Spaces:
Build error
Build error
import os | |
import torch | |
import torch.nn.functional as F | |
import torch.nn as nn | |
import numpy as np | |
from text_to_speech.modules.tts.portaspeech.portaspeech import PortaSpeech | |
from text_to_speech.modules.tts.syntaspeech.multi_window_disc import Discriminator | |
from tasks.tts.fs import FastSpeechTask | |
from text_to_speech.utils.audio.align import mel2token_to_dur | |
from text_to_speech.utils.commons.hparams import hparams | |
from text_to_speech.utils.metrics.diagonal_metrics import get_focus_rate, get_phone_coverage_rate, get_diagonal_focus_rate | |
from text_to_speech.utils.nn.model_utils import num_params | |
from text_to_speech.utils.commons.tensor_utils import tensors_to_scalars | |
from text_to_speech.utils.audio.pitch.utils import denorm_f0, norm_f0 | |
from text_to_speech.utils.audio.pitch_extractors import get_pitch | |
from text_to_speech.utils.metrics.dtw import dtw as DTW | |
from text_to_speech.utils.plot.plot import spec_to_figure | |
from text_to_speech.utils.text.text_encoder import build_token_encoder | |
class PortaSpeechAdvTask(FastSpeechTask): | |
def __init__(self): | |
super().__init__() | |
data_dir = hparams['binary_data_dir'] | |
self.word_encoder = build_token_encoder(f'{data_dir}/word_set.json') | |
self.build_disc_model() | |
self.mse_loss_fn = torch.nn.MSELoss() | |
def build_tts_model(self): | |
ph_dict_size = len(self.token_encoder) | |
word_dict_size = len(self.word_encoder) | |
self.model = PortaSpeech(ph_dict_size, word_dict_size, hparams) | |
self.gen_params = [p for p in self.model.parameters() if p.requires_grad] | |
self.dp_params = [p for k, p in self.model.named_parameters() if (('dur_predictor' in k) and p.requires_grad)] | |
self.gen_params_except_dp = [p for k, p in self.model.named_parameters() if (('dur_predictor' not in k) and p.requires_grad)] | |
self.bert_params = [p for k, p in self.model.named_parameters() if (('bert' in k) and p.requires_grad)] | |
self.gen_params_except_bert_and_dp = [p for k, p in self.model.named_parameters() if ('dur_predictor' not in k) and ('bert' not in k) and p.requires_grad ] | |
self.use_bert = True if len(self.bert_params) > 0 else False | |
def build_disc_model(self): | |
disc_win_num = hparams['disc_win_num'] | |
h = hparams['mel_disc_hidden_size'] | |
self.mel_disc = Discriminator( | |
time_lengths=[32, 64, 128][:disc_win_num], | |
freq_length=80, hidden_size=h, kernel=(3, 3) | |
) | |
self.disc_params = list(self.mel_disc.parameters()) | |
def on_train_start(self): | |
super().on_train_start() | |
for n, m in self.model.named_children(): | |
num_params(m, model_name=n) | |
if hasattr(self.model, 'fvae'): | |
for n, m in self.model.fvae.named_children(): | |
num_params(m, model_name=f'fvae.{n}') | |
def _training_step(self, sample, batch_idx, optimizer_idx): | |
loss_output = {} | |
loss_weights = {} | |
disc_start = self.global_step >= hparams["disc_start_steps"] and hparams['lambda_mel_adv'] > 0 | |
if optimizer_idx == 0: | |
####################### | |
# Generator # | |
####################### | |
loss_output, model_out = self.run_model(sample, infer=False) | |
self.model_out_gt = self.model_out = \ | |
{k: v.detach() for k, v in model_out.items() if isinstance(v, torch.Tensor)} | |
if disc_start: | |
mel_p = model_out['mel_out'] | |
if hasattr(self.model, 'out2mel'): | |
mel_p = self.model.out2mel(mel_p) | |
o_ = self.mel_disc(mel_p) | |
p_, pc_ = o_['y'], o_['y_c'] | |
if p_ is not None: | |
loss_output['a'] = self.mse_loss_fn(p_, p_.new_ones(p_.size())) | |
loss_weights['a'] = hparams['lambda_mel_adv'] | |
if pc_ is not None: | |
loss_output['ac'] = self.mse_loss_fn(pc_, pc_.new_ones(pc_.size())) | |
loss_weights['ac'] = hparams['lambda_mel_adv'] | |
else: | |
####################### | |
# Discriminator # | |
####################### | |
if disc_start and self.global_step % hparams['disc_interval'] == 0: | |
model_out = self.model_out_gt | |
mel_g = sample['mels'] | |
mel_p = model_out['mel_out'] | |
o = self.mel_disc(mel_g) | |
p, pc = o['y'], o['y_c'] | |
o_ = self.mel_disc(mel_p) | |
p_, pc_ = o_['y'], o_['y_c'] | |
if p_ is not None: | |
loss_output["r"] = self.mse_loss_fn(p, p.new_ones(p.size())) | |
loss_output["f"] = self.mse_loss_fn(p_, p_.new_zeros(p_.size())) | |
if pc_ is not None: | |
loss_output["rc"] = self.mse_loss_fn(pc, pc.new_ones(pc.size())) | |
loss_output["fc"] = self.mse_loss_fn(pc_, pc_.new_zeros(pc_.size())) | |
total_loss = sum([loss_weights.get(k, 1) * v for k, v in loss_output.items() if isinstance(v, torch.Tensor) and v.requires_grad]) | |
loss_output['batch_size'] = sample['txt_tokens'].size()[0] | |
return total_loss, loss_output | |
def run_model(self, sample, infer=False, *args, **kwargs): | |
txt_tokens = sample['txt_tokens'] | |
word_tokens = sample['word_tokens'] | |
spk_embed = sample.get('spk_embed') | |
spk_id = sample.get('spk_ids') | |
if not infer: | |
output = self.model(txt_tokens, word_tokens, | |
ph2word=sample['ph2word'], | |
mel2word=sample['mel2word'], | |
mel2ph=sample['mel2ph'], | |
word_len=sample['word_lengths'].max(), | |
tgt_mels=sample['mels'], | |
pitch=sample.get('pitch'), | |
spk_embed=spk_embed, | |
spk_id=spk_id, | |
infer=False, | |
global_step=self.global_step, | |
graph_lst=sample['graph_lst'], | |
etypes_lst=sample['etypes_lst'], | |
bert_feats=sample.get("bert_feats"), | |
cl_feats=sample.get("cl_feats") | |
) | |
losses = {} | |
losses['kl_v'] = output['kl'].detach() | |
losses_kl = output['kl'] | |
losses_kl = torch.clamp(losses_kl, min=hparams['kl_min']) | |
losses_kl = min(self.global_step / hparams['kl_start_steps'], 1) * losses_kl | |
losses_kl = losses_kl * hparams['lambda_kl'] | |
losses['kl'] = losses_kl | |
self.add_mel_loss(output['mel_out'], sample['mels'], losses) | |
if hparams['dur_level'] == 'word': | |
self.add_dur_loss( | |
output['dur'], sample['mel2word'], sample['word_lengths'], sample['txt_tokens'], losses) | |
self.get_attn_stats(output['attn'], sample, losses) | |
else: | |
super(PortaSpeechAdvTask, self).add_dur_loss(output['dur'], sample['mel2ph'], sample['txt_tokens'], losses) | |
return losses, output | |
else: | |
use_gt_dur = kwargs.get('infer_use_gt_dur', hparams['use_gt_dur']) | |
output = self.model( | |
txt_tokens, word_tokens, | |
ph2word=sample['ph2word'], | |
word_len=sample['word_lengths'].max(), | |
pitch=sample.get('pitch'), | |
mel2ph=sample['mel2ph'] if use_gt_dur else None, | |
mel2word=sample['mel2word'] if use_gt_dur else None, | |
tgt_mels=sample['mels'], | |
infer=True, | |
spk_embed=spk_embed, | |
spk_id=spk_id, | |
graph_lst=sample['graph_lst'], | |
etypes_lst=sample['etypes_lst'], | |
bert_feats=sample.get("bert_feats"), | |
cl_feats=sample.get("cl_feats") | |
) | |
return output | |
def add_dur_loss(self, dur_pred, mel2token, word_len, txt_tokens, losses=None): | |
T = word_len.max() | |
dur_gt = mel2token_to_dur(mel2token, T).float() | |
nonpadding = (torch.arange(T).to(dur_pred.device)[None, :] < word_len[:, None]).float() | |
dur_pred = dur_pred * nonpadding | |
dur_gt = dur_gt * nonpadding | |
wdur = F.l1_loss((dur_pred + 1).log(), (dur_gt + 1).log(), reduction='none') | |
wdur = (wdur * nonpadding).sum() / nonpadding.sum() | |
if hparams['lambda_word_dur'] > 0: | |
losses['wdur'] = wdur * hparams['lambda_word_dur'] | |
if hparams['lambda_sent_dur'] > 0: | |
sent_dur_p = dur_pred.sum(-1) | |
sent_dur_g = dur_gt.sum(-1) | |
sdur_loss = F.l1_loss(sent_dur_p, sent_dur_g, reduction='mean') | |
losses['sdur'] = sdur_loss.mean() * hparams['lambda_sent_dur'] | |
with torch.no_grad(): | |
# calculate word-level abs_dur_error in micro-second | |
abs_word_dur_error = F.l1_loss(dur_pred , dur_gt, reduction='none') | |
abs_word_dur_error = (abs_word_dur_error * nonpadding).sum() / nonpadding.sum() | |
abs_word_dur_error = abs_word_dur_error * hparams['hop_size'] / hparams['audio_sample_rate'] * 1000 | |
losses['abs_word_dur_error'] = abs_word_dur_error | |
# calculate word-level abs_dur_error in second | |
sent_dur_p = dur_pred.sum(-1) | |
sent_dur_g = dur_gt.sum(-1) | |
abs_sent_dur_error = F.l1_loss(sent_dur_p, sent_dur_g, reduction='mean').mean() | |
abs_sent_dur_error = abs_sent_dur_error * hparams['hop_size'] / hparams['audio_sample_rate'] | |
losses['abs_sent_dur_error'] = abs_sent_dur_error | |
def validation_step(self, sample, batch_idx): | |
outputs = {} | |
outputs['losses'] = {} | |
outputs['losses'], model_out = self.run_model(sample) | |
outputs['total_loss'] = sum(outputs['losses'].values()) | |
outputs['nsamples'] = sample['nsamples'] | |
outputs = tensors_to_scalars(outputs) | |
if self.global_step % hparams['valid_infer_interval'] == 0 \ | |
and batch_idx < hparams['num_valid_plots']: | |
valid_results = self.save_valid_result(sample, batch_idx, model_out) | |
wav_gt = valid_results['wav_gt'] | |
mel_gt = valid_results['mel_gt'] | |
wav_pred = valid_results['wav_pred'] | |
mel_pred = valid_results['mel_pred'] | |
f0_pred_, _ = get_pitch(wav_pred, mel_pred, hparams) | |
f0_gt_, _ = get_pitch(wav_gt, mel_gt, hparams) | |
manhattan_distance = lambda x, y: np.abs(x - y) | |
dist, cost, acc, path = DTW(f0_pred_, f0_gt_, manhattan_distance) | |
outputs['losses']['f0_dtw'] = dist / len(f0_gt_) | |
return outputs | |
def save_valid_result(self, sample, batch_idx, model_out): | |
sr = hparams['audio_sample_rate'] | |
f0_gt = None | |
mel_out = model_out['mel_out'] | |
if sample.get('f0') is not None: | |
f0_gt = denorm_f0(sample['f0'][0].cpu(), sample['uv'][0].cpu()) | |
self.plot_mel(batch_idx, sample['mels'], mel_out, f0s=f0_gt) | |
# if self.global_step > 0: | |
wav_pred = self.vocoder.spec2wav(mel_out[0].cpu(), f0=f0_gt) | |
self.logger.add_audio(f'wav_val_{batch_idx}', wav_pred, self.global_step, sr) | |
# with gt duration | |
model_out = self.run_model(sample, infer=True, infer_use_gt_dur=True) | |
dur_info = self.get_plot_dur_info(sample, model_out) | |
del dur_info['dur_pred'] | |
wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu(), f0=f0_gt) | |
self.logger.add_audio(f'wav_gdur_{batch_idx}', wav_pred, self.global_step, sr) | |
self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'][0], f'mel_gdur_{batch_idx}', | |
dur_info=dur_info, f0s=f0_gt) | |
# with pred duration | |
if not hparams['use_gt_dur']: | |
model_out = self.run_model(sample, infer=True, infer_use_gt_dur=False) | |
dur_info = self.get_plot_dur_info(sample, model_out) | |
self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'][0], f'mel_pdur_{batch_idx}', | |
dur_info=dur_info, f0s=f0_gt) | |
wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu(), f0=f0_gt) | |
self.logger.add_audio(f'wav_pdur_{batch_idx}', wav_pred, self.global_step, sr) | |
# gt wav | |
mel_gt = sample['mels'][0].cpu() | |
wav_gt = self.vocoder.spec2wav(mel_gt, f0=f0_gt) | |
if self.global_step <= hparams['valid_infer_interval']: | |
self.logger.add_audio(f'wav_gt_{batch_idx}', wav_gt, self.global_step, sr) | |
# add attn plot | |
if self.global_step > 0 and hparams['dur_level'] == 'word': | |
self.logger.add_figure(f'attn_{batch_idx}', spec_to_figure(model_out['attn'][0]), self.global_step) | |
return {'wav_gt': wav_gt, 'wav_pred': wav_pred, 'mel_gt': mel_gt, 'mel_pred': model_out['mel_out'][0].cpu()} | |
def get_attn_stats(self, attn, sample, logging_outputs, prefix=''): | |
# diagonal_focus_rate | |
txt_lengths = sample['txt_lengths'].float() | |
mel_lengths = sample['mel_lengths'].float() | |
src_padding_mask = sample['txt_tokens'].eq(0) | |
target_padding_mask = sample['mels'].abs().sum(-1).eq(0) | |
src_seg_mask = sample['txt_tokens'].eq(self.seg_idx) | |
attn_ks = txt_lengths.float() / mel_lengths.float() | |
focus_rate = get_focus_rate(attn, src_padding_mask, target_padding_mask).mean().data | |
phone_coverage_rate = get_phone_coverage_rate( | |
attn, src_padding_mask, src_seg_mask, target_padding_mask).mean() | |
diagonal_focus_rate, diag_mask = get_diagonal_focus_rate( | |
attn, attn_ks, mel_lengths, src_padding_mask, target_padding_mask) | |
logging_outputs[f'{prefix}fr'] = focus_rate.mean().data | |
logging_outputs[f'{prefix}pcr'] = phone_coverage_rate.mean().data | |
logging_outputs[f'{prefix}dfr'] = diagonal_focus_rate.mean().data | |
def get_plot_dur_info(self, sample, model_out): | |
if hparams['dur_level'] == 'word': | |
T_txt = sample['word_lengths'].max() | |
dur_gt = mel2token_to_dur(sample['mel2word'], T_txt)[0] | |
dur_pred = model_out['dur'] if 'dur' in model_out else dur_gt | |
txt = sample['ph_words'][0].split(" ") | |
else: | |
T_txt = sample['txt_tokens'].shape[1] | |
dur_gt = mel2token_to_dur(sample['mel2ph'], T_txt)[0] | |
dur_pred = model_out['dur'] if 'dur' in model_out else dur_gt | |
txt = self.token_encoder.decode(sample['txt_tokens'][0].cpu().numpy()) | |
txt = txt.split(" ") | |
return {'dur_gt': dur_gt, 'dur_pred': dur_pred, 'txt': txt} | |
def build_optimizer(self, model): | |
optimizer_gen = torch.optim.AdamW( | |
self.gen_params, | |
lr=hparams['lr'], | |
betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']), | |
weight_decay=hparams['weight_decay']) | |
optimizer_disc = torch.optim.AdamW( | |
self.disc_params, | |
lr=hparams['disc_lr'], | |
betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']), | |
**hparams["discriminator_optimizer_params"]) if len(self.disc_params) > 0 else None | |
return [optimizer_gen, optimizer_disc] | |
def build_scheduler(self, optimizer): | |
return [ | |
FastSpeechTask.build_scheduler(self, optimizer[0]), # Generator Scheduler | |
torch.optim.lr_scheduler.StepLR(optimizer=optimizer[1], # Discriminator Scheduler | |
**hparams["discriminator_scheduler_params"]), | |
] | |
def on_before_optimization(self, opt_idx): | |
if opt_idx == 0: | |
nn.utils.clip_grad_norm_(self.dp_params, hparams['clip_grad_norm']) | |
if self.use_bert: | |
nn.utils.clip_grad_norm_(self.bert_params, hparams['clip_grad_norm']) | |
nn.utils.clip_grad_norm_(self.gen_params_except_bert_and_dp, hparams['clip_grad_norm']) | |
else: | |
nn.utils.clip_grad_norm_(self.gen_params_except_dp, hparams['clip_grad_norm']) | |
else: | |
nn.utils.clip_grad_norm_(self.disc_params, hparams["clip_grad_norm"]) | |
def on_after_optimization(self, epoch, batch_idx, optimizer, optimizer_idx): | |
if self.scheduler is not None: | |
self.scheduler[0].step(self.global_step // hparams['accumulate_grad_batches']) | |
self.scheduler[1].step(self.global_step // hparams['accumulate_grad_batches']) | |
############ | |
# infer | |
############ | |
def test_start(self): | |
super().test_start() | |
if hparams.get('save_attn', False): | |
os.makedirs(f'{self.gen_dir}/attn', exist_ok=True) | |
self.model.store_inverse_all() | |
def test_step(self, sample, batch_idx): | |
assert sample['txt_tokens'].shape[0] == 1, 'only support batch_size=1 in inference' | |
outputs = self.run_model(sample, infer=True) | |
text = sample['text'][0] | |
item_name = sample['item_name'][0] | |
tokens = sample['txt_tokens'][0].cpu().numpy() | |
mel_gt = sample['mels'][0].cpu().numpy() | |
mel_pred = outputs['mel_out'][0].cpu().numpy() | |
mel2ph = sample['mel2ph'][0].cpu().numpy() | |
mel2ph_pred = None | |
str_phs = self.token_encoder.decode(tokens, strip_padding=True) | |
base_fn = f'[{batch_idx:06d}][{item_name.replace("%", "_")}][%s]' | |
if text is not None: | |
base_fn += text.replace(":", "$3A")[:80] | |
base_fn = base_fn.replace(' ', '_') | |
gen_dir = self.gen_dir | |
wav_pred = self.vocoder.spec2wav(mel_pred) | |
self.saving_result_pool.add_job(self.save_result, args=[ | |
wav_pred, mel_pred, base_fn % 'P', gen_dir, str_phs, mel2ph_pred]) | |
if hparams['save_gt']: | |
wav_gt = self.vocoder.spec2wav(mel_gt) | |
self.saving_result_pool.add_job(self.save_result, args=[ | |
wav_gt, mel_gt, base_fn % 'G', gen_dir, str_phs, mel2ph]) | |
if hparams.get('save_attn', False): | |
attn = outputs['attn'][0].cpu().numpy() | |
np.save(f'{gen_dir}/attn/{item_name}.npy', attn) | |
# save f0 for pitch dtw | |
f0_pred_, _ = get_pitch(wav_pred, mel_pred, hparams) | |
f0_gt_, _ = get_pitch(wav_gt, mel_gt, hparams) | |
np.save(f'{gen_dir}/f0/{item_name}.npy', f0_pred_) | |
np.save(f'{gen_dir}/f0/{item_name}_gt.npy', f0_gt_) | |
print(f"Pred_shape: {mel_pred.shape}, gt_shape: {mel_gt.shape}") | |
return { | |
'item_name': item_name, | |
'text': text, | |
'ph_tokens': self.token_encoder.decode(tokens.tolist()), | |
'wav_fn_pred': base_fn % 'P', | |
'wav_fn_gt': base_fn % 'G', | |
} | |