import subprocess import matplotlib import os matplotlib.use('Agg') import librosa import librosa.filters import numpy as np from scipy import signal from scipy.io import wavfile def save_wav(wav, path, sr, norm=False): if norm: wav = wav / np.abs(wav).max() wav *= 32767 # proposed by @dsmiller wavfile.write(path, sr, wav.astype(np.int16)) def get_hop_size(hparams): hop_size = hparams['hop_size'] if hop_size is None: assert hparams['frame_shift_ms'] is not None hop_size = int(hparams['frame_shift_ms'] / 1000 * hparams['audio_sample_rate']) return hop_size ########################################################################################### def _stft(y, hparams): return librosa.stft(y=y, n_fft=hparams['fft_size'], hop_length=get_hop_size(hparams), win_length=hparams['win_size'], pad_mode='constant') def _istft(y, hparams): return librosa.istft(y, hop_length=get_hop_size(hparams), win_length=hparams['win_size']) def librosa_pad_lr(x, fsize, fshift, pad_sides=1): '''compute right padding (final frame) or both sides padding (first and final frames) ''' assert pad_sides in (1, 2) # return int(fsize // 2) pad = (x.shape[0] // fshift + 1) * fshift - x.shape[0] if pad_sides == 1: return 0, pad else: return pad // 2, pad // 2 + pad % 2 # Conversions def amp_to_db(x): return 20 * np.log10(np.maximum(1e-5, x)) def normalize(S, hparams): return (S - hparams['min_level_db']) / -hparams['min_level_db'] def denormalize(D, hparams): return (D * -hparams['min_level_db']) + hparams['min_level_db'] def rnnoise(filename, out_fn=None, verbose=False, out_sample_rate=22050): assert os.path.exists('./rnnoise/examples/rnnoise_demo'), INSTALL_STR if out_fn is None: out_fn = f"{filename[:-4]}.denoised.wav" out_48k_fn = f"{out_fn}.48000.wav" tmp0_fn = f"{out_fn}.0.wav" tmp1_fn = f"{out_fn}.1.wav" tmp2_fn = f"{out_fn}.2.raw" tmp3_fn = f"{out_fn}.3.raw" if verbose: print("Pre-processing audio...") # wav to pcm raw subprocess.check_call( f'sox "{filename}" -G -r48000 "{tmp0_fn}"', shell=True, stdin=subprocess.PIPE) # convert to raw subprocess.check_call( f'sox -v 0.95 "{tmp0_fn}" "{tmp1_fn}"', shell=True, stdin=subprocess.PIPE) # convert to raw subprocess.check_call( f'ffmpeg -y -i "{tmp1_fn}" -loglevel quiet -f s16le -ac 1 -ar 48000 "{tmp2_fn}"', shell=True, stdin=subprocess.PIPE) # convert to raw if verbose: print("Applying rnnoise algorithm to audio...") # rnnoise subprocess.check_call( f'./rnnoise/examples/rnnoise_demo "{tmp2_fn}" "{tmp3_fn}"', shell=True) if verbose: print("Post-processing audio...") # pcm raw to wav if filename == out_fn: subprocess.check_call(f'rm -f "{out_fn}"', shell=True) subprocess.check_call( f'sox -t raw -r 48000 -b 16 -e signed-integer -c 1 "{tmp3_fn}" "{out_48k_fn}"', shell=True) subprocess.check_call(f'sox "{out_48k_fn}" -G -r{out_sample_rate} "{out_fn}"', shell=True) subprocess.check_call(f'rm -f "{tmp0_fn}" "{tmp1_fn}" "{tmp2_fn}" "{tmp3_fn}" "{out_48k_fn}"', shell=True) if verbose: print("Audio-filtering completed!")