import sys import os sys.path.append(os.path.dirname(os.path.realpath(__file__))) sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'NeuralSeq')) sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'text_to_audio/Make_An_Audio')) sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'audio_detection')) sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'mono2binaural')) import matplotlib import librosa from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation import torch from diffusers import StableDiffusionPipeline from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler import re import uuid import soundfile from diffusers import StableDiffusionInpaintPipeline from PIL import Image import numpy as np from omegaconf import OmegaConf from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering import cv2 import einops from einops import repeat from pytorch_lightning import seed_everything import random from ldm.util import instantiate_from_config from ldm.data.extract_mel_spectrogram import TRANSFORMS_16000 from pathlib import Path from vocoder.hifigan.modules import VocoderHifigan from vocoder.bigvgan.models import VocoderBigVGAN from ldm.models.diffusion.ddim import DDIMSampler from wav_evaluation.models.CLAPWrapper import CLAPWrapper from inference.svs.ds_e2e import DiffSingerE2EInfer from audio_to_text.inference_waveform import AudioCapModel import whisper from text_to_speech.TTS_binding import TTSInference from inference.svs.ds_e2e import DiffSingerE2EInfer from inference.tts.GenerSpeech import GenerSpeechInfer from utils.hparams import set_hparams from utils.hparams import hparams as hp from utils.os_utils import move_file import scipy.io.wavfile as wavfile from audio_infer.utils import config as detection_config from audio_infer.pytorch.models import PVT from src.models import BinauralNetwork from sound_extraction.model.LASSNet import LASSNet from sound_extraction.utils.stft import STFT from sound_extraction.utils.wav_io import load_wav, save_wav from target_sound_detection.src import models as tsd_models from target_sound_detection.src.models import event_labels from target_sound_detection.src.utils import median_filter, decode_with_timestamps import clip def prompts(name, description): def decorator(func): func.name = name func.description = description return func return decorator def initialize_model(config, ckpt, device): config = OmegaConf.load(config) model = instantiate_from_config(config.model) model.load_state_dict(torch.load(ckpt,map_location='cpu')["state_dict"], strict=False) model = model.to(device) model.cond_stage_model.to(model.device) model.cond_stage_model.device = model.device sampler = DDIMSampler(model) return sampler def initialize_model_inpaint(config, ckpt): config = OmegaConf.load(config) model = instantiate_from_config(config.model) model.load_state_dict(torch.load(ckpt,map_location='cpu')["state_dict"], strict=False) device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model = model.to(device) print(model.device,device,model.cond_stage_model.device) sampler = DDIMSampler(model) return sampler def select_best_audio(prompt,wav_list): clap_model = CLAPWrapper('text_to_audio/Make_An_Audio/useful_ckpts/CLAP/CLAP_weights_2022.pth','text_to_audio/Make_An_Audio/useful_ckpts/CLAP/config.yml',use_cuda=torch.cuda.is_available()) text_embeddings = clap_model.get_text_embeddings([prompt]) score_list = [] for data in wav_list: sr,wav = data audio_embeddings = clap_model.get_audio_embeddings([(torch.FloatTensor(wav),sr)], resample=True) score = clap_model.compute_similarity(audio_embeddings, text_embeddings,use_logit_scale=False).squeeze().cpu().numpy() score_list.append(score) max_index = np.array(score_list).argmax() print(score_list,max_index) return wav_list[max_index] class T2I: def __init__(self, device): print("Initializing T2I to %s" % device) self.device = device self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) self.text_refine_tokenizer = AutoTokenizer.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion") self.text_refine_model = AutoModelForCausalLM.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion") self.text_refine_gpt2_pipe = pipeline("text-generation", model=self.text_refine_model, tokenizer=self.text_refine_tokenizer, device=self.device) self.pipe.to(device) @prompts(name="Generate Image From User Input Text", description="useful when you want to generate an image from a user input text and save it to a file. " "like: generate an image of an object or something, or generate an image that includes some objects. " "The input to this tool should be a string, representing the text used to generate image. ") def inference(self, text): image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png") refined_text = self.text_refine_gpt2_pipe(text)[0]["generated_text"] print(f'{text} refined to {refined_text}') image = self.pipe(refined_text).images[0] image.save(image_filename) print(f"Processed T2I.run, text: {text}, image_filename: {image_filename}") return image_filename class ImageCaptioning: def __init__(self, device): print("Initializing ImageCaptioning to %s" % device) self.device = device self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(self.device) @prompts(name="Remove Something From The Photo", description="useful when you want to remove and object or something from the photo " "from its description or location. " "The input to this tool should be a comma separated string of two, " "representing the image_path and the object need to be removed. ") def inference(self, image_path): inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device) out = self.model.generate(**inputs) captions = self.processor.decode(out[0], skip_special_tokens=True) return captions class T2A: def __init__(self, device): print("Initializing Make-An-Audio to %s" % device) self.device = device self.sampler = initialize_model('text_to_audio/Make_An_Audio/configs/text-to-audio/txt2audio_args.yaml', 'text_to_audio/Make_An_Audio/useful_ckpts/ta40multi_epoch=000085.ckpt', device=device) self.vocoder = VocoderBigVGAN('text_to_audio/Make_An_Audio/vocoder/logs/bigv16k53w',device=device) def txt2audio(self, text, seed = 55, scale = 1.5, ddim_steps = 100, n_samples = 3, W = 624, H = 80): SAMPLE_RATE = 16000 prng = np.random.RandomState(seed) start_code = prng.randn(n_samples, self.sampler.model.first_stage_model.embed_dim, H // 8, W // 8) start_code = torch.from_numpy(start_code).to(device=self.device, dtype=torch.float32) uc = self.sampler.model.get_learned_conditioning(n_samples * [""]) c = self.sampler.model.get_learned_conditioning(n_samples * [text]) shape = [self.sampler.model.first_stage_model.embed_dim, H//8, W//8] # (z_dim, 80//2^x, 848//2^x) samples_ddim, _ = self.sampler.sample(S = ddim_steps, conditioning = c, batch_size = n_samples, shape = shape, verbose = False, unconditional_guidance_scale = scale, unconditional_conditioning = uc, x_T = start_code) x_samples_ddim = self.sampler.model.decode_first_stage(samples_ddim) x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0) # [0, 1] wav_list = [] for idx,spec in enumerate(x_samples_ddim): wav = self.vocoder.vocode(spec) wav_list.append((SAMPLE_RATE,wav)) best_wav = select_best_audio(text, wav_list) return best_wav @prompts(name="Generate Audio From User Input Text", description="useful for when you want to generate an audio " "from a user input text and it saved it to a file." "The input to this tool should be a string, " "representing the text used to generate audio.") def inference(self, text, seed = 55, scale = 1.5, ddim_steps = 100, n_samples = 3, W = 624, H = 80): melbins,mel_len = 80,624 with torch.no_grad(): result = self.txt2audio( text = text, H = melbins, W = mel_len ) audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") soundfile.write(audio_filename, result[1], samplerate = 16000) print(f"Processed T2I.run, text: {text}, audio_filename: {audio_filename}") return audio_filename class I2A: def __init__(self, device): print("Initializing Make-An-Audio-Image to %s" % device) self.device = device self.sampler = initialize_model('text_to_audio/Make_An_Audio/configs/img_to_audio/img2audio_args.yaml', 'text_to_audio/Make_An_Audio/useful_ckpts/ta54_epoch=000216.ckpt', device=device) self.vocoder = VocoderBigVGAN('text_to_audio/Make_An_Audio/vocoder/logs/bigv16k53w',device=device) def img2audio(self, image, seed = 55, scale = 3, ddim_steps = 100, W = 624, H = 80): SAMPLE_RATE = 16000 n_samples = 1 # only support 1 sample prng = np.random.RandomState(seed) start_code = prng.randn(n_samples, self.sampler.model.first_stage_model.embed_dim, H // 8, W // 8) start_code = torch.from_numpy(start_code).to(device=self.device, dtype=torch.float32) uc = self.sampler.model.get_learned_conditioning(n_samples * [""]) #image = Image.fromarray(image) image = Image.open(image) image = self.sampler.model.cond_stage_model.preprocess(image).unsqueeze(0) image_embedding = self.sampler.model.cond_stage_model.forward_img(image) c = image_embedding.repeat(n_samples, 1, 1) shape = [self.sampler.model.first_stage_model.embed_dim, H//8, W//8] # (z_dim, 80//2^x, 848//2^x) samples_ddim, _ = self.sampler.sample(S=ddim_steps, conditioning=c, batch_size=n_samples, shape=shape, verbose=False, unconditional_guidance_scale=scale, unconditional_conditioning=uc, x_T=start_code) x_samples_ddim = self.sampler.model.decode_first_stage(samples_ddim) x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0) # [0, 1] wav_list = [] for idx,spec in enumerate(x_samples_ddim): wav = self.vocoder.vocode(spec) wav_list.append((SAMPLE_RATE,wav)) best_wav = wav_list[0] return best_wav @prompts(name="Generate Audio From The Image", description="useful for when you want to generate an audio " "based on an image. " "The input to this tool should be a string, " "representing the image_path. ") def inference(self, image, seed = 55, scale = 3, ddim_steps = 100, W = 624, H = 80): melbins,mel_len = 80,624 with torch.no_grad(): result = self.img2audio( image=image, H=melbins, W=mel_len ) audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") soundfile.write(audio_filename, result[1], samplerate = 16000) print(f"Processed I2a.run, image_filename: {image}, audio_filename: {audio_filename}") return audio_filename class TTS: def __init__(self, device=None): self.model = TTSInference(device) @prompts(name="Synthesize Speech Given the User Input Text", description="useful for when you want to convert a user input text into speech audio it saved it to a file." "The input to this tool should be a string, " "representing the text used to be converted to speech.") def inference(self, text): inp = {"text": text} out = self.model.infer_once(inp) audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") soundfile.write(audio_filename, out, samplerate = 22050) return audio_filename class T2S: def __init__(self, device= None): if device is None: device = 'cuda' if torch.cuda.is_available() else 'cpu' print("Initializing DiffSinger to %s" % device) self.device = device self.exp_name = 'checkpoints/0831_opencpop_ds1000' self.config= 'NeuralSeq/egs/egs_bases/svs/midi/e2e/opencpop/ds1000.yaml' self.set_model_hparams() self.pipe = DiffSingerE2EInfer(self.hp, device) self.default_inp = { 'text': '你 说 你 不 SP 懂 为 何 在 这 时 牵 手 AP', 'notes': 'D#4/Eb4 | D#4/Eb4 | D#4/Eb4 | D#4/Eb4 | rest | D#4/Eb4 | D4 | D4 | D4 | D#4/Eb4 | F4 | D#4/Eb4 | D4 | rest', 'notes_duration': '0.113740 | 0.329060 | 0.287950 | 0.133480 | 0.150900 | 0.484730 | 0.242010 | 0.180820 | 0.343570 | 0.152050 | 0.266720 | 0.280310 | 0.633300 | 0.444590' } def set_model_hparams(self): set_hparams(config=self.config, exp_name=self.exp_name, print_hparams=False) self.hp = hp @prompts(name="Generate Singing Voice From User Input Text, Note and Duration Sequence", description="useful for when you want to generate a piece of singing voice (Optional: from User Input Text, Note and Duration Sequence) " "and save it to a file." "If Like: Generate a piece of singing voice, the input to this tool should be \"\" since there is no User Input Text, Note and Duration Sequence. " "If Like: Generate a piece of singing voice. Text: xxx, Note: xxx, Duration: xxx. " "Or Like: Generate a piece of singing voice. Text is xxx, note is xxx, duration is xxx." "The input to this tool should be a comma seperated string of three, " "representing text, note and duration sequence since User Input Text, Note and Duration Sequence are all provided. ") def inference(self, inputs): self.set_model_hparams() val = inputs.split(",") key = ['text', 'notes', 'notes_duration'] try: inp = {k: v for k, v in zip(key, val)} wav = self.pipe.infer_once(inp) except: print('Error occurs. Generate default audio sample.\n') inp = self.default_inp wav = self.pipe.infer_once(inp) wav *= 32767 audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") wavfile.write(audio_filename, self.hp['audio_sample_rate'], wav.astype(np.int16)) print(f"Processed T2S.run, audio_filename: {audio_filename}") return audio_filename class TTS_OOD: def __init__(self, device): if device is None: device = 'cuda' if torch.cuda.is_available() else 'cpu' print("Initializing GenerSpeech to %s" % device) self.device = device self.exp_name = 'checkpoints/GenerSpeech' self.config = 'NeuralSeq/modules/GenerSpeech/config/generspeech.yaml' self.set_model_hparams() self.pipe = GenerSpeechInfer(self.hp, device) def set_model_hparams(self): set_hparams(config=self.config, exp_name=self.exp_name, print_hparams=False) f0_stats_fn = f'{hp["binary_data_dir"]}/train_f0s_mean_std.npy' if os.path.exists(f0_stats_fn): hp['f0_mean'], hp['f0_std'] = np.load(f0_stats_fn) hp['f0_mean'] = float(hp['f0_mean']) hp['f0_std'] = float(hp['f0_std']) hp['emotion_encoder_path'] = 'checkpoints/Emotion_encoder.pt' self.hp = hp @prompts(name="Style Transfer", description="useful for when you want to generate speech samples with styles " "(e.g., timbre, emotion, and prosody) derived from a reference custom voice. " "Like: Generate a speech with style transferred from this voice. The text is xxx., or speak using the voice of this audio. The text is xxx." "The input to this tool should be a comma seperated string of two, " "representing reference audio path and input text. " ) def inference(self, inputs): self.set_model_hparams() key = ['ref_audio', 'text'] val = inputs.split(",") inp = {k: v for k, v in zip(key, val)} wav = self.pipe.infer_once(inp) wav *= 32767 audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") wavfile.write(audio_filename, self.hp['audio_sample_rate'], wav.astype(np.int16)) print( f"Processed GenerSpeech.run. Input text:{val[1]}. Input reference audio: {val[0]}. Output Audio_filename: {audio_filename}") return audio_filename class Inpaint: def __init__(self, device): print("Initializing Make-An-Audio-inpaint to %s" % device) self.device = device self.sampler = initialize_model_inpaint('text_to_audio/Make_An_Audio/configs/inpaint/txt2audio_args.yaml', 'text_to_audio/Make_An_Audio/useful_ckpts/inpaint7_epoch00047.ckpt') self.vocoder = VocoderBigVGAN('text_to_audio/Make_An_Audio/vocoder/logs/bigv16k53w',device=device) self.cmap_transform = matplotlib.cm.viridis def make_batch_sd(self, mel, mask, num_samples=1): mel = torch.from_numpy(mel)[None,None,...].to(dtype=torch.float32) mask = torch.from_numpy(mask)[None,None,...].to(dtype=torch.float32) masked_mel = (1 - mask) * mel mel = mel * 2 - 1 mask = mask * 2 - 1 masked_mel = masked_mel * 2 -1 batch = { "mel": repeat(mel.to(device=self.device), "1 ... -> n ...", n=num_samples), "mask": repeat(mask.to(device=self.device), "1 ... -> n ...", n=num_samples), "masked_mel": repeat(masked_mel.to(device=self.device), "1 ... -> n ...", n=num_samples), } return batch def gen_mel(self, input_audio_path): SAMPLE_RATE = 16000 sr, ori_wav = wavfile.read(input_audio_path) print("gen_mel") print(sr,ori_wav.shape,ori_wav) ori_wav = ori_wav.astype(np.float32, order='C') / 32768.0 if len(ori_wav.shape)==2:# stereo ori_wav = librosa.to_mono(ori_wav.T)# gradio load wav shape could be (wav_len,2) but librosa expects (2,wav_len) print(sr,ori_wav.shape,ori_wav) ori_wav = librosa.resample(ori_wav,orig_sr = sr,target_sr = SAMPLE_RATE) mel_len,hop_size = 848,256 input_len = mel_len * hop_size if len(ori_wav) < input_len: input_wav = np.pad(ori_wav,(0,mel_len*hop_size),constant_values=0) else: input_wav = ori_wav[:input_len] mel = TRANSFORMS_16000(input_wav) return mel def gen_mel_audio(self, input_audio): SAMPLE_RATE = 16000 sr,ori_wav = input_audio print("gen_mel_audio") print(sr,ori_wav.shape,ori_wav) ori_wav = ori_wav.astype(np.float32, order='C') / 32768.0 if len(ori_wav.shape)==2:# stereo ori_wav = librosa.to_mono(ori_wav.T)# gradio load wav shape could be (wav_len,2) but librosa expects (2,wav_len) print(sr,ori_wav.shape,ori_wav) ori_wav = librosa.resample(ori_wav,orig_sr = sr,target_sr = SAMPLE_RATE) mel_len,hop_size = 848,256 input_len = mel_len * hop_size if len(ori_wav) < input_len: input_wav = np.pad(ori_wav,(0,mel_len*hop_size),constant_values=0) else: input_wav = ori_wav[:input_len] mel = TRANSFORMS_16000(input_wav) return mel def inpaint(self, batch, seed, ddim_steps, num_samples=1, W=512, H=512): model = self.sampler.model prng = np.random.RandomState(seed) start_code = prng.randn(num_samples, model.first_stage_model.embed_dim, H // 8, W // 8) start_code = torch.from_numpy(start_code).to(device=self.device, dtype=torch.float32) c = model.get_first_stage_encoding(model.encode_first_stage(batch["masked_mel"])) cc = torch.nn.functional.interpolate(batch["mask"], size=c.shape[-2:]) c = torch.cat((c, cc), dim=1) # (b,c+1,h,w) 1 is mask shape = (c.shape[1]-1,)+c.shape[2:] samples_ddim, _ = self.sampler.sample(S=ddim_steps, conditioning=c, batch_size=c.shape[0], shape=shape, verbose=False) x_samples_ddim = model.decode_first_stage(samples_ddim) mask = batch["mask"]# [-1,1] mel = torch.clamp((batch["mel"]+1.0)/2.0,min=0.0, max=1.0) mask = torch.clamp((batch["mask"]+1.0)/2.0,min=0.0, max=1.0) predicted_mel = torch.clamp((x_samples_ddim+1.0)/2.0,min=0.0, max=1.0) inpainted = (1-mask)*mel+mask*predicted_mel inpainted = inpainted.cpu().numpy().squeeze() inapint_wav = self.vocoder.vocode(inpainted) return inpainted, inapint_wav def predict(self, input_audio, mel_and_mask, seed = 55, ddim_steps = 100): SAMPLE_RATE = 16000 torch.set_grad_enabled(False) mel_img = Image.open(mel_and_mask['image']) mask_img = Image.open(mel_and_mask["mask"]) show_mel = np.array(mel_img.convert("L"))/255 mask = np.array(mask_img.convert("L"))/255 mel_bins,mel_len = 80,848 input_mel = self.gen_mel_audio(input_audio)[:,:mel_len] mask = np.pad(mask,((0,0),(0,mel_len-mask.shape[1])),mode='constant',constant_values=0) print(mask.shape,input_mel.shape) with torch.no_grad(): batch = self.make_batch_sd(input_mel,mask,num_samples=1) inpainted,gen_wav = self.inpaint( batch=batch, seed=seed, ddim_steps=ddim_steps, num_samples=1, H=mel_bins, W=mel_len ) inpainted = inpainted[:,:show_mel.shape[1]] color_mel = self.cmap_transform(inpainted) input_len = int(input_audio[1].shape[0] * SAMPLE_RATE / input_audio[0]) gen_wav = (gen_wav * 32768).astype(np.int16)[:input_len] image = Image.fromarray((color_mel*255).astype(np.uint8)) image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png") image.save(image_filename) audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") soundfile.write(audio_filename, gen_wav, samplerate = 16000) return image_filename, audio_filename @prompts(name="Audio Inpainting", description="useful for when you want to inpaint a mel spectrum of an audio and predict this audio, " "this tool will generate a mel spectrum and you can inpaint it, receives audio_path as input. " "The input to this tool should be a string, " "representing the audio_path. " ) def inference(self, input_audio_path): crop_len = 500 crop_mel = self.gen_mel(input_audio_path)[:,:crop_len] color_mel = self.cmap_transform(crop_mel) image = Image.fromarray((color_mel*255).astype(np.uint8)) image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png") image.save(image_filename) return image_filename class ASR: def __init__(self, device): print("Initializing Whisper to %s" % device) self.device = device self.model = whisper.load_model("base", device=device) @prompts(name="Transcribe speech", description="useful for when you want to know the text corresponding to a human speech, " "receives audio_path as input. " "The input to this tool should be a string, " "representing the audio_path. " ) def inference(self, audio_path): audio = whisper.load_audio(audio_path) audio = whisper.pad_or_trim(audio) mel = whisper.log_mel_spectrogram(audio).to(self.device) _, probs = self.model.detect_language(mel) options = whisper.DecodingOptions() result = whisper.decode(self.model, mel, options) return result.text class A2T: def __init__(self, device): print("Initializing Audio-To-Text Model to %s" % device) self.device = device self.model = AudioCapModel("audio_to_text/audiocaps_cntrstv_cnn14rnn_trm") @prompts(name="Generate Text From The Audio", description="useful for when you want to describe an audio in text, " "receives audio_path as input. " "The input to this tool should be a string, " "representing the audio_path. " ) def inference(self, audio_path): audio = whisper.load_audio(audio_path) caption_text = self.model(audio) return caption_text[0] class SoundDetection: def __init__(self, device): self.device = device self.sample_rate = 32000 self.window_size = 1024 self.hop_size = 320 self.mel_bins = 64 self.fmin = 50 self.fmax = 14000 self.model_type = 'PVT' self.checkpoint_path = 'audio_detection/audio_infer/useful_ckpts/audio_detection.pth' self.classes_num = detection_config.classes_num self.labels = detection_config.labels self.frames_per_second = self.sample_rate // self.hop_size # Model = eval(self.model_type) self.model = PVT(sample_rate=self.sample_rate, window_size=self.window_size, hop_size=self.hop_size, mel_bins=self.mel_bins, fmin=self.fmin, fmax=self.fmax, classes_num=self.classes_num) checkpoint = torch.load(self.checkpoint_path, map_location=self.device) self.model.load_state_dict(checkpoint['model']) self.model.to(device) @prompts(name="Detect The Sound Event From The Audio", description="useful for when you want to know what event in the audio and the sound event start or end time, it will return an image " "receives audio_path as input. " "The input to this tool should be a string, " "representing the audio_path. " ) def inference(self, audio_path): # Forward (waveform, _) = librosa.core.load(audio_path, sr=self.sample_rate, mono=True) waveform = waveform[None, :] # (1, audio_length) waveform = torch.from_numpy(waveform) waveform = waveform.to(self.device) # Forward with torch.no_grad(): self.model.eval() batch_output_dict = self.model(waveform, None) framewise_output = batch_output_dict['framewise_output'].data.cpu().numpy()[0] """(time_steps, classes_num)""" # print('Sound event detection result (time_steps x classes_num): {}'.format( # framewise_output.shape)) import numpy as np import matplotlib.pyplot as plt sorted_indexes = np.argsort(np.max(framewise_output, axis=0))[::-1] top_k = 10 # Show top results top_result_mat = framewise_output[:, sorted_indexes[0 : top_k]] """(time_steps, top_k)""" # Plot result stft = librosa.core.stft(y=waveform[0].data.cpu().numpy(), n_fft=self.window_size, hop_length=self.hop_size, window='hann', center=True) frames_num = stft.shape[-1] fig, axs = plt.subplots(2, 1, sharex=True, figsize=(10, 4)) axs[0].matshow(np.log(np.abs(stft)), origin='lower', aspect='auto', cmap='jet') axs[0].set_ylabel('Frequency bins') axs[0].set_title('Log spectrogram') axs[1].matshow(top_result_mat.T, origin='upper', aspect='auto', cmap='jet', vmin=0, vmax=1) axs[1].xaxis.set_ticks(np.arange(0, frames_num, self.frames_per_second)) axs[1].xaxis.set_ticklabels(np.arange(0, frames_num / self.frames_per_second)) axs[1].yaxis.set_ticks(np.arange(0, top_k)) axs[1].yaxis.set_ticklabels(np.array(self.labels)[sorted_indexes[0 : top_k]]) axs[1].yaxis.grid(color='k', linestyle='solid', linewidth=0.3, alpha=0.3) axs[1].set_xlabel('Seconds') axs[1].xaxis.set_ticks_position('bottom') plt.tight_layout() image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png") plt.savefig(image_filename) return image_filename class SoundExtraction: def __init__(self, device): self.device = device self.model_file = 'sound_extraction/useful_ckpts/LASSNet.pt' self.stft = STFT() import torch.nn as nn self.model = nn.DataParallel(LASSNet(device)).to(device) checkpoint = torch.load(self.model_file) self.model.load_state_dict(checkpoint['model']) self.model.eval() @prompts(name="Extract Sound Event From Mixture Audio Based On Language Description", description="useful for when you extract target sound from a mixture audio, you can describe the target sound by text, " "receives audio_path and text as input. " "The input to this tool should be a comma seperated string of two, " "representing mixture audio path and input text." ) def inference(self, inputs): #key = ['ref_audio', 'text'] val = inputs.split(",") audio_path = val[0] # audio_path, text text = val[1] waveform = load_wav(audio_path) waveform = torch.tensor(waveform).transpose(1,0) mixed_mag, mixed_phase = self.stft.transform(waveform) text_query = ['[CLS] ' + text] mixed_mag = mixed_mag.transpose(2,1).unsqueeze(0).to(self.device) est_mask = self.model(mixed_mag, text_query) est_mag = est_mask * mixed_mag est_mag = est_mag.squeeze(1) est_mag = est_mag.permute(0, 2, 1) est_wav = self.stft.inverse(est_mag.cpu().detach(), mixed_phase) est_wav = est_wav.squeeze(0).squeeze(0).numpy() #est_path = f'output/est{i}.wav' audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") print('audio_filename ', audio_filename) save_wav(est_wav, audio_filename) return audio_filename class Binaural: def __init__(self, device): self.device = device self.model_file = 'mono2binaural/useful_ckpts/m2b/binaural_network.net' self.position_file = ['mono2binaural/useful_ckpts/m2b/tx_positions.txt', 'mono2binaural/useful_ckpts/m2b/tx_positions2.txt', 'mono2binaural/useful_ckpts/m2b/tx_positions3.txt', 'mono2binaural/useful_ckpts/m2b/tx_positions4.txt', 'mono2binaural/useful_ckpts/m2b/tx_positions5.txt'] self.net = BinauralNetwork(view_dim=7, warpnet_layers=4, warpnet_channels=64, ) self.net.load_from_file(self.model_file) self.sr = 48000 @prompts(name="Sythesize Binaural Audio From A Mono Audio Input", description="useful for when you want to transfer your mono audio into binaural audio, " "receives audio_path as input. " "The input to this tool should be a string, " "representing the audio_path. " ) def inference(self, audio_path): mono, sr = librosa.load(path=audio_path, sr=self.sr, mono=True) mono = torch.from_numpy(mono) mono = mono.unsqueeze(0) import numpy as np import random rand_int = random.randint(0,4) view = np.loadtxt(self.position_file[rand_int]).transpose().astype(np.float32) view = torch.from_numpy(view) if not view.shape[-1] * 400 == mono.shape[-1]: mono = mono[:,:(mono.shape[-1]//400)*400] # if view.shape[1]*400 > mono.shape[1]: m_a = view.shape[1] - mono.shape[-1]//400 rand_st = random.randint(0,m_a) view = view[:,m_a:m_a+(mono.shape[-1]//400)] # # binauralize and save output self.net.eval().to(self.device) mono, view = mono.to(self.device), view.to(self.device) chunk_size = 48000 # forward in chunks of 1s rec_field = 1000 # add 1000 samples as "safe bet" since warping has undefined rec. field rec_field -= rec_field % 400 # make sure rec_field is a multiple of 400 to match audio and view frequencies chunks = [ { "mono": mono[:, max(0, i-rec_field):i+chunk_size], "view": view[:, max(0, i-rec_field)//400:(i+chunk_size)//400] } for i in range(0, mono.shape[-1], chunk_size) ] for i, chunk in enumerate(chunks): with torch.no_grad(): mono = chunk["mono"].unsqueeze(0) view = chunk["view"].unsqueeze(0) binaural = self.net(mono, view).squeeze(0) if i > 0: binaural = binaural[:, -(mono.shape[-1]-rec_field):] chunk["binaural"] = binaural binaural = torch.cat([chunk["binaural"] for chunk in chunks], dim=-1) binaural = torch.clamp(binaural, min=-1, max=1).cpu() #binaural = chunked_forwarding(net, mono, view) audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") import torchaudio torchaudio.save(audio_filename, binaural, sr) #soundfile.write(audio_filename, binaural, samplerate = 48000) print(f"Processed Binaural.run, audio_filename: {audio_filename}") return audio_filename class TargetSoundDetection: def __init__(self, device): self.device = device self.MEL_ARGS = { 'n_mels': 64, 'n_fft': 2048, 'hop_length': int(22050 * 20 / 1000), 'win_length': int(22050 * 40 / 1000) } self.EPS = np.spacing(1) self.clip_model, _ = clip.load("ViT-B/32", device=self.device) self.event_labels = event_labels self.id_to_event = {i : label for i, label in enumerate(self.event_labels)} config = torch.load('audio_detection/target_sound_detection/useful_ckpts/tsd/run_config.pth', map_location='cpu') config_parameters = dict(config) config_parameters['tao'] = 0.6 if 'thres' not in config_parameters.keys(): config_parameters['thres'] = 0.5 if 'time_resolution' not in config_parameters.keys(): config_parameters['time_resolution'] = 125 model_parameters = torch.load('audio_detection/target_sound_detection/useful_ckpts/tsd/run_model_7_loss=-0.0724.pt' , map_location=lambda storage, loc: storage) # load parameter self.model = getattr(tsd_models, config_parameters['model'])(config_parameters, inputdim=64, outputdim=2, time_resolution=config_parameters['time_resolution'], **config_parameters['model_args']) self.model.load_state_dict(model_parameters) self.model = self.model.to(self.device).eval() self.re_embeds = torch.load('audio_detection/target_sound_detection/useful_ckpts/tsd/text_emb.pth') self.ref_mel = torch.load('audio_detection/target_sound_detection/useful_ckpts/tsd/ref_mel.pth') def extract_feature(self, fname): import soundfile as sf y, sr = sf.read(fname, dtype='float32') print('y ', y.shape) ti = y.shape[0]/sr if y.ndim > 1: y = y.mean(1) y = librosa.resample(y, sr, 22050) lms_feature = np.log(librosa.feature.melspectrogram(y, **self.MEL_ARGS) + self.EPS).T return lms_feature,ti def build_clip(self, text): text = clip.tokenize(text).to(self.device) # ["a diagram with dog", "a dog", "a cat"] text_features = self.clip_model.encode_text(text) return text_features def cal_similarity(self, target, retrievals): ans = [] for name in retrievals.keys(): tmp = retrievals[name] s = torch.cosine_similarity(target.squeeze(), tmp.squeeze(), dim=0) ans.append(s.item()) return ans.index(max(ans)) @prompts(name="Target Sound Detection", description="useful for when you want to know when the target sound event in the audio happens. You can use language descriptions to instruct the model, " "receives text description and audio_path as input. " "The input to this tool should be a comma seperated string of two, " "representing audio path and the text description. " ) def inference(self, inputs): audio_path, text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) target_emb = self.build_clip(text) # torch type idx = self.cal_similarity(target_emb, self.re_embeds) target_event = self.id_to_event[idx] embedding = self.ref_mel[target_event] embedding = torch.from_numpy(embedding) embedding = embedding.unsqueeze(0).to(self.device).float() inputs,ti = self.extract_feature(audio_path) inputs = torch.from_numpy(inputs) inputs = inputs.unsqueeze(0).to(self.device).float() decision, decision_up, logit = self.model(inputs, embedding) pred = decision_up.detach().cpu().numpy() pred = pred[:,:,0] frame_num = decision_up.shape[1] time_ratio = ti / frame_num filtered_pred = median_filter(pred, window_size=1, threshold=0.5) time_predictions = [] for index_k in range(filtered_pred.shape[0]): decoded_pred = [] decoded_pred_ = decode_with_timestamps(target_event, filtered_pred[index_k,:]) if len(decoded_pred_) == 0: # neg deal decoded_pred_.append((target_event, 0, 0)) decoded_pred.append(decoded_pred_) for num_batch in range(len(decoded_pred)): # when we test our model,the batch_size is 1 cur_pred = pred[num_batch] # Save each frame output, for later visualization label_prediction = decoded_pred[num_batch] # frame predict for event_label, onset, offset in label_prediction: time_predictions.append({ 'onset': onset*time_ratio, 'offset': offset*time_ratio,}) ans = '' for i,item in enumerate(time_predictions): ans = ans + 'segment' + str(i+1) + ' start_time: ' + str(item['onset']) + ' end_time: ' + str(item['offset']) + '\t' return ans