from langchain.agents.initialize import initialize_agent from langchain.agents.tools import Tool from langchain.chains.conversation.memory import ConversationBufferMemory from langchain.llms.openai import OpenAI from audio_foundation_models import * import gradio as gr _DESCRIPTION = '# [AudioGPT](https://github.com/AIGC-Audio/AudioGPT)' _DESCRIPTION += '\n
This is a demo to the work AudioGPT: Understanding and Generating Speech, Music, Sound, and Talking Head.
' _DESCRIPTION += '\nThis model can only be used for non-commercial purposes.' if (SPACE_ID := os.getenv('SPACE_ID')) is not None: _DESCRIPTION += f'\n
For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
' AUDIO_CHATGPT_PREFIX = """AudioGPT AudioGPT can not directly read audios, but it has a list of tools to finish different speech, audio, and singing voice tasks. Each audio will have a file name formed as "audio/xxx.wav". When talking about audios, AudioGPT is very strict to the file name and will never fabricate nonexistent files. AudioGPT is able to use tools in a sequence, and is loyal to the tool observation outputs rather than faking the audio content and audio file name. It will remember to provide the file name from the last tool observation, if a new audio is generated. Human may provide new audios to AudioGPT with a description. The description helps AudioGPT to understand this audio, but AudioGPT should use tools to finish following tasks, rather than directly imagine from the description. Overall, AudioGPT is a powerful audio dialogue assistant tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. TOOLS: ------ AudioGPT has access to the following tools:""" AUDIO_CHATGPT_FORMAT_INSTRUCTIONS = """To use a tool, please use the following format: ``` Thought: Do I need to use a tool? Yes Action: the action to take, should be one of [{tool_names}] Action Input: the input to the action Observation: the result of the action ``` When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format: ``` Thought: Do I need to use a tool? No {ai_prefix}: [your response here] ``` """ AUDIO_CHATGPT_SUFFIX = """You are very strict to the filename correctness and will never fake a file name if not exists. You will remember to provide the audio file name loyally if it's provided in the last tool observation. Begin! Previous conversation history: {chat_history} New input: {input} Thought: Do I need to use a tool? {agent_scratchpad}""" def cut_dialogue_history(history_memory, keep_last_n_words = 500): tokens = history_memory.split() n_tokens = len(tokens) print(f"history_memory:{history_memory}, n_tokens: {n_tokens}") if n_tokens < keep_last_n_words: return history_memory else: paragraphs = history_memory.split('\n') last_n_tokens = n_tokens while last_n_tokens >= keep_last_n_words: last_n_tokens = last_n_tokens - len(paragraphs[0].split(' ')) paragraphs = paragraphs[1:] return '\n' + '\n'.join(paragraphs) class ConversationBot: def __init__(self, load_dict): print("Initializing AudioGPT") self.tools = [] self.memory = ConversationBufferMemory(memory_key="chat_history", output_key='output') self.models = dict() for class_name, device in load_dict.items(): self.models[class_name] = globals()[class_name](device=device) for class_name, instance in self.models.items(): for e in dir(instance): if e.startswith('inference'): func = getattr(instance, e) self.tools.append(Tool(name=func.name, description=func.description, func=func)) def run_text(self, text, state): print("===============Running run_text =============") print("Inputs:", text, state) print("======>Previous memory:\n %s" % self.agent.memory) self.agent.memory.buffer = cut_dialogue_history(self.agent.memory.buffer, keep_last_n_words=500) res = self.agent({"input": text}) if res['intermediate_steps'] == []: print("======>Current memory:\n %s" % self.agent.memory) response = res['output'] state = state + [(text, response)] print("Outputs:", state) return state, state, gr.Audio.update(visible=False), gr.Image.update(visible=False), gr.Button.update(visible=False) else: tool = res['intermediate_steps'][0][0].tool if tool == "Generate Image From User Input Text": res['output'] = res['output'].replace("\\", "/") response = re.sub('(image/\S*png)', lambda m: f'![](/file={m.group(0)})*{m.group(0)}*', res['output']) state = state + [(text, response)] print(f"\nProcessed run_text, Input text: {text}\nCurrent state: {state}\n" f"Current Memory: {self.agent.memory.buffer}") return state, state, gr.Audio.update(visible=False), gr.Image.update(visible=False), gr.Button.update(visible=False) elif tool == "Detect The Sound Event From The Audio": image_filename = res['intermediate_steps'][0][1] response = res['output'] + f"![](/file={image_filename})*{image_filename}*" state = state + [(text, response)] print(f"\nProcessed run_text, Input text: {text}\nCurrent state: {state}\n" f"Current Memory: {self.agent.memory.buffer}") return state, state, gr.Audio.update(visible=False), gr.Image.update(visible=False), gr.Button.update(visible=False) elif tool == "Generate Text From The Audio" or tool == "Transcribe speech" or tool == "Target Sound Detection": print("======>Current memory:\n %s" % self.agent.memory) response = re.sub('(image/\S*png)', lambda m: f'![](/file={m.group(0)})*{m.group(0)}*', res['output']) image_filename = res['intermediate_steps'][0][1] #response = res['output'] + f"![](/file={image_filename})*{image_filename}*" state = state + [(text, response)] print("Outputs:", state) return state, state, gr.Audio.update(visible=False), gr.Image.update(visible=False), gr.Button.update(visible=False) elif tool == "Audio Inpainting": audio_filename = res['intermediate_steps'][0][0].tool_input image_filename = res['intermediate_steps'][0][1] print("======>Current memory:\n %s" % self.agent.memory) print(res) response = res['output'] state = state + [(text, response)] print("Outputs:", state) return state, state, gr.Audio.update(value=audio_filename,visible=True), gr.Image.update(value=image_filename,visible=True), gr.Button.update(visible=True) print("======>Current memory:\n %s" % self.agent.memory) response = re.sub('(image/\S*png)', lambda m: f'![](/file={m.group(0)})*{m.group(0)}*', res['output']) audio_filename = res['intermediate_steps'][0][1] state = state + [(text, response)] print("Outputs:", state) return state, state, gr.Audio.update(value=audio_filename,visible=True), gr.Image.update(visible=False), gr.Button.update(visible=False) def run_image_or_audio(self, file, state, txt): file_type = file.name[-3:] if file_type == "wav": print("===============Running run_audio =============") print("Inputs:", file, state) print("======>Previous memory:\n %s" % self.agent.memory) audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") audio_load = whisper.load_audio(file.name) soundfile.write(audio_filename, audio_load, samplerate = 16000) description = self.models['A2T'].inference(audio_filename) Human_prompt = "\nHuman: provide an audio named {}. The description is: {}. This information helps you to understand this audio, but you should use tools to finish following tasks, " \ "rather than directly imagine from my description. If you understand, say \"Received\". \n".format(audio_filename, description) AI_prompt = "Received. " self.agent.memory.buffer = self.agent.memory.buffer + Human_prompt + 'AI: ' + AI_prompt # AI_prompt = "Received. " # self.agent.memory.buffer = self.agent.memory.buffer + 'AI: ' + AI_prompt print("======>Current memory:\n %s" % self.agent.memory) #state = state + [(f"*{audio_filename}*", AI_prompt)] state = state + [(f"*{audio_filename}*", AI_prompt)] print("Outputs:", state) return state, state, txt + ' ' + audio_filename + ' ', gr.Audio.update(value=audio_filename,visible=True) else: # print("===============Running run_image =============") # print("Inputs:", file, state) # print("======>Previous memory:\n %s" % self.agent.memory) image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png") print("======>Auto Resize Image...") img = Image.open(file.name) width, height = img.size ratio = min(512 / width, 512 / height) width_new, height_new = (round(width * ratio), round(height * ratio)) width_new = int(np.round(width_new / 64.0)) * 64 height_new = int(np.round(height_new / 64.0)) * 64 img = img.resize((width_new, height_new)) img = img.convert('RGB') img.save(image_filename, "PNG") print(f"Resize image form {width}x{height} to {width_new}x{height_new}") description = self.models['ImageCaptioning'].inference(image_filename) Human_prompt = "\nHuman: provide an audio named {}. The description is: {}. This information helps you to understand this audio, but you should use tools to finish following tasks, " \ "rather than directly imagine from my description. If you understand, say \"Received\". \n".format(image_filename, description) AI_prompt = "Received. " self.agent.memory.buffer = self.agent.memory.buffer + Human_prompt + 'AI: ' + AI_prompt print("======>Current memory:\n %s" % self.agent.memory) state = state + [(f"![](/file={image_filename})*{image_filename}*", AI_prompt)] print(f"\nProcessed run_image, Input image: {image_filename}\nCurrent state: {state}\n" f"Current Memory: {self.agent.memory.buffer}") return state, state, txt + f'{txt} {image_filename} ', gr.Audio.update(visible=False) def inpainting(self, state, audio_filename, image_filename): print("===============Running inpainting =============") print("Inputs:", state) print("======>Previous memory:\n %s" % self.agent.memory) # inpaint = Inpaint(device="cpu") new_image_filename, new_audio_filename = self.models['Inpaint'].predict(audio_filename, image_filename) AI_prompt = "Here are the predict audio and the mel spectrum." + f"*{new_audio_filename}*" + f"![](/file={new_image_filename})*{new_image_filename}*" self.agent.memory.buffer = self.agent.memory.buffer + 'AI: ' + AI_prompt print("======>Current memory:\n %s" % self.agent.memory) state = state + [(f"Audio Inpainting", AI_prompt)] print("Outputs:", state) return state, state, gr.Image.update(visible=False), gr.Audio.update(value=new_audio_filename, visible=True), gr.Button.update(visible=False) def clear_audio(self): return gr.Audio.update(value=None, visible=False) def clear_image(self): return gr.Image.update(value=None, visible=False) def clear_button(self): return gr.Button.update(visible=False) def init_agent(self, openai_api_key): self.llm = OpenAI(temperature=0, openai_api_key=openai_api_key) self.agent = initialize_agent( self.tools, self.llm, agent="conversational-react-description", verbose=True, memory=self.memory, return_intermediate_steps=True, agent_kwargs={'prefix': AUDIO_CHATGPT_PREFIX, 'format_instructions': AUDIO_CHATGPT_FORMAT_INSTRUCTIONS, 'suffix': AUDIO_CHATGPT_SUFFIX}, ) return gr.update(visible = True) if __name__ == '__main__': bot = ConversationBot({'ImageCaptioning': 'cuda:0', 'T2A': 'cuda:0', 'I2A': 'cuda:0', 'TTS': 'cpu', 'T2S': 'cpu', 'ASR': 'cuda:0', 'A2T': 'cpu', 'Inpaint': 'cuda:0', 'SoundDetection': 'cpu', 'Binaural': 'cuda:0', 'SoundExtraction': 'cuda:0', 'TargetSoundDetection': 'cuda:0', 'Speech_Enh_SC': 'cuda:0', 'Speech_SS': 'cuda:0' }) with gr.Blocks(css="#chatbot {overflow:auto; height:500px;}") as demo: gr.Markdown(_DESCRIPTION) with gr.Row(): openai_api_key_textbox = gr.Textbox( placeholder="Paste your OpenAI API key here to start AudioGPT(sk-...) and press Enter ↵️", show_label=False, lines=1, type="password", ) chatbot = gr.Chatbot(elem_id="chatbot", label="AudioGPT") state = gr.State([]) with gr.Row(visible = False) as input_raws: with gr.Column(scale=0.7): txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter, or upload an image").style(container=False) with gr.Column(scale=0.1, min_width=0): run = gr.Button("🏃♂️Run") with gr.Column(scale=0.1, min_width=0): clear = gr.Button("🔄Clear️") with gr.Column(scale=0.1, min_width=0): btn = gr.UploadButton("🖼️/🎙️ Upload", file_types=["image","audio"]) with gr.Row(): with gr.Column(): outaudio = gr.Audio(visible=False) with gr.Row(): with gr.Column(): show_mel = gr.Image(type="filepath",tool='sketch',visible=False) with gr.Row(): with gr.Column(): run_button = gr.Button("Predict Masked Place",visible=False) gr.Examples( examples=["Generate a speech with text 'here we go'", "Transcribe this speech", "Transfer the mono speech to a binaural one", "Generate an audio of a dog barking", "Generate an audio of this uploaded image", "Give me the description of this audio", "I want to inpaint it", "What events does this audio include?", "When did the thunder happen in this audio?", "Extract the thunder event from this audio", "Generate a piece of singing voice. Text sequence is 小酒窝长睫毛AP是你最美的记号. Note sequence is C#4/Db4 | F#4/Gb4 | G#4/Ab4 | A#4/Bb4 F#4/Gb4 | F#4/Gb4 C#4/Db4 | C#4/Db4 | rest | C#4/Db4 | A#4/Bb4 | G#4/Ab4 | A#4/Bb4 | G#4/Ab4 | F4 | C#4/Db4. Note duration sequence is 0.407140 | 0.376190 | 0.242180 | 0.509550 0.183420 | 0.315400 0.235020 | 0.361660 | 0.223070 | 0.377270 | 0.340550 | 0.299620 | 0.344510 | 0.283770 | 0.323390 | 0.360340.", ], inputs=txt ) openai_api_key_textbox.submit(bot.init_agent, [openai_api_key_textbox], [input_raws]) txt.submit(bot.run_text, [txt, state], [chatbot, state, outaudio, show_mel, run_button]) txt.submit(lambda: "", None, txt) run.click(bot.run_text, [txt, state], [chatbot, state, outaudio, show_mel, run_button]) run.click(lambda: "", None, txt) btn.upload(bot.run_image_or_audio, [btn, state, txt], [chatbot, state, txt, outaudio]) run_button.click(bot.inpainting, [state, outaudio, show_mel], [chatbot, state, show_mel, outaudio, run_button]) clear.click(bot.memory.clear) clear.click(lambda: [], None, chatbot) clear.click(lambda: [], None, state) clear.click(lambda:None, None, txt) clear.click(bot.clear_button, None, run_button) clear.click(bot.clear_image, None, show_mel) clear.click(bot.clear_audio, None, outaudio) demo.launch(server_name="0.0.0.0", server_port=7860)