(hparams['binary_data_dir']) | |
self.padding_idx = self.phone_encoder.pad() | |
self.eos_idx = self.phone_encoder.eos() | |
self.seg_idx = self.phone_encoder.seg() | |
self.saving_result_pool = None | |
self.saving_results_futures = None | |
self.stats = {} | |
def train_dataloader(self): | |
if hparams['train_sets'] != '': | |
train_sets = hparams['train_sets'].split("|") | |
# check if all train_sets have the same spk map and dictionary | |
binary_data_dir = hparams['binary_data_dir'] | |
file_to_cmp = ['phone_set.json'] | |
if os.path.exists(f'{binary_data_dir}/word_set.json'): | |
file_to_cmp.append('word_set.json') | |
if hparams['use_spk_id']: | |
file_to_cmp.append('spk_map.json') | |
for f in file_to_cmp: | |
for ds_name in train_sets: | |
base_file = os.path.join(binary_data_dir, f) | |
ds_file = os.path.join(ds_name, f) | |
assert filecmp.cmp(base_file, ds_file), \ | |
f'{f} in {ds_name} is not same with that in {binary_data_dir}.' | |
train_dataset = BaseConcatDataset([ | |
self.dataset_cls(prefix='train', shuffle=True, data_dir=ds_name) for ds_name in train_sets]) | |
else: | |
train_dataset = self.dataset_cls(prefix=hparams['train_set_name'], shuffle=True) | |
return self.build_dataloader(train_dataset, True, self.max_tokens, self.max_sentences, | |
endless=hparams['endless_ds']) | |
def val_dataloader(self): | |
valid_dataset = self.dataset_cls(prefix=hparams['valid_set_name'], shuffle=False) | |
return self.build_dataloader(valid_dataset, False, self.max_valid_tokens, self.max_valid_sentences) | |
def test_dataloader(self): | |
test_dataset = self.dataset_cls(prefix=hparams['test_set_name'], shuffle=False) | |
self.test_dl = self.build_dataloader( | |
test_dataset, False, self.max_valid_tokens, | |
self.max_valid_sentences, batch_by_size=False) | |
return self.test_dl | |
def build_dataloader(self, dataset, shuffle, max_tokens=None, max_sentences=None, | |
required_batch_size_multiple=-1, endless=False, batch_by_size=True): | |
devices_cnt = torch.cuda.device_count() | |
if devices_cnt == 0: | |
devices_cnt = 1 | |
if required_batch_size_multiple == -1: | |
required_batch_size_multiple = devices_cnt | |
def shuffle_batches(batches): | |
np.random.shuffle(batches) | |
return batches | |
if max_tokens is not None: | |
max_tokens *= devices_cnt | |
if max_sentences is not None: | |
max_sentences *= devices_cnt | |
indices = dataset.ordered_indices() | |
if batch_by_size: | |
batch_sampler = utils.batch_by_size( | |
indices, dataset.num_tokens, max_tokens=max_tokens, max_sentences=max_sentences, | |
required_batch_size_multiple=required_batch_size_multiple, | |
) | |
else: | |
batch_sampler = [] | |
for i in range(0, len(indices), max_sentences): | |
batch_sampler.append(indices[i:i + max_sentences]) | |
if shuffle: | |
batches = shuffle_batches(list(batch_sampler)) | |
if endless: | |
batches = [b for _ in range(1000) for b in shuffle_batches(list(batch_sampler))] | |
else: | |
batches = batch_sampler | |
if endless: | |
batches = [b for _ in range(1000) for b in batches] | |
num_workers = dataset.num_workers | |
if self.trainer.use_ddp: | |
num_replicas = dist.get_world_size() | |
rank = dist.get_rank() | |
batches = [x[rank::num_replicas] for x in batches if len(x) % num_replicas == 0] | |
return torch.utils.data.DataLoader(dataset, | |
collate_fn=dataset.collater, | |
batch_sampler=batches, | |
num_workers=num_workers, | |
pin_memory=False) | |
def build_phone_encoder(self, data_dir): | |
phone_list_file = os.path.join(data_dir, 'phone_set.json') | |
phone_list = json.load(open(phone_list_file)) | |
return TokenTextEncoder(None, vocab_list=phone_list, replace_oov=',') | |
def build_scheduler(self, optimizer): | |
if hparams['scheduler'] == 'rsqrt': | |
return RSQRTSchedule(optimizer) | |
else: | |
return NoneSchedule(optimizer) | |
def build_optimizer(self, model): | |
self.optimizer = optimizer = torch.optim.AdamW( | |
model.parameters(), | |
lr=hparams['lr'], | |
betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']), | |
weight_decay=hparams['weight_decay']) | |
return optimizer | |
def plot_mel(self, batch_idx, spec, spec_out, name=None): | |
spec_cat = torch.cat([spec, spec_out], -1) | |
name = f'mel_{batch_idx}' if name is None else name | |
vmin = hparams['mel_vmin'] | |
vmax = hparams['mel_vmax'] | |
self.logger.add_figure(name, spec_to_figure(spec_cat[0], vmin, vmax), self.global_step) | |
def test_start(self): | |
self.saving_result_pool = Pool(min(int(os.getenv('N_PROC', os.cpu_count())), 16)) | |
self.saving_results_futures = [] | |
self.results_id = 0 | |
self.gen_dir = os.path.join( | |
hparams['work_dir'], | |
f'generated_{self.trainer.global_step}_{hparams["gen_dir_name"]}') | |
self.vocoder: BaseVocoder = get_vocoder_cls(hparams)() | |
def after_infer(self, predictions, sil_start_frame=0): | |
predictions = utils.unpack_dict_to_list(predictions) | |
assert len(predictions) == 1, 'Only support batch_size=1 in inference.' | |
prediction = predictions[0] | |
prediction = utils.tensors_to_np(prediction) | |
item_name = prediction.get('item_name') | |
text = prediction.get('text') | |
ph_tokens = prediction.get('txt_tokens') | |
mel_gt = prediction["mels"] | |
mel2ph_gt = prediction.get("mel2ph") | |
mel2ph_gt = mel2ph_gt if mel2ph_gt is not None else None | |
mel_pred = prediction["outputs"] | |
mel2ph_pred = prediction.get("mel2ph_pred") | |
f0_gt = prediction.get("f0") | |
f0_pred = prediction.get("f0_pred") | |
str_phs = None | |
if self.phone_encoder is not None and 'txt_tokens' in prediction: | |
str_phs = self.phone_encoder.decode(prediction['txt_tokens'], strip_padding=True) | |
if 'encdec_attn' in prediction: | |
encdec_attn = prediction['encdec_attn'] | |
encdec_attn = encdec_attn[encdec_attn.max(-1).sum(-1).argmax(-1)] | |
txt_lengths = prediction.get('txt_lengths') | |
encdec_attn = encdec_attn.T[:txt_lengths, :len(mel_gt)] | |
else: | |
encdec_attn = None | |
wav_pred = self.vocoder.spec2wav(mel_pred, f0=f0_pred) | |
wav_pred[:sil_start_frame * hparams['hop_size']] = 0 | |
gen_dir = self.gen_dir | |
base_fn = f'[{self.results_id:06d}][{item_name}][%s]' | |
# if text is not None: | |
# base_fn += text.replace(":", "%3A")[:80] | |
base_fn = base_fn.replace(' ', '_') | |
if not hparams['profile_infer']: | |
os.makedirs(gen_dir, exist_ok=True) | |
os.makedirs(f'{gen_dir}/wavs', exist_ok=True) | |
os.makedirs(f'{gen_dir}/plot', exist_ok=True) | |
if hparams.get('save_mel_npy', False): | |
os.makedirs(f'{gen_dir}/npy', exist_ok=True) | |
if 'encdec_attn' in prediction: | |
os.makedirs(f'{gen_dir}/attn_plot', exist_ok=True) | |
self.saving_results_futures.append( | |
self.saving_result_pool.apply_async(self.save_result, args=[ | |
wav_pred, mel_pred, base_fn % 'P', gen_dir, str_phs, mel2ph_pred, encdec_attn])) | |
if mel_gt is not None and hparams['save_gt']: | |
wav_gt = self.vocoder.spec2wav(mel_gt, f0=f0_gt) | |
self.saving_results_futures.append( | |
self.saving_result_pool.apply_async(self.save_result, args=[ | |
wav_gt, mel_gt, base_fn % 'G', gen_dir, str_phs, mel2ph_gt])) | |
if hparams['save_f0']: | |
import matplotlib.pyplot as plt | |
f0_pred_, _ = get_pitch(wav_pred, mel_pred, hparams) | |
f0_gt_, _ = get_pitch(wav_gt, mel_gt, hparams) | |
fig = plt.figure() | |
plt.plot(f0_pred_, label=r'$\hat{f_0}$') | |
plt.plot(f0_gt_, label=r'$f_0$') | |
plt.legend() | |
plt.tight_layout() | |
plt.savefig(f'{gen_dir}/plot/[F0][{item_name}]{text}.png', format='png') | |
plt.close(fig) | |
print(f"Pred_shape: {mel_pred.shape}, gt_shape: {mel_gt.shape}") | |
self.results_id += 1 | |
return { | |
'item_name': item_name, | |
'text': text, | |
'ph_tokens': self.phone_encoder.decode(ph_tokens.tolist()), | |
'wav_fn_pred': base_fn % 'P', | |
'wav_fn_gt': base_fn % 'G', | |
} | |
def save_result(wav_out, mel, base_fn, gen_dir, str_phs=None, mel2ph=None, alignment=None): | |
audio.save_wav(wav_out, f'{gen_dir}/wavs/{base_fn}.wav', hparams['audio_sample_rate'], | |
norm=hparams['out_wav_norm']) | |
fig = plt.figure(figsize=(14, 10)) | |
spec_vmin = hparams['mel_vmin'] | |
spec_vmax = hparams['mel_vmax'] | |
heatmap = plt.pcolor(mel.T, vmin=spec_vmin, vmax=spec_vmax) | |
fig.colorbar(heatmap) | |
f0, _ = get_pitch(wav_out, mel, hparams) | |
f0 = f0 / 10 * (f0 > 0) | |
plt.plot(f0, c='white', linewidth=1, alpha=0.6) | |
if mel2ph is not None and str_phs is not None: | |
decoded_txt = str_phs.split(" ") | |
dur = mel2ph_to_dur(torch.LongTensor(mel2ph)[None, :], len(decoded_txt))[0].numpy() | |
dur = [0] + list(np.cumsum(dur)) | |
for i in range(len(dur) - 1): | |
shift = (i % 20) + 1 | |
plt.text(dur[i], shift, decoded_txt[i]) | |
plt.hlines(shift, dur[i], dur[i + 1], colors='b' if decoded_txt[i] != '|' else 'black') | |
plt.vlines(dur[i], 0, 5, colors='b' if decoded_txt[i] != '|' else 'black', | |
alpha=1, linewidth=1) | |
plt.tight_layout() | |
plt.savefig(f'{gen_dir}/plot/{base_fn}.png', format='png') | |
plt.close(fig) | |
if hparams.get('save_mel_npy', False): | |
np.save(f'{gen_dir}/npy/{base_fn}', mel) | |
if alignment is not None: | |
fig, ax = plt.subplots(figsize=(12, 16)) | |
im = ax.imshow(alignment, aspect='auto', origin='lower', | |
interpolation='none') | |
decoded_txt = str_phs.split(" ") | |
ax.set_yticks(np.arange(len(decoded_txt))) | |
ax.set_yticklabels(list(decoded_txt), fontsize=6) | |
fig.colorbar(im, ax=ax) | |
fig.savefig(f'{gen_dir}/attn_plot/{base_fn}_attn.png', format='png') | |
plt.close(fig) | |
def test_end(self, outputs): | |
pd.DataFrame(outputs).to_csv(f'{self.gen_dir}/meta.csv') | |
self.saving_result_pool.close() | |
[f.get() for f in tqdm(self.saving_results_futures)] | |
self.saving_result_pool.join() | |
return {} | |
########## | |
# utils | |
########## | |
def weights_nonzero_speech(self, target): | |
# target : B x T x mel | |
# Assign weight 1.0 to all labels except for padding (id=0). | |
dim = target.size(-1) | |
return target.abs().sum(-1, keepdim=True).ne(0).float().repeat(1, 1, dim) | |
def make_stop_target(self, target): | |
# target : B x T x mel | |
seq_mask = target.abs().sum(-1).ne(0).float() | |
seq_length = seq_mask.sum(1) | |
mask_r = 1 - sequence_mask(seq_length - 1, target.size(1)).float() | |
return seq_mask, mask_r | |