from modules.commons.common_layers import * from modules.commons.common_layers import Embedding from modules.fastspeech.tts_modules import FastspeechDecoder, DurationPredictor, LengthRegulator, PitchPredictor, \ EnergyPredictor, FastspeechEncoder from utils.cwt import cwt2f0 from utils.hparams import hparams from utils.pitch_utils import f0_to_coarse, denorm_f0, norm_f0 from modules.fastspeech.fs2 import FastSpeech2 class FastspeechMIDIEncoder(FastspeechEncoder): def forward_embedding(self, txt_tokens, midi_embedding, midi_dur_embedding, slur_embedding): # embed tokens and positions x = self.embed_scale * self.embed_tokens(txt_tokens) x = x + midi_embedding + midi_dur_embedding + slur_embedding if hparams['use_pos_embed']: if hparams.get('rel_pos') is not None and hparams['rel_pos']: x = self.embed_positions(x) else: positions = self.embed_positions(txt_tokens) x = x + positions x = F.dropout(x, p=self.dropout, training=self.training) return x def forward(self, txt_tokens, midi_embedding, midi_dur_embedding, slur_embedding): """ :param txt_tokens: [B, T] :return: { 'encoder_out': [T x B x C] } """ encoder_padding_mask = txt_tokens.eq(self.padding_idx).data x = self.forward_embedding(txt_tokens, midi_embedding, midi_dur_embedding, slur_embedding) # [B, T, H] x = super(FastspeechEncoder, self).forward(x, encoder_padding_mask) return x FS_ENCODERS = { 'fft': lambda hp, embed_tokens, d: FastspeechMIDIEncoder( embed_tokens, hp['hidden_size'], hp['enc_layers'], hp['enc_ffn_kernel_size'], num_heads=hp['num_heads']), } class FastSpeech2MIDI(FastSpeech2): def __init__(self, dictionary, out_dims=None): super().__init__(dictionary, out_dims) del self.encoder self.encoder = FS_ENCODERS[hparams['encoder_type']](hparams, self.encoder_embed_tokens, self.dictionary) self.midi_embed = Embedding(300, self.hidden_size, self.padding_idx) self.midi_dur_layer = Linear(1, self.hidden_size) self.is_slur_embed = Embedding(2, self.hidden_size) def forward(self, txt_tokens, mel2ph=None, spk_embed=None, ref_mels=None, f0=None, uv=None, energy=None, skip_decoder=False, spk_embed_dur_id=None, spk_embed_f0_id=None, infer=False, **kwargs): ret = {} midi_embedding = self.midi_embed(kwargs['pitch_midi']) midi_dur_embedding, slur_embedding = 0, 0 if kwargs.get('midi_dur') is not None: midi_dur_embedding = self.midi_dur_layer(kwargs['midi_dur'][:, :, None]) # [B, T, 1] -> [B, T, H] if kwargs.get('is_slur') is not None: slur_embedding = self.is_slur_embed(kwargs['is_slur']) encoder_out = self.encoder(txt_tokens, midi_embedding, midi_dur_embedding, slur_embedding) # [B, T, C] src_nonpadding = (txt_tokens > 0).float()[:, :, None] # add ref style embed # Not implemented # variance encoder var_embed = 0 # encoder_out_dur denotes encoder outputs for duration predictor # in speech adaptation, duration predictor use old speaker embedding if hparams['use_spk_embed']: spk_embed_dur = spk_embed_f0 = spk_embed = self.spk_embed_proj(spk_embed)[:, None, :] elif hparams['use_spk_id']: spk_embed_id = spk_embed if spk_embed_dur_id is None: spk_embed_dur_id = spk_embed_id if spk_embed_f0_id is None: spk_embed_f0_id = spk_embed_id spk_embed = self.spk_embed_proj(spk_embed_id)[:, None, :] spk_embed_dur = spk_embed_f0 = spk_embed if hparams['use_split_spk_id']: spk_embed_dur = self.spk_embed_dur(spk_embed_dur_id)[:, None, :] spk_embed_f0 = self.spk_embed_f0(spk_embed_f0_id)[:, None, :] else: spk_embed_dur = spk_embed_f0 = spk_embed = 0 # add dur dur_inp = (encoder_out + var_embed + spk_embed_dur) * src_nonpadding mel2ph = self.add_dur(dur_inp, mel2ph, txt_tokens, ret) decoder_inp = F.pad(encoder_out, [0, 0, 1, 0]) mel2ph_ = mel2ph[..., None].repeat([1, 1, encoder_out.shape[-1]]) decoder_inp_origin = decoder_inp = torch.gather(decoder_inp, 1, mel2ph_) # [B, T, H] tgt_nonpadding = (mel2ph > 0).float()[:, :, None] # add pitch and energy embed pitch_inp = (decoder_inp_origin + var_embed + spk_embed_f0) * tgt_nonpadding if hparams['use_pitch_embed']: pitch_inp_ph = (encoder_out + var_embed + spk_embed_f0) * src_nonpadding decoder_inp = decoder_inp + self.add_pitch(pitch_inp, f0, uv, mel2ph, ret, encoder_out=pitch_inp_ph) if hparams['use_energy_embed']: decoder_inp = decoder_inp + self.add_energy(pitch_inp, energy, ret) ret['decoder_inp'] = decoder_inp = (decoder_inp + spk_embed) * tgt_nonpadding if skip_decoder: return ret ret['mel_out'] = self.run_decoder(decoder_inp, tgt_nonpadding, ret, infer=infer, **kwargs) return ret