import torch import torch.nn as nn from transformers import * import warnings warnings.filterwarnings('ignore') # pretrained model name: (model class, model tokenizer, output dimension, token style) MODELS = { 'prajjwal1/bert-mini': (BertModel, BertTokenizer), } class Text_Encoder(nn.Module): def __init__(self, device): super(Text_Encoder, self).__init__() self.base_model = 'prajjwal1/bert-mini' self.dropout = 0.1 self.tokenizer = MODELS[self.base_model][1].from_pretrained(self.base_model) self.bert_layer = MODELS[self.base_model][0].from_pretrained(self.base_model, add_pooling_layer=False, hidden_dropout_prob=self.dropout, attention_probs_dropout_prob=self.dropout, output_hidden_states=True) self.linear_layer = nn.Sequential(nn.Linear(256, 256), nn.ReLU(inplace=True)) self.device = device def tokenize(self, caption): # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') tokenized = self.tokenizer(caption, add_special_tokens=False, padding=True, return_tensors='pt') input_ids = tokenized['input_ids'] attns_mask = tokenized['attention_mask'] input_ids = input_ids.to(self.device) attns_mask = attns_mask.to(self.device) return input_ids, attns_mask def forward(self, input_ids, attns_mask): # input_ids, attns_mask = self.tokenize(caption) output = self.bert_layer(input_ids=input_ids, attention_mask=attns_mask)[0] cls_embed = output[:, 0, :] text_embed = self.linear_layer(cls_embed) return text_embed, output # text_embed: (batch, hidden_size)