import torch import os import importlib from inference.tts.base_tts_infer import BaseTTSInfer from utils.ckpt_utils import load_ckpt, get_last_checkpoint from modules.GenerSpeech.model.generspeech import GenerSpeech from data_gen.tts.emotion import inference as EmotionEncoder from data_gen.tts.emotion.inference import embed_utterance as Embed_utterance from data_gen.tts.emotion.inference import preprocess_wav from data_gen.tts.data_gen_utils import is_sil_phoneme from resemblyzer import VoiceEncoder from utils import audio class GenerSpeechInfer(BaseTTSInfer): def build_model(self): model = GenerSpeech(self.ph_encoder) model.eval() load_ckpt(model, self.hparams['work_dir'], 'model') return model def preprocess_input(self, inp): """ :param inp: {'text': str, 'item_name': (str, optional), 'spk_name': (str, optional)} :return: """ # processed text preprocessor, preprocess_args = self.preprocessor, self.preprocess_args text_raw = inp['text'] item_name = inp.get('item_name', '') ph, txt, word, ph2word, ph_gb_word = preprocessor.txt_to_ph(preprocessor.txt_processor, text_raw, preprocess_args) ph_token = self.ph_encoder.encode(ph) # processed ref audio ref_audio = inp['ref_audio'] processed_ref_audio = 'example/temp.wav' voice_encoder = VoiceEncoder().cuda() encoder = [self.ph_encoder, self.word_encoder] EmotionEncoder.load_model(self.hparams['emotion_encoder_path']) binarizer_cls = self.hparams.get("binarizer_cls", 'data_gen.tts.base_binarizerr.BaseBinarizer') pkg = ".".join(binarizer_cls.split(".")[:-1]) cls_name = binarizer_cls.split(".")[-1] binarizer_cls = getattr(importlib.import_module(pkg), cls_name) ref_audio_raw, ref_text_raw = self.asr(ref_audio) # prepare text ph_ref, txt_ref, word_ref, ph2word_ref, ph_gb_word_ref = preprocessor.txt_to_ph(preprocessor.txt_processor, ref_text_raw, preprocess_args) ph_gb_word_nosil = ["_".join([p for p in w.split("_") if not is_sil_phoneme(p)]) for w in ph_gb_word_ref.split(" ") if not is_sil_phoneme(w)] phs_for_align = ['SIL'] + ph_gb_word_nosil + ['SIL'] phs_for_align = " ".join(phs_for_align) # prepare files for alignment os.system('rm -r example/; mkdir example/') audio.save_wav(ref_audio_raw, processed_ref_audio, self.hparams['audio_sample_rate']) with open(f'example/temp.lab', 'w') as f_txt: f_txt.write(phs_for_align) os.system(f'mfa align example/ {self.hparams["binary_data_dir"]}/mfa_dict.txt {self.hparams["binary_data_dir"]}/mfa_model.zip example/textgrid/ --clean') item2tgfn = 'example/textgrid/temp.TextGrid' # prepare textgrid alignment item = binarizer_cls.process_item(item_name, ph_ref, txt_ref, item2tgfn, processed_ref_audio, 0, 0, encoder, self.hparams['binarization_args']) item['emo_embed'] = Embed_utterance(preprocess_wav(item['wav_fn'])) item['spk_embed'] = voice_encoder.embed_utterance(item['wav']) item.update({ 'ref_ph': item['ph'], 'ph': ph, 'ph_token': ph_token, 'text': txt }) return item def input_to_batch(self, item): item_names = [item['item_name']] text = [item['text']] ph = [item['ph']] txt_tokens = torch.LongTensor(item['ph_token'])[None, :].to(self.device) txt_lengths = torch.LongTensor([txt_tokens.shape[1]]).to(self.device) mels = torch.FloatTensor(item['mel'])[None, :].to(self.device) f0 = torch.FloatTensor(item['f0'])[None, :].to(self.device) # uv = torch.FloatTensor(item['uv']).to(self.device) mel2ph = torch.LongTensor(item['mel2ph'])[None, :].to(self.device) spk_embed = torch.FloatTensor(item['spk_embed'])[None, :].to(self.device) emo_embed = torch.FloatTensor(item['emo_embed'])[None, :].to(self.device) ph2word = torch.LongTensor(item['ph2word'])[None, :].to(self.device) mel2word = torch.LongTensor(item['mel2word'])[None, :].to(self.device) word_tokens = torch.LongTensor(item['word_tokens'])[None, :].to(self.device) batch = { 'item_name': item_names, 'text': text, 'ph': ph, 'mels': mels, 'f0': f0, 'txt_tokens': txt_tokens, 'txt_lengths': txt_lengths, 'spk_embed': spk_embed, 'emo_embed': emo_embed, 'mel2ph': mel2ph, 'ph2word': ph2word, 'mel2word': mel2word, 'word_tokens': word_tokens, } return batch def forward_model(self, inp): sample = self.input_to_batch(inp) txt_tokens = sample['txt_tokens'] # [B, T_t] with torch.no_grad(): output = self.model(txt_tokens, ref_mel2ph=sample['mel2ph'], ref_mel2word=sample['mel2word'], ref_mels=sample['mels'], spk_embed=sample['spk_embed'], emo_embed=sample['emo_embed'], global_steps=300000, infer=True) mel_out = output['mel_out'] wav_out = self.run_vocoder(mel_out) wav_out = wav_out.squeeze().cpu().numpy() return wav_out if __name__ == '__main__': inp = { 'text': 'here we go', 'ref_audio': 'assets/0011_001570.wav' } GenerSpeechInfer.example_run(inp)