import os import sys import traceback import types from functools import wraps from itertools import chain import numpy as np import torch.utils.data from torch.utils.data import ConcatDataset from text_to_speech.utils.commons.hparams import hparams def collate_1d_or_2d(values, pad_idx=0, left_pad=False, shift_right=False, max_len=None, shift_id=1): if len(values[0].shape) == 1: return collate_1d(values, pad_idx, left_pad, shift_right, max_len, shift_id) else: return collate_2d(values, pad_idx, left_pad, shift_right, max_len) def collate_1d(values, pad_idx=0, left_pad=False, shift_right=False, max_len=None, shift_id=1): """Convert a list of 1d tensors into a padded 2d tensor.""" size = max(v.size(0) for v in values) if max_len is None else max_len res = values[0].new(len(values), size).fill_(pad_idx) def copy_tensor(src, dst): assert dst.numel() == src.numel() if shift_right: dst[1:] = src[:-1] dst[0] = shift_id else: dst.copy_(src) for i, v in enumerate(values): copy_tensor(v, res[i][size - len(v):] if left_pad else res[i][:len(v)]) return res def collate_2d(values, pad_idx=0, left_pad=False, shift_right=False, max_len=None): """Convert a list of 2d tensors into a padded 3d tensor.""" size = max(v.size(0) for v in values) if max_len is None else max_len res = values[0].new(len(values), size, values[0].shape[1]).fill_(pad_idx) def copy_tensor(src, dst): assert dst.numel() == src.numel() if shift_right: dst[1:] = src[:-1] else: dst.copy_(src) for i, v in enumerate(values): copy_tensor(v, res[i][size - len(v):] if left_pad else res[i][:len(v)]) return res def _is_batch_full(batch, num_tokens, max_tokens, max_sentences): if len(batch) == 0: return 0 if len(batch) == max_sentences: return 1 if num_tokens > max_tokens: return 1 return 0 def batch_by_size( indices, num_tokens_fn, max_tokens=None, max_sentences=None, required_batch_size_multiple=1, distributed=False ): """ Yield mini-batches of indices bucketed by size. Batches may contain sequences of different lengths. Args: indices (List[int]): ordered list of dataset indices num_tokens_fn (callable): function that returns the number of tokens at a given index max_tokens (int, optional): max number of tokens in each batch (default: None). max_sentences (int, optional): max number of sentences in each batch (default: None). required_batch_size_multiple (int, optional): require batch size to be a multiple of N (default: 1). """ max_tokens = max_tokens if max_tokens is not None else sys.maxsize max_sentences = max_sentences if max_sentences is not None else sys.maxsize bsz_mult = required_batch_size_multiple if isinstance(indices, types.GeneratorType): indices = np.fromiter(indices, dtype=np.int64, count=-1) sample_len = 0 sample_lens = [] batch = [] batches = [] for i in range(len(indices)): idx = indices[i] num_tokens = num_tokens_fn(idx) sample_lens.append(num_tokens) sample_len = max(sample_len, num_tokens) assert sample_len <= max_tokens, ( "sentence at index {} of size {} exceeds max_tokens " "limit of {}!".format(idx, sample_len, max_tokens) ) num_tokens = (len(batch) + 1) * sample_len if _is_batch_full(batch, num_tokens, max_tokens, max_sentences): mod_len = max( bsz_mult * (len(batch) // bsz_mult), len(batch) % bsz_mult, ) batches.append(batch[:mod_len]) batch = batch[mod_len:] sample_lens = sample_lens[mod_len:] sample_len = max(sample_lens) if len(sample_lens) > 0 else 0 batch.append(idx) if len(batch) > 0: batches.append(batch) return batches def unpack_dict_to_list(samples): samples_ = [] bsz = samples.get('outputs').size(0) for i in range(bsz): res = {} for k, v in samples.items(): try: res[k] = v[i] except: pass samples_.append(res) return samples_ def remove_padding(x, padding_idx=0): if x is None: return None assert len(x.shape) in [1, 2] if len(x.shape) == 2: # [T, H] return x[np.abs(x).sum(-1) != padding_idx] elif len(x.shape) == 1: # [T] return x[x != padding_idx] def data_loader(fn): """ Decorator to make any fx with this use the lazy property :param fn: :return: """ wraps(fn) attr_name = '_lazy_' + fn.__name__ def _get_data_loader(self): try: value = getattr(self, attr_name) except AttributeError: try: value = fn(self) # Lazy evaluation, done only once. except AttributeError as e: # Guard against AttributeError suppression. (Issue #142) traceback.print_exc() error = f'{fn.__name__}: An AttributeError was encountered: ' + str(e) raise RuntimeError(error) from e setattr(self, attr_name, value) # Memoize evaluation. return value return _get_data_loader class BaseDataset(torch.utils.data.Dataset): def __init__(self, shuffle): super().__init__() self.hparams = hparams self.shuffle = shuffle self.sort_by_len = hparams['sort_by_len'] self.sizes = None @property def _sizes(self): return self.sizes def __getitem__(self, index): raise NotImplementedError def collater(self, samples): raise NotImplementedError def __len__(self): return len(self._sizes) def num_tokens(self, index): return self.size(index) def size(self, index): """Return an example's size as a float or tuple. This value is used when filtering a dataset with ``--max-positions``.""" return min(self._sizes[index], hparams['max_frames']) def ordered_indices(self): """Return an ordered list of indices. Batches will be constructed based on this order.""" if self.shuffle: indices = np.random.permutation(len(self)) if self.sort_by_len: indices = indices[np.argsort(np.array(self._sizes)[indices], kind='mergesort')] else: indices = np.arange(len(self)) return indices @property def num_workers(self): return int(os.getenv('NUM_WORKERS', hparams['ds_workers'])) class BaseConcatDataset(ConcatDataset): def collater(self, samples): return self.datasets[0].collater(samples) @property def _sizes(self): if not hasattr(self, 'sizes'): self.sizes = list(chain.from_iterable([d._sizes for d in self.datasets])) return self.sizes def size(self, index): return min(self._sizes[index], hparams['max_frames']) def num_tokens(self, index): return self.size(index) def ordered_indices(self): """Return an ordered list of indices. Batches will be constructed based on this order.""" if self.datasets[0].shuffle: indices = np.random.permutation(len(self)) if self.datasets[0].sort_by_len: indices = indices[np.argsort(np.array(self._sizes)[indices], kind='mergesort')] else: indices = np.arange(len(self)) return indices @property def num_workers(self): return self.datasets[0].num_workers