import torch from text_to_speech.modules.vocoder.parallel_wavegan.models.parallel_wavegan import ParallelWaveGANGenerator from tasks.tts.vocoder_infer.base_vocoder import register_vocoder, BaseVocoder from text_to_speech.utils.commons.ckpt_utils import load_ckpt from text_to_speech.utils.commons.hparams import set_hparams, hparams from text_to_speech.utils.commons.meters import Timer total_time = 0 @register_vocoder('PWG') class PWG(BaseVocoder): def __init__(self): base_dir = hparams['vocoder_ckpt'] config_path = f'{base_dir}/config.yaml' self.config = config = set_hparams(config_path, global_hparams=False) self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.model = ParallelWaveGANGenerator(**config["generator_params"]) load_ckpt(self.model, base_dir, 'model_gen') self.model.to(self.device) self.model.eval() def spec2wav(self, mel, **kwargs): device = self.device with torch.no_grad(): c = torch.FloatTensor(mel).unsqueeze(0).to(device) c = c.transpose(2, 1) # [B, C, T] z = None with Timer('pwg', enable=hparams['profile_infer']): y = self.model(z, c).view(-1) wav_out = y.cpu().numpy() return wav_out