Spaces:
Build error
Build error
import math | |
import torch | |
class ExponentialDecayScheduler(torch.optim.lr_scheduler._LRScheduler): | |
def __init__(self, optimizer, total_iters, final_lrs, | |
warmup_iters=3000, last_epoch=-1, verbose=False): | |
self.total_iters = total_iters | |
self.final_lrs = final_lrs | |
if not isinstance(self.final_lrs, list) and not isinstance( | |
self.final_lrs, tuple): | |
self.final_lrs = [self.final_lrs] * len(optimizer.param_groups) | |
self.warmup_iters = warmup_iters | |
self.bases = [0.0,] * len(optimizer.param_groups) | |
super().__init__(optimizer, last_epoch, verbose) | |
for i, (base_lr, final_lr) in enumerate(zip(self.base_lrs, self.final_lrs)): | |
base = (final_lr / base_lr) ** (1 / ( | |
self.total_iters - self.warmup_iters)) | |
self.bases[i] = base | |
def _get_closed_form_lr(self): | |
warmup_coeff = 1.0 | |
current_iter = self._step_count | |
if current_iter < self.warmup_iters: | |
warmup_coeff = current_iter / self.warmup_iters | |
current_lrs = [] | |
# if not self.linear_warmup: | |
# for base_lr, final_lr, base in zip(self.base_lrs, self.final_lrs, self.bases): | |
# # current_lr = warmup_coeff * base_lr * math.exp(((current_iter - self.warmup_iters) / self.total_iters) * math.log(final_lr / base_lr)) | |
# current_lr = warmup_coeff * base_lr * (base ** (current_iter - self.warmup_iters)) | |
# current_lrs.append(current_lr) | |
# else: | |
for base_lr, final_lr, base in zip(self.base_lrs, self.final_lrs, | |
self.bases): | |
if current_iter <= self.warmup_iters: | |
current_lr = warmup_coeff * base_lr | |
else: | |
# current_lr = warmup_coeff * base_lr * math.exp(((current_iter - self.warmup_iters) / self.total_iters) * math.log(final_lr / base_lr)) | |
current_lr = base_lr * (base ** (current_iter - self.warmup_iters)) | |
current_lrs.append(current_lr) | |
return current_lrs | |
def get_lr(self): | |
return self._get_closed_form_lr() | |
class NoamScheduler(torch.optim.lr_scheduler._LRScheduler): | |
def __init__(self, optimizer, model_size=512, factor=1, warmup_iters=3000, | |
last_epoch=-1, verbose=False): | |
self.model_size = model_size | |
self.warmup_iters = warmup_iters | |
# self.factors = [group["lr"] / (self.model_size ** (-0.5) * self.warmup_iters ** (-0.5)) for group in optimizer.param_groups] | |
self.factor = factor | |
super().__init__(optimizer, last_epoch, verbose) | |
def _get_closed_form_lr(self): | |
current_iter = self._step_count | |
current_lrs = [] | |
for _ in self.base_lrs: | |
current_lr = self.factor * \ | |
(self.model_size ** (-0.5) * min(current_iter ** (-0.5), | |
current_iter * self.warmup_iters ** (-1.5))) | |
current_lrs.append(current_lr) | |
return current_lrs | |
def get_lr(self): | |
return self._get_closed_form_lr() | |
class CosineWithWarmup(torch.optim.lr_scheduler._LRScheduler): | |
def __init__(self, optimizer, total_iters, warmup_iters, | |
num_cycles=0.5, last_epoch=-1, verbose=False): | |
self.total_iters = total_iters | |
self.warmup_iters = warmup_iters | |
self.num_cycles = num_cycles | |
super().__init__(optimizer, last_epoch, verbose) | |
def lr_lambda(self, iteration): | |
if iteration < self.warmup_iters: | |
return float(iteration) / float(max(1, self.warmup_iters)) | |
progress = float(iteration - self.warmup_iters) / float(max(1, | |
self.total_iters - self.warmup_iters)) | |
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float( | |
self.num_cycles) * 2.0 * progress))) | |
def _get_closed_form_lr(self): | |
current_iter = self._step_count | |
current_lrs = [] | |
for base_lr in self.base_lrs: | |
current_lr = base_lr * self.lr_lambda(current_iter) | |
current_lrs.append(current_lr) | |
return current_lrs | |
def get_lr(self): | |
return self._get_closed_form_lr() | |
if __name__ == "__main__": | |
model = torch.nn.Linear(10, 5) | |
optimizer = torch.optim.Adam(model.parameters(), 5e-4) | |
epochs = 25 | |
iters = 600 | |
scheduler = CosineWithWarmup(optimizer, 600 * 25, 600 * 5,) | |
# scheduler = ExponentialDecayScheduler(optimizer, 600 * 25, 5e-7, 600 * 5) | |
criterion = torch.nn.MSELoss() | |
lrs = [] | |
for epoch in range(1, epochs + 1): | |
for iteration in range(1, iters + 1): | |
optimizer.zero_grad() | |
x = torch.randn(4, 10) | |
y = torch.randn(4, 5) | |
loss = criterion(model(x), y) | |
loss.backward() | |
optimizer.step() | |
scheduler.step() | |
# print(f"lr: {scheduler.get_last_lr()}") | |
# lrs.append(scheduler.get_last_lr()) | |
lrs.append(optimizer.param_groups[0]["lr"]) | |
import matplotlib.pyplot as plt | |
plt.plot(list(range(1, len(lrs) + 1)), lrs, '-o', markersize=1) | |
# plt.legend(loc="best") | |
plt.xlabel("Iteration") | |
plt.ylabel("LR") | |
plt.savefig("lr_curve.png", dpi=100) | |