Spaces:
Running
on
Zero
Running
on
Zero
Add code
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- README copy.md +107 -0
- app.py +199 -0
- audiocaps_test_struct.tsv +3 -0
- data/audiocaps_test_struct.tsv +0 -0
- data/musiccaps_test_16000_struct.tsv +0 -0
- infer.sh +20 -0
- ldm/__pycache__/util.cpython-38.pyc +0 -0
- ldm/__pycache__/util.cpython-39.pyc +0 -0
- ldm/data/__pycache__/joinaudiodataset_anylen.cpython-38.pyc +0 -0
- ldm/data/__pycache__/joinaudiodataset_struct_sample_anylen.cpython-38.pyc +0 -0
- ldm/data/joinaudiodataset_anylen.py +330 -0
- ldm/data/joinaudiodataset_struct_sample_anylen.py +380 -0
- ldm/data/tsv_dirs/full_data/V1_new/audiocaps_train_16000.tsv +3 -0
- ldm/data/tsv_dirs/full_data/V2/MACS.tsv +3 -0
- ldm/data/tsv_dirs/full_data/V2/WavText5K.tsv +3 -0
- ldm/data/tsv_dirs/full_data/V2/adobe.tsv +3 -0
- ldm/data/tsv_dirs/full_data/V2/audiostock.tsv +3 -0
- ldm/data/tsv_dirs/full_data/V2/epidemic_sound.tsv +3 -0
- ldm/data/tsv_dirs/full_data/caps_struct/audiocaps_train_16000_struct2.tsv +3 -0
- ldm/data/txt_spec_dataset.py +171 -0
- ldm/data/video_spec_maa2_dataset.py +837 -0
- ldm/lr_scheduler.py +98 -0
- ldm/models/__pycache__/autoencoder.cpython-38.pyc +0 -0
- ldm/models/__pycache__/autoencoder.cpython-39.pyc +0 -0
- ldm/models/__pycache__/autoencoder1d.cpython-38.pyc +0 -0
- ldm/models/autoencoder.py +503 -0
- ldm/models/autoencoder1d.py +517 -0
- ldm/models/diffusion/__init__.py +0 -0
- ldm/models/diffusion/__pycache__/__init__.cpython-38.pyc +0 -0
- ldm/models/diffusion/__pycache__/__init__.cpython-39.pyc +0 -0
- ldm/models/diffusion/__pycache__/cfm1_audio.cpython-38.pyc +0 -0
- ldm/models/diffusion/__pycache__/cfm1_audio.cpython-39.pyc +0 -0
- ldm/models/diffusion/__pycache__/ddim.cpython-38.pyc +0 -0
- ldm/models/diffusion/__pycache__/ddim.cpython-39.pyc +0 -0
- ldm/models/diffusion/__pycache__/ddpm.cpython-38.pyc +0 -0
- ldm/models/diffusion/__pycache__/ddpm.cpython-39.pyc +0 -0
- ldm/models/diffusion/__pycache__/ddpm_audio.cpython-38.pyc +0 -0
- ldm/models/diffusion/__pycache__/ddpm_audio.cpython-39.pyc +0 -0
- ldm/models/diffusion/__pycache__/plms.cpython-38.pyc +0 -0
- ldm/models/diffusion/__pycache__/plms.cpython-39.pyc +0 -0
- ldm/models/diffusion/audioldm.py +818 -0
- ldm/models/diffusion/cfm1_audio.py +312 -0
- ldm/models/diffusion/cfm1_audio_sampler.py +105 -0
- ldm/models/diffusion/classifier.py +267 -0
- ldm/models/diffusion/ddim.py +262 -0
- ldm/models/diffusion/ddpm.py +1461 -0
- ldm/models/diffusion/ddpm_audio.py +865 -0
- ldm/models/diffusion/plms.py +236 -0
- ldm/models/diffusion/transport/__init__.py +73 -0
.gitattributes
CHANGED
@@ -32,4 +32,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
|
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
32 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.tsv filter=lfs diff=lfs merge=lfs -text
|
36 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README copy.md
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Make-An-Audio 3: Transforming Text into Audio via Flow-based Large Diffusion Transformers
|
2 |
+
|
3 |
+
PyTorch Implementation of [Lumina-t2x](https://arxiv.org/abs/2405.05945)
|
4 |
+
|
5 |
+
We will provide our implementation and pretrained models as open source in this repository recently.
|
6 |
+
|
7 |
+
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2305.18474)
|
8 |
+
[![Hugging Face](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-blue)](https://huggingface.co/spaces/AIGC-Audio/Lumina-Audio)
|
9 |
+
[![GitHub Stars](https://img.shields.io/github/stars/Text-to-Audio/Make-An-Audio-3?style=social)](https://github.com/Text-to-Audio/Make-An-Audio-3)
|
10 |
+
|
11 |
+
## Use pretrained model
|
12 |
+
We provide our implementation and pretrained models as open source in this repository.
|
13 |
+
|
14 |
+
Visit our [demo page](https://make-an-audio-2.github.io/) for audio samples.
|
15 |
+
## Quick Started
|
16 |
+
### Pretrained Models
|
17 |
+
Simply download the weights from [![Hugging Face](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-blue)](https://huggingface.co/Alpha-VLLM/Lumina-T2Music).
|
18 |
+
- Text Encoder: [FLAN-T5-Large](https://huggingface.co/google/flan-t5-large)
|
19 |
+
- VAE: Make-An-Audio 2, finetuned from [Make an Audio](https://github.com/Text-to-Audio/Make-An-Audio)
|
20 |
+
- Decoder: [Vocoder](https://github.com/NVIDIA/BigVGAN)
|
21 |
+
- `Music` Checkpoints: [huggingface](https://huggingface.co/Alpha-VLLM/Lumina-T2Music), `Audio` Checkpoints: [huggingface]()
|
22 |
+
|
23 |
+
### Generate audio/music from text
|
24 |
+
```
|
25 |
+
python3 scripts/txt2audio_for_2cap_flow.py
|
26 |
+
--outdir output_dir -r checkpoints_last.ckpt -b configs/txt2audio-cfm1-cfg-LargeDiT3.yaml --scale 3.0
|
27 |
+
--vocoder-ckpt useful_ckpts/bigvnat --test-dataset audiocaps
|
28 |
+
```
|
29 |
+
|
30 |
+
### Generate audio/music from audiocaps or musiccaps test dataset
|
31 |
+
- remember to relatively change `config["test_dataset]`
|
32 |
+
```
|
33 |
+
python3 scripts/txt2audio_for_2cap_flow.py
|
34 |
+
--outdir output_dir -r checkpoints_last.ckpt -b configs/txt2audio-cfm1-cfg-LargeDiT3.yaml --scale 3.0
|
35 |
+
--vocoder-ckpt useful_ckpts/bigvnat --test-dataset testset
|
36 |
+
```
|
37 |
+
|
38 |
+
### Generate audio/music from video
|
39 |
+
```
|
40 |
+
python3 scripts/video2audio_flow.py
|
41 |
+
--outdir output_dir -r checkpoints_last.ckpt -b configs/txt2audio-cfm1-cfg-LargeDiT3.yaml --scale 3.0
|
42 |
+
--vocoder-ckpt useful_ckpts/bigvnat --test-dataset vggsound
|
43 |
+
```
|
44 |
+
|
45 |
+
## Train
|
46 |
+
### Data preparation
|
47 |
+
- We can't provide the dataset download link for copyright issues. We provide the process code to generate melspec, count audio duration and generate structured caption.
|
48 |
+
- Before training, we need to construct the dataset information into a tsv file, which includes name (id for each audio), dataset (which dataset the audio belongs to), audio_path (the path of .wav file),caption (the caption of the audio) ,mel_path (the processed melspec file path of each audio), duration (the duration of the audio). We provide a tsv file of audiocaps test set: audiocaps_test_struct.tsv as a sample.
|
49 |
+
- We provide a tsv file of the audiocaps test set: ./audiocaps_test_16000_struct.tsv as a sample.
|
50 |
+
|
51 |
+
### Generate the melspec file of audio
|
52 |
+
Assume you have already got a tsv file to link each caption to its audio_path, which mean the tsv_file have "name","audio_path","dataset" and "caption" columns in it.
|
53 |
+
To get the melspec of audio, run the following command, which will save mels in ./processed
|
54 |
+
```
|
55 |
+
python preprocess/mel_spec.py --tsv_path tmp.tsv --num_gpus 1 --max_duration 10
|
56 |
+
```
|
57 |
+
|
58 |
+
### Count audio duration
|
59 |
+
To count the duration of the audio and save duration information in tsv file, run the following command:
|
60 |
+
```
|
61 |
+
python preprocess/add_duration.py --tsv_path tmp.tsv
|
62 |
+
```
|
63 |
+
|
64 |
+
### Generated structure caption from the original natural language caption
|
65 |
+
Firstly you need to get an authorization token in openai(https://openai.com/blog/openai-api), here is a tutorial(https://www.maisieai.com/help/how-to-get-an-openai-api-key-for-chatgpt). Then replace your key of variable openai_key in preprocess/n2s_by_openai.py. Run the following command to add structed caption, the tsv file with structured caption will be saved into {tsv_file_name}_struct.tsv:
|
66 |
+
```
|
67 |
+
python preprocess/n2s_by_openai.py --tsv_path tmp.tsv
|
68 |
+
```
|
69 |
+
|
70 |
+
### Place Tsv files
|
71 |
+
After generated structure caption, put the tsv with structed caption to ./data/main_spec_dir . And put tsv files without structured caption to ./data/no_struct_dir
|
72 |
+
|
73 |
+
Modify the config data.params.main_spec_dir and data.params.main_spec_dir.other_spec_dir_path respectively in config file configs/text2audio-ConcatDiT-ae1dnat_Skl20d2_struct2MLPanylen.yaml .
|
74 |
+
|
75 |
+
## Train variational autoencoder
|
76 |
+
Assume we have processed several datasets, and save the .tsv files in tsv_dir/*.tsv . Replace data.params.spec_dir_path with tsv_dir in the config file. Then we can train VAE with the following command. If you don't have 8 gpus in your machine, you can replace --gpus 0,1,...,gpu_nums
|
77 |
+
```
|
78 |
+
python main.py --base configs/research/autoencoder/autoencoder1d_kl20_natbig_r1_down2_disc2.yaml -t --gpus 0,1,2,3,4,5,6,7
|
79 |
+
```
|
80 |
+
|
81 |
+
## Train latent diffsuion
|
82 |
+
After trainning VAE, replace model.params.first_stage_config.params.ckpt_path with your trained VAE checkpoint path in the config file.
|
83 |
+
Run the following command to train Diffusion model
|
84 |
+
```
|
85 |
+
python main.py --base configs/research/text2audio/text2audio-ConcatDiT-ae1dnat_Skl20d2_freezeFlananylen_drop.yaml -t --gpus 0,1,2,3,4,5,6,7
|
86 |
+
```
|
87 |
+
|
88 |
+
## Evaluation
|
89 |
+
Please refer to [Make-An-Audio](https://github.com/Text-to-Audio/Make-An-Audio?tab=readme-ov-file#evaluation)
|
90 |
+
|
91 |
+
|
92 |
+
## Acknowledgements
|
93 |
+
This implementation uses parts of the code from the following Github repos:
|
94 |
+
[Make-An-Audio](https://github.com/Text-to-Audio/Make-An-Audio),
|
95 |
+
[AudioLCM](https://github.com/Text-to-Audio/AudioLCM),
|
96 |
+
[CLAP](https://github.com/LAION-AI/CLAP),
|
97 |
+
as described in our code.
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
## Citations ##
|
102 |
+
If you find this code useful in your research, please consider citing:
|
103 |
+
```bibtex
|
104 |
+
```
|
105 |
+
|
106 |
+
# Disclaimer ##
|
107 |
+
Any organization or individual is prohibited from using any technology mentioned in this paper to generate someone's speech without his/her consent, including but not limited to government leaders, political figures, and celebrities. If you do not comply with this item, you could be in violation of copyright laws.
|
app.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import argparse, os, sys, glob
|
3 |
+
import pathlib
|
4 |
+
directory = pathlib.Path(os.getcwd())
|
5 |
+
print(directory)
|
6 |
+
sys.path.append(str(directory))
|
7 |
+
import torch
|
8 |
+
import numpy as np
|
9 |
+
from omegaconf import OmegaConf
|
10 |
+
from ldm.util import instantiate_from_config
|
11 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
12 |
+
from ldm.models.diffusion.plms import PLMSSampler
|
13 |
+
import pandas as pd
|
14 |
+
from tqdm import tqdm
|
15 |
+
import preprocess.n2s_by_openai as n2s
|
16 |
+
from vocoder.bigvgan.models import VocoderBigVGAN
|
17 |
+
import soundfile
|
18 |
+
import torchaudio, math
|
19 |
+
import gradio
|
20 |
+
import gradio as gr
|
21 |
+
|
22 |
+
def load_model_from_config(config, ckpt = None, verbose=True):
|
23 |
+
model = instantiate_from_config(config.model)
|
24 |
+
if ckpt:
|
25 |
+
print(f"Loading model from {ckpt}")
|
26 |
+
pl_sd = torch.load(ckpt, map_location="cpu")
|
27 |
+
sd = pl_sd["state_dict"]
|
28 |
+
|
29 |
+
m, u = model.load_state_dict(sd, strict=False)
|
30 |
+
if len(m) > 0 and verbose:
|
31 |
+
print("missing keys:")
|
32 |
+
print(m)
|
33 |
+
if len(u) > 0 and verbose:
|
34 |
+
print("unexpected keys:")
|
35 |
+
print(u)
|
36 |
+
else:
|
37 |
+
print(f"Note chat no ckpt is loaded !!!")
|
38 |
+
|
39 |
+
model.cuda()
|
40 |
+
model.eval()
|
41 |
+
return model
|
42 |
+
|
43 |
+
|
44 |
+
class GenSamples:
|
45 |
+
def __init__(self,opt, model,outpath,config, vocoder = None,save_mel = True,save_wav = True) -> None:
|
46 |
+
self.opt = opt
|
47 |
+
self.model = model
|
48 |
+
self.outpath = outpath
|
49 |
+
if save_wav:
|
50 |
+
assert vocoder is not None
|
51 |
+
self.vocoder = vocoder
|
52 |
+
self.save_mel = save_mel
|
53 |
+
self.save_wav = save_wav
|
54 |
+
self.channel_dim = self.model.channels
|
55 |
+
self.config = config
|
56 |
+
|
57 |
+
def gen_test_sample(self,prompt, mel_name = None,wav_name = None, gt=None, video=None):# prompt is {'ori_caption':’xxx‘,'struct_caption':'xxx'}
|
58 |
+
uc = None
|
59 |
+
record_dicts = []
|
60 |
+
if self.opt['scale'] != 1.0:
|
61 |
+
try: # audiocaps
|
62 |
+
uc = self.model.get_learned_conditioning({'ori_caption': "",'struct_caption': ""})
|
63 |
+
except: # audioset
|
64 |
+
uc = self.model.get_learned_conditioning(prompt['ori_caption'])
|
65 |
+
for n in range(self.opt['n_iter']):
|
66 |
+
try: # audiocaps
|
67 |
+
c = self.model.get_learned_conditioning(prompt) # shape:[1,77,1280],即还没有变成句子embedding,仍是每个单词的embedding
|
68 |
+
except: # audioset
|
69 |
+
c = self.model.get_learned_conditioning(prompt['ori_caption'])
|
70 |
+
|
71 |
+
if self.channel_dim>0:
|
72 |
+
shape = [self.channel_dim, self.opt['H'], self.opt['W']] # (z_dim, 80//2^x, 848//2^x)
|
73 |
+
else:
|
74 |
+
shape = [1, self.opt['H'], self.opt['W']]
|
75 |
+
|
76 |
+
x0 = torch.randn(shape, device=self.model.device)
|
77 |
+
|
78 |
+
if self.opt['scale'] == 1: # w/o cfg
|
79 |
+
sample, _ = self.model.sample(c, 1, timesteps=self.opt['ddim_steps'], x_latent=x0)
|
80 |
+
else: # cfg
|
81 |
+
sample, _ = self.model.sample_cfg(c, self.opt['scale'], uc, 1, timesteps=self.opt['ddim_steps'], x_latent=x0)
|
82 |
+
x_samples_ddim = self.model.decode_first_stage(sample)
|
83 |
+
|
84 |
+
for idx,spec in enumerate(x_samples_ddim):
|
85 |
+
spec = spec.squeeze(0).cpu().numpy()
|
86 |
+
print(spec[0])
|
87 |
+
record_dict = {'caption':prompt['ori_caption'][0]}
|
88 |
+
if self.save_mel:
|
89 |
+
mel_path = os.path.join(self.outpath,mel_name+f'_{idx}.npy')
|
90 |
+
np.save(mel_path,spec)
|
91 |
+
record_dict['mel_path'] = mel_path
|
92 |
+
if self.save_wav:
|
93 |
+
wav = self.vocoder.vocode(spec)
|
94 |
+
wav_path = os.path.join(self.outpath,wav_name+f'_{idx}.wav')
|
95 |
+
soundfile.write(wav_path, wav, self.opt['sample_rate'])
|
96 |
+
record_dict['audio_path'] = wav_path
|
97 |
+
record_dicts.append(record_dict)
|
98 |
+
|
99 |
+
return record_dicts
|
100 |
+
|
101 |
+
@spaces.GPU(enable_queue=True)
|
102 |
+
def infer(ori_prompt, ddim_steps, scale, seed):
|
103 |
+
# np.random.seed(seed)
|
104 |
+
# torch.manual_seed(seed)
|
105 |
+
prompt = dict(ori_caption=ori_prompt,struct_caption=f'<{ori_prompt}& all>')
|
106 |
+
|
107 |
+
opt = {
|
108 |
+
'sample_rate': 16000,
|
109 |
+
'outdir': 'outputs/txt2music-samples',
|
110 |
+
'ddim_steps': ddim_steps,
|
111 |
+
'n_iter': 1,
|
112 |
+
'H': 20,
|
113 |
+
'W': 312,
|
114 |
+
'scale': scale,
|
115 |
+
'resume': 'useful_ckpts/music_generation/119.ckpt',
|
116 |
+
'base': 'configs/txt2music-cfm1-cfg-LargeDiT3.yaml',
|
117 |
+
'vocoder_ckpt': 'useful_ckpts/bigvnat',
|
118 |
+
}
|
119 |
+
|
120 |
+
config = OmegaConf.load(opt['base'])
|
121 |
+
model = load_model_from_config(config, opt['resume'])
|
122 |
+
|
123 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
124 |
+
model = model.to(device)
|
125 |
+
os.makedirs(opt['outdir'], exist_ok=True)
|
126 |
+
vocoder = VocoderBigVGAN(opt['vocoder_ckpt'],device)
|
127 |
+
generator = GenSamples(opt, model,opt['outdir'],config, vocoder,save_mel=False,save_wav=True)
|
128 |
+
|
129 |
+
with torch.no_grad():
|
130 |
+
with model.ema_scope():
|
131 |
+
wav_name = f'{prompt["ori_caption"].strip().replace(" ", "-")}'
|
132 |
+
generator.gen_test_sample(prompt,wav_name=wav_name)
|
133 |
+
|
134 |
+
file_path = os.path.join(opt['outdir'],wav_name+'_0.wav')
|
135 |
+
print(f"Your samples are ready and waiting four you here: \n{file_path} \nEnjoy.")
|
136 |
+
return file_path
|
137 |
+
|
138 |
+
def my_inference_function(text_prompt, ddim_steps, scale, seed):
|
139 |
+
file_path = infer(text_prompt, ddim_steps, scale, seed)
|
140 |
+
return file_path
|
141 |
+
|
142 |
+
|
143 |
+
with gr.Blocks() as demo:
|
144 |
+
with gr.Row():
|
145 |
+
gr.Markdown("## Make-An-Audio 3: Transforming Text into Audio via Flow-based Large Diffusion Transformers")
|
146 |
+
|
147 |
+
with gr.Row():
|
148 |
+
with gr.Column():
|
149 |
+
prompt = gr.Textbox(label="Prompt: Input your text here. ")
|
150 |
+
run_button = gr.Button()
|
151 |
+
|
152 |
+
with gr.Accordion("Advanced options", open=False):
|
153 |
+
ddim_steps = gr.Slider(label="ddim_steps", minimum=1,
|
154 |
+
maximum=50, value=25, step=1)
|
155 |
+
scale = gr.Slider(
|
156 |
+
label="Guidance Scale:(Large => more relevant to text but the quality may drop)", minimum=0.1, maximum=8.0, value=3.0, step=0.1
|
157 |
+
)
|
158 |
+
seed = gr.Slider(
|
159 |
+
label="Seed:Change this value (any integer number) will lead to a different generation result.",
|
160 |
+
minimum=0,
|
161 |
+
maximum=2147483647,
|
162 |
+
step=1,
|
163 |
+
value=44,
|
164 |
+
)
|
165 |
+
|
166 |
+
with gr.Column():
|
167 |
+
outaudio = gr.Audio()
|
168 |
+
|
169 |
+
run_button.click(fn=my_inference_function, inputs=[
|
170 |
+
prompt, ddim_steps, scale, seed], outputs=[outaudio])
|
171 |
+
with gr.Row():
|
172 |
+
with gr.Column():
|
173 |
+
gr.Examples(
|
174 |
+
examples = [['An amateur recording features a steel drum playing in a higher register',25,5,55],
|
175 |
+
['An instrumental song with a caribbean feel, happy mood, and featuring steel pan music, programmed percussion, and bass',25,5,55],
|
176 |
+
['This musical piece features a playful and emotionally melodic male vocal accompanied by piano',25,5,55],
|
177 |
+
['A eerie yet calming experimental electronic track featuring haunting synthesizer strings and pads',25,5,55],
|
178 |
+
['A slow tempo pop instrumental piece featuring only acoustic guitar with fingerstyle and percussive strumming techniques',25,5,55]],
|
179 |
+
inputs = [prompt, ddim_steps, scale, seed],
|
180 |
+
outputs = [outaudio]
|
181 |
+
)
|
182 |
+
with gr.Column():
|
183 |
+
pass
|
184 |
+
|
185 |
+
demo.launch()
|
186 |
+
|
187 |
+
|
188 |
+
# gradio_interface = gradio.Interface(
|
189 |
+
# fn = my_inference_function,
|
190 |
+
# inputs = "text",
|
191 |
+
# outputs = "audio"
|
192 |
+
# )
|
193 |
+
# gradio_interface.launch()
|
194 |
+
# text_prompt = 'An amateur recording features a steel drum playing in a higher register'
|
195 |
+
# # text_prompt = 'A slow tempo pop instrumental piece featuring only acoustic guitar with fingerstyle and percussive strumming techniques'
|
196 |
+
# ddim_steps=25
|
197 |
+
# scale=5.0
|
198 |
+
# seed=55
|
199 |
+
# my_inference_function(text_prompt, ddim_steps, scale, seed)
|
audiocaps_test_struct.tsv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:36d5f93b134ee6ed8c7e75adffca2e0a378fb683e67836abd78b50153659858b
|
3 |
+
size 1306277
|
data/audiocaps_test_struct.tsv
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
data/musiccaps_test_16000_struct.tsv
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
infer.sh
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# music prompt genneration
|
2 |
+
python3 scripts/txt2audio_for_2cap_flow.py \
|
3 |
+
--outdir output_dir_text -r useful_ckpts/music_generation/119.ckpt -b configs/txt2music-cfm1-cfg-LargeDiT3.yaml --scale 3.0 \
|
4 |
+
--vocoder-ckpt useful_ckpts/bigvnat
|
5 |
+
|
6 |
+
# music test dataset genneration
|
7 |
+
python3 scripts/txt2audio_for_2cap_flow.py \
|
8 |
+
--outdir results/music/dataset -r useful_ckpts/music_generation/119.ckpt -b configs/txt2music-cfm1-cfg-LargeDiT3.yaml --scale 3.0 \
|
9 |
+
--vocoder-ckpt useful_ckpts/bigvnat --test-dataset testset
|
10 |
+
|
11 |
+
# audio prompt genneration
|
12 |
+
python3 scripts/txt2audio_for_2cap_flow.py \
|
13 |
+
--prompt 'A train running on a railroad track followed by a vehicle door closing and a man talking in the distance while a train horn honks and railroad crossing warning signals ring' \
|
14 |
+
--outdir results/auido/text -r useful_ckpts/audio_generation/324.ckpt -b configs/txt2audio-cfm1-cfg-LargeDiT3.yaml --scale 3.0 \
|
15 |
+
--vocoder-ckpt useful_ckpts/bigvnat
|
16 |
+
|
17 |
+
# audio test dataset genneration
|
18 |
+
python3 scripts/txt2audio_for_2cap_flow.py \
|
19 |
+
--outdir results/auido/dataset -r useful_ckpts/audio_generation/324.ckpt -b configs/txt2audio-cfm1-cfg-LargeDiT3.yaml --scale 3.0 \
|
20 |
+
--vocoder-ckpt useful_ckpts/bigvnat --test-dataset testset
|
ldm/__pycache__/util.cpython-38.pyc
ADDED
Binary file (5.1 kB). View file
|
|
ldm/__pycache__/util.cpython-39.pyc
ADDED
Binary file (5.16 kB). View file
|
|
ldm/data/__pycache__/joinaudiodataset_anylen.cpython-38.pyc
ADDED
Binary file (12.1 kB). View file
|
|
ldm/data/__pycache__/joinaudiodataset_struct_sample_anylen.cpython-38.pyc
ADDED
Binary file (11.6 kB). View file
|
|
ldm/data/joinaudiodataset_anylen.py
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import math
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from torch.utils.data.sampler import Sampler
|
7 |
+
from torch.utils.data.distributed import DistributedSampler
|
8 |
+
import torch.distributed
|
9 |
+
from typing import TypeVar, Optional, Iterator,List
|
10 |
+
import logging
|
11 |
+
import pandas as pd
|
12 |
+
import glob
|
13 |
+
import torch.distributed as dist
|
14 |
+
logger = logging.getLogger(f'main.{__name__}')
|
15 |
+
|
16 |
+
sys.path.insert(0, '.') # nopep8
|
17 |
+
|
18 |
+
class JoinManifestSpecs(torch.utils.data.Dataset):
|
19 |
+
def __init__(self, split, spec_dir_path, mel_num=80,spec_crop_len=1248,mode='pad',pad_value=-5,drop=0,**kwargs):
|
20 |
+
super().__init__()
|
21 |
+
self.split = split
|
22 |
+
self.max_batch_len = spec_crop_len
|
23 |
+
self.min_batch_len = 64
|
24 |
+
self.mel_num = mel_num
|
25 |
+
self.min_factor = 4
|
26 |
+
self.drop = drop
|
27 |
+
self.pad_value = pad_value
|
28 |
+
assert mode in ['pad','tile']
|
29 |
+
self.collate_mode = mode
|
30 |
+
# print(f"################# self.collate_mode {self.collate_mode} ##################")
|
31 |
+
|
32 |
+
manifest_files = []
|
33 |
+
for dir_path in spec_dir_path.split(','):
|
34 |
+
manifest_files += glob.glob(f'{dir_path}/*.tsv')
|
35 |
+
df_list = [pd.read_csv(manifest,sep='\t') for manifest in manifest_files]
|
36 |
+
df = pd.concat(df_list,ignore_index=True)
|
37 |
+
|
38 |
+
if split == 'train':
|
39 |
+
self.dataset = df.iloc[100:]
|
40 |
+
elif split == 'valid' or split == 'val':
|
41 |
+
self.dataset = df.iloc[:100]
|
42 |
+
elif split == 'test':
|
43 |
+
df = self.add_name_num(df)
|
44 |
+
self.dataset = df
|
45 |
+
else:
|
46 |
+
raise ValueError(f'Unknown split {split}')
|
47 |
+
self.dataset.reset_index(inplace=True)
|
48 |
+
print('dataset len:', len(self.dataset))
|
49 |
+
|
50 |
+
def add_name_num(self,df):
|
51 |
+
"""each file may have different caption, we add num to filename to identify each audio-caption pair"""
|
52 |
+
name_count_dict = {}
|
53 |
+
change = []
|
54 |
+
for t in df.itertuples():
|
55 |
+
name = getattr(t,'name')
|
56 |
+
if name in name_count_dict:
|
57 |
+
name_count_dict[name] += 1
|
58 |
+
else:
|
59 |
+
name_count_dict[name] = 0
|
60 |
+
change.append((t[0],name_count_dict[name]))
|
61 |
+
for t in change:
|
62 |
+
df.loc[t[0],'name'] = df.loc[t[0],'name'] + f'_{t[1]}'
|
63 |
+
return df
|
64 |
+
|
65 |
+
def ordered_indices(self):
|
66 |
+
index2dur = self.dataset[['duration']]
|
67 |
+
index2dur = index2dur.sort_values(by='duration')
|
68 |
+
return list(index2dur.index)
|
69 |
+
|
70 |
+
def __getitem__(self, idx):
|
71 |
+
item = {}
|
72 |
+
data = self.dataset.iloc[idx]
|
73 |
+
try:
|
74 |
+
spec = np.load(data['mel_path']) # mel spec [80, 624]
|
75 |
+
except:
|
76 |
+
mel_path = data['mel_path']
|
77 |
+
print(f'corrupted:{mel_path}')
|
78 |
+
spec = np.ones((self.mel_num,self.min_batch_len)).astype(np.float32)*self.pad_value
|
79 |
+
|
80 |
+
|
81 |
+
item['image'] = spec
|
82 |
+
p = np.random.uniform(0,1)
|
83 |
+
if p > self.drop:
|
84 |
+
item["caption"] = data['caption']
|
85 |
+
else:
|
86 |
+
item["caption"] = ""
|
87 |
+
if self.split == 'test':
|
88 |
+
item['f_name'] = data['name']
|
89 |
+
# item['f_name'] = data['mel_path']
|
90 |
+
return item
|
91 |
+
|
92 |
+
def collater(self,inputs):
|
93 |
+
to_dict = {}
|
94 |
+
for l in inputs:
|
95 |
+
for k,v in l.items():
|
96 |
+
if k in to_dict:
|
97 |
+
to_dict[k].append(v)
|
98 |
+
else:
|
99 |
+
to_dict[k] = [v]
|
100 |
+
if self.collate_mode == 'pad':
|
101 |
+
to_dict['image'] = collate_1d_or_2d(to_dict['image'],pad_idx=self.pad_value,min_len = self.min_batch_len,max_len=self.max_batch_len,min_factor=self.min_factor)
|
102 |
+
elif self.collate_mode == 'tile':
|
103 |
+
to_dict['image'] = collate_1d_or_2d_tile(to_dict['image'],min_len = self.min_batch_len,max_len=self.max_batch_len,min_factor=self.min_factor)
|
104 |
+
else:
|
105 |
+
raise NotImplementedError
|
106 |
+
|
107 |
+
return to_dict
|
108 |
+
|
109 |
+
def __len__(self):
|
110 |
+
return len(self.dataset)
|
111 |
+
|
112 |
+
|
113 |
+
class JoinSpecsTrain(JoinManifestSpecs):
|
114 |
+
def __init__(self, specs_dataset_cfg):
|
115 |
+
super().__init__('train', **specs_dataset_cfg)
|
116 |
+
|
117 |
+
class JoinSpecsValidation(JoinManifestSpecs):
|
118 |
+
def __init__(self, specs_dataset_cfg):
|
119 |
+
super().__init__('valid', **specs_dataset_cfg)
|
120 |
+
|
121 |
+
class JoinSpecsTest(JoinManifestSpecs):
|
122 |
+
def __init__(self, specs_dataset_cfg):
|
123 |
+
super().__init__('test', **specs_dataset_cfg)
|
124 |
+
|
125 |
+
class JoinSpecsDebug(JoinManifestSpecs):
|
126 |
+
def __init__(self, specs_dataset_cfg):
|
127 |
+
super().__init__('valid', **specs_dataset_cfg)
|
128 |
+
self.dataset = self.dataset.iloc[:37]
|
129 |
+
|
130 |
+
class DDPIndexBatchSampler(Sampler):# 让长度相似的音频的indices合到一个batch中以避免过长的pad
|
131 |
+
def __init__(self, indices ,batch_size, num_replicas: Optional[int] = None,
|
132 |
+
rank: Optional[int] = None, shuffle: bool = True,
|
133 |
+
seed: int = 0, drop_last: bool = False) -> None:
|
134 |
+
if num_replicas is None:
|
135 |
+
if not dist.is_initialized():
|
136 |
+
# raise RuntimeError("Requires distributed package to be available")
|
137 |
+
print("Not in distributed mode")
|
138 |
+
num_replicas = 1
|
139 |
+
else:
|
140 |
+
num_replicas = dist.get_world_size()
|
141 |
+
if rank is None:
|
142 |
+
if not dist.is_initialized():
|
143 |
+
# raise RuntimeError("Requires distributed package to be available")
|
144 |
+
rank = 0
|
145 |
+
else:
|
146 |
+
rank = dist.get_rank()
|
147 |
+
if rank >= num_replicas or rank < 0:
|
148 |
+
raise ValueError(
|
149 |
+
"Invalid rank {}, rank should be in the interval"
|
150 |
+
" [0, {}]".format(rank, num_replicas - 1))
|
151 |
+
self.indices = indices
|
152 |
+
self.num_replicas = num_replicas
|
153 |
+
self.rank = rank
|
154 |
+
self.epoch = 0
|
155 |
+
self.drop_last = drop_last
|
156 |
+
self.batch_size = batch_size
|
157 |
+
self.batches = self.build_batches()
|
158 |
+
print(f"rank: {self.rank}, batches_num {len(self.batches)}")
|
159 |
+
# If the dataset length is evenly divisible by replicas, then there
|
160 |
+
# is no need to drop any data, since the dataset will be split equally.
|
161 |
+
if self.drop_last and len(self.batches) % self.num_replicas != 0:
|
162 |
+
self.batches = self.batches[:len(self.batches)//self.num_replicas*self.num_replicas]
|
163 |
+
if len(self.batches) > self.num_replicas:
|
164 |
+
self.batches = self.batches[self.rank::self.num_replicas]
|
165 |
+
else: # may happen in sanity checking
|
166 |
+
self.batches = [self.batches[0]]
|
167 |
+
print(f"after split batches_num {len(self.batches)}")
|
168 |
+
self.shuffle = shuffle
|
169 |
+
if self.shuffle:
|
170 |
+
self.batches = np.random.permutation(self.batches)
|
171 |
+
self.seed = seed
|
172 |
+
|
173 |
+
def set_epoch(self,epoch):
|
174 |
+
self.epoch = epoch
|
175 |
+
if self.shuffle:
|
176 |
+
np.random.seed(self.seed+self.epoch)
|
177 |
+
self.batches = np.random.permutation(self.batches)
|
178 |
+
|
179 |
+
def build_batches(self):
|
180 |
+
batches,batch = [],[]
|
181 |
+
for index in self.indices:
|
182 |
+
batch.append(index)
|
183 |
+
if len(batch) == self.batch_size:
|
184 |
+
batches.append(batch)
|
185 |
+
batch = []
|
186 |
+
if not self.drop_last and len(batch) > 0:
|
187 |
+
batches.append(batch)
|
188 |
+
return batches
|
189 |
+
|
190 |
+
def __iter__(self) -> Iterator[List[int]]:
|
191 |
+
for batch in self.batches:
|
192 |
+
yield batch
|
193 |
+
|
194 |
+
def __len__(self) -> int:
|
195 |
+
return len(self.batches)
|
196 |
+
|
197 |
+
def set_epoch(self, epoch: int) -> None:
|
198 |
+
r"""
|
199 |
+
Sets the epoch for this sampler. When :attr:`shuffle=True`, this ensures all replicas
|
200 |
+
use a different random ordering for each epoch. Otherwise, the next iteration of this
|
201 |
+
sampler will yield the same ordering.
|
202 |
+
|
203 |
+
Args:
|
204 |
+
epoch (int): Epoch number.
|
205 |
+
"""
|
206 |
+
self.epoch = epoch
|
207 |
+
|
208 |
+
|
209 |
+
def collate_1d_or_2d(values, pad_idx=0, left_pad=False, shift_right=False,min_len = None, max_len=None,min_factor=None, shift_id=1):
|
210 |
+
if len(values[0].shape) == 1:
|
211 |
+
return collate_1d(values, pad_idx, left_pad, shift_right,min_len, max_len,min_factor, shift_id)
|
212 |
+
else:
|
213 |
+
return collate_2d(values, pad_idx, left_pad, shift_right,min_len,max_len,min_factor)
|
214 |
+
|
215 |
+
def collate_1d(values, pad_idx=0, left_pad=False, shift_right=False,min_len=None, max_len=None,min_factor=None, shift_id=1):
|
216 |
+
"""Convert a list of 1d tensors into a padded 2d tensor."""
|
217 |
+
size = max(v.size(0) for v in values)
|
218 |
+
if max_len:
|
219 |
+
size = min(size,max_len)
|
220 |
+
if min_len:
|
221 |
+
size = max(size,min_len)
|
222 |
+
if min_factor and (size % min_factor!=0):# size must be the multiple of min_factor
|
223 |
+
size += (min_factor - size % min_factor)
|
224 |
+
res = values[0].new(len(values), size).fill_(pad_idx)
|
225 |
+
|
226 |
+
def copy_tensor(src, dst):
|
227 |
+
assert dst.numel() == src.numel(), f"dst shape:{dst.shape} src shape:{src.shape}"
|
228 |
+
if shift_right:
|
229 |
+
dst[1:] = src[:-1]
|
230 |
+
dst[0] = shift_id
|
231 |
+
else:
|
232 |
+
dst.copy_(src)
|
233 |
+
|
234 |
+
for i, v in enumerate(values):
|
235 |
+
copy_tensor(v, res[i][size - len(v):] if left_pad else res[i][:len(v)])
|
236 |
+
return res
|
237 |
+
|
238 |
+
|
239 |
+
def collate_2d(values, pad_idx=0, left_pad=False, shift_right=False, min_len=None,max_len=None,min_factor=None):
|
240 |
+
"""Collate 2d for melspec,Convert a list of 2d tensors into a padded 3d tensor,pad in mel_length dimension.
|
241 |
+
values[0] shape: (melbins,mel_length)
|
242 |
+
"""
|
243 |
+
size = max(v.shape[1] for v in values) # if max_len is None else max_len
|
244 |
+
if max_len:
|
245 |
+
size = min(size,max_len)
|
246 |
+
if min_len:
|
247 |
+
size = max(size,min_len)
|
248 |
+
if min_factor and (size % min_factor!=0):# size must be the multiple of min_factor
|
249 |
+
size += (min_factor - size % min_factor)
|
250 |
+
|
251 |
+
if isinstance(values,np.ndarray):
|
252 |
+
values = torch.FloatTensor(values)
|
253 |
+
if isinstance(values,list):
|
254 |
+
values = [torch.FloatTensor(v) for v in values]
|
255 |
+
res = torch.ones(len(values), values[0].shape[0],size).to(dtype=torch.float32)*pad_idx
|
256 |
+
|
257 |
+
def copy_tensor(src, dst):
|
258 |
+
assert dst.numel() == src.numel(), f"dst shape:{dst.shape} src shape:{src.shape}"
|
259 |
+
if shift_right:
|
260 |
+
dst[1:] = src[:-1]
|
261 |
+
else:
|
262 |
+
dst.copy_(src)
|
263 |
+
|
264 |
+
for i, v in enumerate(values):
|
265 |
+
copy_tensor(v[:,:size], res[i][:,size - v.shape[1]:] if left_pad else res[i][:,:v.shape[1]])
|
266 |
+
return res
|
267 |
+
|
268 |
+
|
269 |
+
def collate_1d_or_2d_tile(values, shift_right=False,min_len = None, max_len=None,min_factor=None, shift_id=1):
|
270 |
+
if len(values[0].shape) == 1:
|
271 |
+
return collate_1d_tile(values, shift_right,min_len, max_len,min_factor, shift_id)
|
272 |
+
else:
|
273 |
+
return collate_2d_tile(values, shift_right,min_len,max_len,min_factor)
|
274 |
+
|
275 |
+
def collate_1d_tile(values, shift_right=False,min_len=None, max_len=None,min_factor=None,shift_id=1):
|
276 |
+
"""Convert a list of 1d tensors into a padded 2d tensor."""
|
277 |
+
size = max(v.size(0) for v in values)
|
278 |
+
if max_len:
|
279 |
+
size = min(size,max_len)
|
280 |
+
if min_len:
|
281 |
+
size = max(size,min_len)
|
282 |
+
if min_factor and (size%min_factor!=0):# size must be the multiple of min_factor
|
283 |
+
size += (min_factor - size % min_factor)
|
284 |
+
res = values[0].new(len(values), size)
|
285 |
+
|
286 |
+
def copy_tensor(src, dst):
|
287 |
+
assert dst.numel() == src.numel(), f"dst shape:{dst.shape} src shape:{src.shape}"
|
288 |
+
if shift_right:
|
289 |
+
dst[1:] = src[:-1]
|
290 |
+
dst[0] = shift_id
|
291 |
+
else:
|
292 |
+
dst.copy_(src)
|
293 |
+
|
294 |
+
for i, v in enumerate(values):
|
295 |
+
n_repeat = math.ceil((size + 1) / v.shape[0])
|
296 |
+
v = torch.tile(v,dims=(1,n_repeat))[:size]
|
297 |
+
copy_tensor(v, res[i])
|
298 |
+
|
299 |
+
return res
|
300 |
+
|
301 |
+
|
302 |
+
def collate_2d_tile(values, shift_right=False, min_len=None,max_len=None,min_factor=None):
|
303 |
+
"""Collate 2d for melspec,Convert a list of 2d tensors into a padded 3d tensor,pad in mel_length dimension. """
|
304 |
+
size = max(v.shape[1] for v in values) # if max_len is None else max_len
|
305 |
+
if max_len:
|
306 |
+
size = min(size,max_len)
|
307 |
+
if min_len:
|
308 |
+
size = max(size,min_len)
|
309 |
+
if min_factor and (size % min_factor!=0):# size must be the multiple of min_factor
|
310 |
+
size += (min_factor - size % min_factor)
|
311 |
+
|
312 |
+
if isinstance(values,np.ndarray):
|
313 |
+
values = torch.FloatTensor(values)
|
314 |
+
if isinstance(values,list):
|
315 |
+
values = [torch.FloatTensor(v) for v in values]
|
316 |
+
res = torch.zeros(len(values), values[0].shape[0],size).to(dtype=torch.float32)
|
317 |
+
|
318 |
+
def copy_tensor(src, dst):
|
319 |
+
assert dst.numel() == src.numel()
|
320 |
+
if shift_right:
|
321 |
+
dst[1:] = src[:-1]
|
322 |
+
else:
|
323 |
+
dst.copy_(src)
|
324 |
+
|
325 |
+
for i, v in enumerate(values):
|
326 |
+
n_repeat = math.ceil((size + 1) / v.shape[1])
|
327 |
+
v = torch.tile(v,dims=(1,n_repeat))[:,:size]
|
328 |
+
copy_tensor(v, res[i])
|
329 |
+
|
330 |
+
return res
|
ldm/data/joinaudiodataset_struct_sample_anylen.py
ADDED
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from typing import TypeVar, Optional, Iterator
|
6 |
+
import logging
|
7 |
+
import pandas as pd
|
8 |
+
from ldm.data.joinaudiodataset_anylen import *
|
9 |
+
import glob
|
10 |
+
logger = logging.getLogger(f'main.{__name__}')
|
11 |
+
|
12 |
+
sys.path.insert(0, '.') # nopep8
|
13 |
+
|
14 |
+
class JoinManifestSpecs(torch.utils.data.Dataset):
|
15 |
+
def __init__(self, split, main_spec_dir_path,other_spec_dir_path, mel_num=80,mode='pad', spec_crop_len=1248,pad_value=-5,drop=0,**kwargs):
|
16 |
+
super().__init__()
|
17 |
+
self.split = split
|
18 |
+
self.max_batch_len = spec_crop_len
|
19 |
+
self.min_batch_len = 64
|
20 |
+
self.min_factor = 4
|
21 |
+
self.mel_num = mel_num
|
22 |
+
self.drop = drop
|
23 |
+
self.pad_value = pad_value
|
24 |
+
assert mode in ['pad','tile']
|
25 |
+
self.collate_mode = mode
|
26 |
+
manifest_files = []
|
27 |
+
for dir_path in main_spec_dir_path.split(','):
|
28 |
+
manifest_files += glob.glob(f'{dir_path}/*.tsv')
|
29 |
+
df_list = [pd.read_csv(manifest,sep='\t') for manifest in manifest_files]
|
30 |
+
self.df_main = pd.concat(df_list,ignore_index=True)
|
31 |
+
|
32 |
+
# manifest_files = []
|
33 |
+
# for dir_path in other_spec_dir_path.split(','):
|
34 |
+
# manifest_files += glob.glob(f'{dir_path}/*.tsv')
|
35 |
+
# df_list = [pd.read_csv(manifest,sep='\t') for manifest in manifest_files]
|
36 |
+
# self.df_other = pd.concat(df_list,ignore_index=True)
|
37 |
+
# self.df_other.reset_index(inplace=True)
|
38 |
+
|
39 |
+
if split == 'train':
|
40 |
+
self.dataset = self.df_main.iloc[100:]
|
41 |
+
elif split == 'valid' or split == 'val':
|
42 |
+
self.dataset = self.df_main.iloc[:100]
|
43 |
+
elif split == 'test':
|
44 |
+
self.df_main = self.add_name_num(self.df_main)
|
45 |
+
self.dataset = self.df_main
|
46 |
+
else:
|
47 |
+
raise ValueError(f'Unknown split {split}')
|
48 |
+
self.dataset.reset_index(inplace=True)
|
49 |
+
print('dataset len:', len(self.dataset),"drop_rate",self.drop)
|
50 |
+
|
51 |
+
def add_name_num(self,df):
|
52 |
+
"""each file may have different caption, we add num to filename to identify each audio-caption pair"""
|
53 |
+
name_count_dict = {}
|
54 |
+
change = []
|
55 |
+
for t in df.itertuples():
|
56 |
+
name = getattr(t,'name')
|
57 |
+
if name in name_count_dict:
|
58 |
+
name_count_dict[name] += 1
|
59 |
+
else:
|
60 |
+
name_count_dict[name] = 0
|
61 |
+
change.append((t[0],name_count_dict[name]))
|
62 |
+
for t in change:
|
63 |
+
df.loc[t[0],'name'] = str(df.loc[t[0],'name']) + f'_{t[1]}'
|
64 |
+
return df
|
65 |
+
|
66 |
+
def ordered_indices(self):
|
67 |
+
index2dur = self.dataset[['duration']].sort_values(by='duration')
|
68 |
+
# index2dur_other = self.df_other[['duration']].sort_values(by='duration')
|
69 |
+
# other_indices = list(index2dur_other.index)
|
70 |
+
offset = len(self.dataset)
|
71 |
+
# other_indices = [x + offset for x in other_indices]
|
72 |
+
return list(index2dur.index) # ,other_indices
|
73 |
+
|
74 |
+
def collater(self,inputs):
|
75 |
+
to_dict = {}
|
76 |
+
for l in inputs:
|
77 |
+
for k,v in l.items():
|
78 |
+
if k in to_dict:
|
79 |
+
to_dict[k].append(v)
|
80 |
+
else:
|
81 |
+
to_dict[k] = [v]
|
82 |
+
|
83 |
+
if self.collate_mode == 'pad':
|
84 |
+
to_dict['image'] = collate_1d_or_2d(to_dict['image'],pad_idx=self.pad_value,min_len = self.min_batch_len,max_len=self.max_batch_len,min_factor=self.min_factor)
|
85 |
+
elif self.collate_mode == 'tile':
|
86 |
+
to_dict['image'] = collate_1d_or_2d_tile(to_dict['image'],min_len = self.min_batch_len,max_len=self.max_batch_len,min_factor=self.min_factor)
|
87 |
+
else:
|
88 |
+
raise NotImplementedError
|
89 |
+
to_dict['caption'] = {'ori_caption':[c['ori_caption'] for c in to_dict['caption']],
|
90 |
+
'struct_caption':[c['struct_caption'] for c in to_dict['caption']]}
|
91 |
+
|
92 |
+
return to_dict
|
93 |
+
|
94 |
+
def __getitem__(self, idx):
|
95 |
+
# if idx < len(self.dataset):
|
96 |
+
data = self.dataset.iloc[idx]
|
97 |
+
p = np.random.uniform(0,1)
|
98 |
+
if p > self.drop:
|
99 |
+
ori_caption = data['ori_cap']
|
100 |
+
struct_caption = data['caption']
|
101 |
+
else:
|
102 |
+
ori_caption = ""
|
103 |
+
struct_caption = ""
|
104 |
+
# else:
|
105 |
+
# data = self.df_other.iloc[idx-len(self.dataset)]
|
106 |
+
# p = np.random.uniform(0,1)
|
107 |
+
# if p > self.drop:
|
108 |
+
# ori_caption = data['caption']
|
109 |
+
# struct_caption = f'<{ori_caption}& all>'
|
110 |
+
# else:
|
111 |
+
# ori_caption = ""
|
112 |
+
# struct_caption = ""
|
113 |
+
item = {}
|
114 |
+
try:
|
115 |
+
if not os.path.exists(data['mel_path']):
|
116 |
+
mel_path = data['mel_path'].replace('/apdcephfs', '/apdcephfs_intern')
|
117 |
+
else:
|
118 |
+
mel_path = data['mel_path']
|
119 |
+
spec = np.load(mel_path) # mel spec [80, T]
|
120 |
+
if spec.shape[1] > self.max_batch_len:
|
121 |
+
spec = spec[:, :self.max_batch_len]
|
122 |
+
except:
|
123 |
+
mel_path = data['mel_path']
|
124 |
+
print(f'corrupted:{mel_path}')
|
125 |
+
spec = np.ones((self.mel_num,self.min_batch_len)).astype(np.float32)*self.pad_value
|
126 |
+
|
127 |
+
item['image'] = spec
|
128 |
+
item["caption"] = {"ori_caption":ori_caption,"struct_caption":struct_caption}
|
129 |
+
if self.split == 'test':
|
130 |
+
item['f_name'] = data['name']
|
131 |
+
return item
|
132 |
+
|
133 |
+
def __len__(self):
|
134 |
+
return len(self.dataset) # + len(self.df_other)
|
135 |
+
|
136 |
+
|
137 |
+
class JoinSpecsTrain(JoinManifestSpecs):
|
138 |
+
def __init__(self, specs_dataset_cfg):
|
139 |
+
super().__init__('train', **specs_dataset_cfg)
|
140 |
+
|
141 |
+
class JoinSpecsValidation(JoinManifestSpecs):
|
142 |
+
def __init__(self, specs_dataset_cfg):
|
143 |
+
super().__init__('valid', **specs_dataset_cfg)
|
144 |
+
|
145 |
+
class JoinSpecsTest(JoinManifestSpecs):
|
146 |
+
def __init__(self, specs_dataset_cfg):
|
147 |
+
super().__init__('test', **specs_dataset_cfg)
|
148 |
+
|
149 |
+
|
150 |
+
class TestManifest(torch.utils.data.Dataset):
|
151 |
+
def __init__(self, manifest, mel_num=80, mode='pad', spec_crop_len=1248, pad_value=-5, **kwargs):
|
152 |
+
super().__init__()
|
153 |
+
self.max_batch_len = spec_crop_len
|
154 |
+
self.min_batch_len = 64
|
155 |
+
self.min_factor = 4
|
156 |
+
self.mel_num = mel_num
|
157 |
+
|
158 |
+
self.pad_value = pad_value
|
159 |
+
assert mode in ['pad', 'tile']
|
160 |
+
self.collate_mode = mode
|
161 |
+
|
162 |
+
df_list = pd.read_csv(manifest, sep='\t')
|
163 |
+
self.df_main = pd.concat([df_list], ignore_index=True)
|
164 |
+
self.df_main = self.add_name_num(self.df_main)
|
165 |
+
self.dataset = self.df_main
|
166 |
+
self.dataset.reset_index(inplace=True)
|
167 |
+
print('dataset len:', len(self.dataset))
|
168 |
+
|
169 |
+
def add_name_num(self, df):
|
170 |
+
"""each file may have different caption, we add num to filename to identify each audio-caption pair"""
|
171 |
+
name_count_dict = {}
|
172 |
+
change = []
|
173 |
+
for t in df.itertuples():
|
174 |
+
name = getattr(t, 'name')
|
175 |
+
if name in name_count_dict:
|
176 |
+
name_count_dict[name] += 1
|
177 |
+
else:
|
178 |
+
name_count_dict[name] = 0
|
179 |
+
change.append((t[0], name_count_dict[name]))
|
180 |
+
for t in change:
|
181 |
+
df.loc[t[0], 'name'] = str(df.loc[t[0], 'name']) + f'_{t[1]}'
|
182 |
+
return df
|
183 |
+
|
184 |
+
def ordered_indices(self):
|
185 |
+
index2dur = self.dataset[['duration']].sort_values(by='duration')
|
186 |
+
return list(index2dur.index) # ,other_indices
|
187 |
+
|
188 |
+
def collater(self, inputs):
|
189 |
+
to_dict = {}
|
190 |
+
for l in inputs:
|
191 |
+
for k, v in l.items():
|
192 |
+
if k in to_dict:
|
193 |
+
to_dict[k].append(v)
|
194 |
+
else:
|
195 |
+
to_dict[k] = [v]
|
196 |
+
|
197 |
+
if self.collate_mode == 'pad':
|
198 |
+
to_dict['image'] = collate_1d_or_2d(to_dict['image'], pad_idx=self.pad_value, min_len=self.min_batch_len,
|
199 |
+
max_len=self.max_batch_len, min_factor=self.min_factor)
|
200 |
+
elif self.collate_mode == 'tile':
|
201 |
+
to_dict['image'] = collate_1d_or_2d_tile(to_dict['image'], min_len=self.min_batch_len,
|
202 |
+
max_len=self.max_batch_len, min_factor=self.min_factor)
|
203 |
+
else:
|
204 |
+
raise NotImplementedError
|
205 |
+
to_dict['caption'] = {'ori_caption': [c['ori_caption'] for c in to_dict['caption']],
|
206 |
+
'struct_caption': [c['struct_caption'] for c in to_dict['caption']]}
|
207 |
+
|
208 |
+
return to_dict
|
209 |
+
|
210 |
+
def __getitem__(self, idx):
|
211 |
+
# if idx < len(self.dataset):
|
212 |
+
data = self.dataset.iloc[idx]
|
213 |
+
ori_caption = data['ori_cap']
|
214 |
+
struct_caption = data['caption']
|
215 |
+
item = {}
|
216 |
+
try:
|
217 |
+
if not os.path.exists(data['mel_path']):
|
218 |
+
mel_path = data['mel_path'].replace('/apdcephfs', '/apdcephfs_intern')
|
219 |
+
else:
|
220 |
+
mel_path = data['mel_path']
|
221 |
+
spec = np.load(mel_path) # mel spec [80, T]
|
222 |
+
|
223 |
+
if spec.shape[1] > self.max_batch_len:
|
224 |
+
spec = spec[:, :self.max_batch_len]
|
225 |
+
except:
|
226 |
+
mel_path = data['mel_path']
|
227 |
+
print(f'corrupted:{mel_path}')
|
228 |
+
spec = np.ones((self.mel_num, self.min_batch_len)).astype(np.float32) * self.pad_value
|
229 |
+
|
230 |
+
item['image'] = spec
|
231 |
+
item["caption"] = {"ori_caption": ori_caption, "struct_caption": struct_caption}
|
232 |
+
item['f_name'] = data['name']
|
233 |
+
return item
|
234 |
+
|
235 |
+
def __len__(self):
|
236 |
+
return len(self.dataset) # + len(self.df_other)
|
237 |
+
|
238 |
+
|
239 |
+
|
240 |
+
class DDPIndexBatchSampler(Sampler):# 让长度相似的音频的indices合到一个batch中以避免过长的pad
|
241 |
+
def __init__(self, main_indices,batch_size, num_replicas: Optional[int] = None,
|
242 |
+
rank: Optional[int] = None, shuffle: bool = True,
|
243 |
+
seed: int = 0, drop_last: bool = False) -> None:
|
244 |
+
if num_replicas is None:
|
245 |
+
if not dist.is_initialized():
|
246 |
+
# raise RuntimeError("Requires distributed package to be available")
|
247 |
+
print("Not in distributed mode")
|
248 |
+
num_replicas = 1
|
249 |
+
else:
|
250 |
+
num_replicas = dist.get_world_size()
|
251 |
+
if rank is None:
|
252 |
+
if not dist.is_initialized():
|
253 |
+
# raise RuntimeError("Requires distributed package to be available")
|
254 |
+
rank = 0
|
255 |
+
else:
|
256 |
+
rank = dist.get_rank()
|
257 |
+
if rank >= num_replicas or rank < 0:
|
258 |
+
raise ValueError(
|
259 |
+
"Invalid rank {}, rank should be in the interval"
|
260 |
+
" [0, {}]".format(rank, num_replicas - 1))
|
261 |
+
self.main_indices = main_indices
|
262 |
+
# self.other_indices = other_indices
|
263 |
+
# self.max_index = max(self.other_indices)
|
264 |
+
self.num_replicas = num_replicas
|
265 |
+
self.rank = rank
|
266 |
+
self.epoch = 0
|
267 |
+
self.drop_last = drop_last
|
268 |
+
self.batch_size = batch_size
|
269 |
+
self.shuffle = shuffle
|
270 |
+
self.batches = self.build_batches()
|
271 |
+
self.seed = seed
|
272 |
+
|
273 |
+
def set_epoch(self,epoch):
|
274 |
+
# print("!!!!!!!!!!!set epoch is called!!!!!!!!!!!!!!")
|
275 |
+
self.epoch = epoch
|
276 |
+
if self.shuffle:
|
277 |
+
np.random.seed(self.seed+self.epoch)
|
278 |
+
self.batches = self.build_batches()
|
279 |
+
|
280 |
+
def build_batches(self):
|
281 |
+
batches,batch = [],[]
|
282 |
+
for index in self.main_indices:
|
283 |
+
batch.append(index)
|
284 |
+
if len(batch) == self.batch_size:
|
285 |
+
batches.append(batch)
|
286 |
+
batch = []
|
287 |
+
if not self.drop_last and len(batch) > 0:
|
288 |
+
batches.append(batch)
|
289 |
+
# selected_others = np.random.choice(len(self.other_indices),len(batches),replace=False)
|
290 |
+
# for index in selected_others:
|
291 |
+
# if index + self.batch_size > len(self.other_indices):
|
292 |
+
# index = len(self.other_indices) - self.batch_size
|
293 |
+
# batch = [self.other_indices[index + i] for i in range(self.batch_size)]
|
294 |
+
# batches.append(batch)
|
295 |
+
self.batches = batches
|
296 |
+
if self.shuffle:
|
297 |
+
self.batches = np.random.permutation(self.batches)
|
298 |
+
if self.rank == 0:
|
299 |
+
print(f"rank: {self.rank}, batches_num {len(self.batches)}")
|
300 |
+
|
301 |
+
if self.drop_last and len(self.batches) % self.num_replicas != 0:
|
302 |
+
self.batches = self.batches[:len(self.batches)//self.num_replicas*self.num_replicas]
|
303 |
+
if len(self.batches) >= self.num_replicas:
|
304 |
+
self.batches = self.batches[self.rank::self.num_replicas]
|
305 |
+
else: # may happen in sanity checking
|
306 |
+
self.batches = [self.batches[0]]
|
307 |
+
if self.rank == 0:
|
308 |
+
print(f"after split batches_num {len(self.batches)}")
|
309 |
+
|
310 |
+
return self.batches
|
311 |
+
|
312 |
+
def __iter__(self) -> Iterator[List[int]]:
|
313 |
+
print(f"len(self.batches):{len(self.batches)}")
|
314 |
+
for batch in self.batches:
|
315 |
+
yield batch
|
316 |
+
|
317 |
+
def __len__(self) -> int:
|
318 |
+
return len(self.batches)
|
319 |
+
|
320 |
+
|
321 |
+
class JoinManifestSpecs_Caption(JoinManifestSpecs):
|
322 |
+
def collater(self, inputs):
|
323 |
+
to_dict = {}
|
324 |
+
for l in inputs:
|
325 |
+
for k, v in l.items():
|
326 |
+
if k in to_dict:
|
327 |
+
to_dict[k].append(v)
|
328 |
+
else:
|
329 |
+
to_dict[k] = [v]
|
330 |
+
|
331 |
+
if self.collate_mode == 'pad':
|
332 |
+
to_dict['image'] = collate_1d_or_2d(to_dict['image'], pad_idx=self.pad_value, min_len=self.min_batch_len,
|
333 |
+
max_len=self.max_batch_len, min_factor=self.min_factor)
|
334 |
+
elif self.collate_mode == 'tile':
|
335 |
+
to_dict['image'] = collate_1d_or_2d_tile(to_dict['image'], min_len=self.min_batch_len,
|
336 |
+
max_len=self.max_batch_len, min_factor=self.min_factor)
|
337 |
+
else:
|
338 |
+
raise NotImplementedError
|
339 |
+
|
340 |
+
return to_dict
|
341 |
+
|
342 |
+
def __getitem__(self, idx):
|
343 |
+
# if idx < len(self.dataset):
|
344 |
+
data = self.dataset.iloc[idx]
|
345 |
+
p = np.random.uniform(0, 1)
|
346 |
+
if p > self.drop:
|
347 |
+
caption = data['ori_cap']
|
348 |
+
else:
|
349 |
+
caption = ""
|
350 |
+
item = {}
|
351 |
+
try:
|
352 |
+
if not os.path.exists(data['mel_path']):
|
353 |
+
mel_path = data['mel_path'].replace('/apdcephfs', '/apdcephfs_intern')
|
354 |
+
else:
|
355 |
+
mel_path = data['mel_path']
|
356 |
+
spec = np.load(mel_path) # mel spec [80, T]
|
357 |
+
if spec.shape[1] > self.max_batch_len:
|
358 |
+
spec = spec[:, :self.max_batch_len]
|
359 |
+
except:
|
360 |
+
mel_path = data['mel_path']
|
361 |
+
print(f'corrupted:{mel_path}')
|
362 |
+
spec = np.ones((self.mel_num, self.min_batch_len)).astype(np.float32) * self.pad_value
|
363 |
+
|
364 |
+
item['image'] = spec
|
365 |
+
item["caption"] = caption
|
366 |
+
if self.split == 'test':
|
367 |
+
item['f_name'] = data['name']
|
368 |
+
return item
|
369 |
+
|
370 |
+
class JoinSpecsTrain_Caption(JoinManifestSpecs_Caption):
|
371 |
+
def __init__(self, specs_dataset_cfg):
|
372 |
+
super().__init__('train', **specs_dataset_cfg)
|
373 |
+
|
374 |
+
class JoinSpecsValidation_Caption(JoinManifestSpecs_Caption):
|
375 |
+
def __init__(self, specs_dataset_cfg):
|
376 |
+
super().__init__('valid', **specs_dataset_cfg)
|
377 |
+
|
378 |
+
class JoinSpecsTest_Caption(JoinManifestSpecs_Caption):
|
379 |
+
def __init__(self, specs_dataset_cfg):
|
380 |
+
super().__init__('test', **specs_dataset_cfg)
|
ldm/data/tsv_dirs/full_data/V1_new/audiocaps_train_16000.tsv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a34eeaf905d408e7faab9424f1742df3c1eb89e763c91ba355058b61e86c60b8
|
3 |
+
size 8042145
|
ldm/data/tsv_dirs/full_data/V2/MACS.tsv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7e993db5676570b42daf04a7836ad0cfdbef4d04b8a73f56a5828f864ee37f6
|
3 |
+
size 6019546
|
ldm/data/tsv_dirs/full_data/V2/WavText5K.tsv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:617bc20b11d6206e8735153a850b16449c484f52286dee4d7f67ed4f26bfb221
|
3 |
+
size 1145878
|
ldm/data/tsv_dirs/full_data/V2/adobe.tsv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da973ea2f5e2440a832c40a022e33ef03aad24fbf2da7943ba5a77d43a7100d4
|
3 |
+
size 2138832
|
ldm/data/tsv_dirs/full_data/V2/audiostock.tsv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cafe0c81c72b3fa1574f98fa293e4036f69f1c4b8d8cd9cb369087076482e63a
|
3 |
+
size 2028510
|
ldm/data/tsv_dirs/full_data/V2/epidemic_sound.tsv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc67e42c9defa98edfc2c6b23c731fafa4a22307fddfd1fb95ccfc00d0168951
|
3 |
+
size 15062608
|
ldm/data/tsv_dirs/full_data/caps_struct/audiocaps_train_16000_struct2.tsv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:565a506454c19ddd694cfb4b5c47a13f98e7966bce5617a7bbecec50c418257b
|
3 |
+
size 10208584
|
ldm/data/txt_spec_dataset.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import csv
|
2 |
+
import os
|
3 |
+
import pickle
|
4 |
+
import sys
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import random
|
9 |
+
import math
|
10 |
+
import librosa
|
11 |
+
import pandas as pd
|
12 |
+
from pathlib import Path
|
13 |
+
class audio_spec_join_Dataset(torch.utils.data.Dataset):
|
14 |
+
# Only Load audio dataset: for training Stage1: Audio Npy Dataset
|
15 |
+
def __init__(self, split, dataset_name, spec_crop_len, drop=0.0):
|
16 |
+
super().__init__()
|
17 |
+
|
18 |
+
if split == "train":
|
19 |
+
self.split = "Train"
|
20 |
+
|
21 |
+
elif split == "valid" or split == 'test':
|
22 |
+
self.split = "Test"
|
23 |
+
|
24 |
+
# Default params:
|
25 |
+
self.min_duration = 2
|
26 |
+
self.spec_crop_len = spec_crop_len
|
27 |
+
self.drop = drop
|
28 |
+
|
29 |
+
print("Use Drop: {}".format(self.drop))
|
30 |
+
|
31 |
+
self.init_text2audio(dataset_name)
|
32 |
+
|
33 |
+
print('Split: {} Total Sample Num: {}'.format(split, len(self.dataset)))
|
34 |
+
|
35 |
+
if os.path.exists('/apdcephfs_intern/share_1316500/nlphuang/data/video_to_audio/vggsound/cavp/empty_vid.npz'):
|
36 |
+
self.root = '/apdcephfs_intern'
|
37 |
+
else:
|
38 |
+
self.root = '/apdcephfs'
|
39 |
+
|
40 |
+
|
41 |
+
def init_text2audio(self, dataset):
|
42 |
+
|
43 |
+
with open(dataset) as f:
|
44 |
+
reader = csv.DictReader(
|
45 |
+
f,
|
46 |
+
delimiter="\t",
|
47 |
+
quotechar=None,
|
48 |
+
doublequote=False,
|
49 |
+
lineterminator="\n",
|
50 |
+
quoting=csv.QUOTE_NONE,
|
51 |
+
)
|
52 |
+
samples = [dict(e) for e in reader]
|
53 |
+
|
54 |
+
if self.split == 'Test':
|
55 |
+
samples = samples[:100]
|
56 |
+
|
57 |
+
self.dataset = samples
|
58 |
+
print('text2audio dataset len:', len(self.dataset))
|
59 |
+
|
60 |
+
def __len__(self):
|
61 |
+
return len(self.dataset)
|
62 |
+
|
63 |
+
def load_feat(self, spec_path):
|
64 |
+
try:
|
65 |
+
spec_raw = np.load(spec_path) # mel spec [80, T]
|
66 |
+
except:
|
67 |
+
print(f'corrupted mel:{spec_path}', flush=True)
|
68 |
+
spec_raw = np.zeros((80, self.spec_crop_len), dtype=np.float32) # [C, T]
|
69 |
+
|
70 |
+
spec_len = self.spec_crop_len
|
71 |
+
if spec_raw.shape[1] < spec_len:
|
72 |
+
spec_raw = np.tile(spec_raw, math.ceil(spec_len / spec_raw.shape[1]))
|
73 |
+
spec_raw = spec_raw[:, :int(spec_len)]
|
74 |
+
|
75 |
+
return spec_raw
|
76 |
+
|
77 |
+
|
78 |
+
def __getitem__(self, idx):
|
79 |
+
data_dict = {}
|
80 |
+
data = self.dataset[idx]
|
81 |
+
|
82 |
+
p = np.random.uniform(0, 1)
|
83 |
+
if p > self.drop:
|
84 |
+
caption = {"ori_caption": data['ori_cap'], "struct_caption": data['caption']}
|
85 |
+
else:
|
86 |
+
caption = {"ori_caption": "", "struct_caption": ""}
|
87 |
+
|
88 |
+
mel_path = data['mel_path'].replace('/apdcephfs', '/apdcephfs_intern') if self.root == '/apdcephfs_intern' else data['mel_path']
|
89 |
+
spec = self.load_feat(mel_path)
|
90 |
+
|
91 |
+
data_dict['caption'] = caption
|
92 |
+
data_dict['image'] = spec # (80, 624)
|
93 |
+
|
94 |
+
return data_dict
|
95 |
+
|
96 |
+
|
97 |
+
class spec_join_Dataset_Train(audio_spec_join_Dataset):
|
98 |
+
def __init__(self, dataset_cfg):
|
99 |
+
super().__init__(split='train', **dataset_cfg)
|
100 |
+
|
101 |
+
class spec_join_Dataset_Valid(audio_spec_join_Dataset):
|
102 |
+
def __init__(self, dataset_cfg):
|
103 |
+
super().__init__(split='valid', **dataset_cfg)
|
104 |
+
|
105 |
+
class spec_join_Dataset_Test(audio_spec_join_Dataset):
|
106 |
+
def __init__(self, dataset_cfg):
|
107 |
+
super().__init__(split='test', **dataset_cfg)
|
108 |
+
|
109 |
+
|
110 |
+
|
111 |
+
class audio_spec_join_audioset_Dataset(audio_spec_join_Dataset):
|
112 |
+
|
113 |
+
# def __init__(self, split, dataset_name, root, spec_crop_len, drop=0.0):
|
114 |
+
# super().__init__(split, dataset_name, spec_crop_len, drop)
|
115 |
+
#
|
116 |
+
# self.data_dir = root
|
117 |
+
# MANIFEST_COLUMNS = ["name", "dataset", "ori_cap", "audio_path", "mel_path", "duration"]
|
118 |
+
# manifest = {c: [] for c in MANIFEST_COLUMNS}
|
119 |
+
# skip = 0
|
120 |
+
# if self.split != 'Train': return
|
121 |
+
# from preprocess.generate_manifest import save_df_to_tsv
|
122 |
+
# from tqdm import tqdm
|
123 |
+
# for idx in tqdm(range(len(self.dataset))):
|
124 |
+
# item = self.dataset[idx]
|
125 |
+
# mel_path = f'{self.data_dir}/{Path(item["name"])}_mel.npy'
|
126 |
+
# try:
|
127 |
+
# _ = np.load(mel_path)
|
128 |
+
# except:
|
129 |
+
# skip += 1
|
130 |
+
# continue
|
131 |
+
#
|
132 |
+
# manifest["name"].append(item['name'])
|
133 |
+
# manifest["dataset"].append("audioset")
|
134 |
+
# manifest["ori_cap"].append(item['ori_cap'])
|
135 |
+
# manifest["duration"].append(item['audio_path'])
|
136 |
+
# manifest["audio_path"].append(item['duration'])
|
137 |
+
# manifest["mel_path"].append(mel_path)
|
138 |
+
#
|
139 |
+
# print(f"Writing manifest to {dataset_name.replace('audioset.tsv', 'audioset_new.tsv')}..., skip: {skip}")
|
140 |
+
# save_df_to_tsv(pd.DataFrame.from_dict(manifest), f"{dataset_name.replace('audioset.tsv', 'audioset_new.tsv')}")
|
141 |
+
|
142 |
+
|
143 |
+
def __getitem__(self, idx):
|
144 |
+
data_dict = {}
|
145 |
+
data = self.dataset[idx]
|
146 |
+
|
147 |
+
p = np.random.uniform(0, 1)
|
148 |
+
if p > self.drop:
|
149 |
+
caption = data['ori_cap']
|
150 |
+
else:
|
151 |
+
caption = ""
|
152 |
+
spec = self.load_feat(data['mel_path'])
|
153 |
+
|
154 |
+
data_dict['caption'] = caption
|
155 |
+
data_dict['image'] = spec # (80, 624)
|
156 |
+
|
157 |
+
return data_dict
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
class spec_join_Dataset_audioset_Train(audio_spec_join_audioset_Dataset):
|
162 |
+
def __init__(self, dataset_cfg):
|
163 |
+
super().__init__(split='train', **dataset_cfg)
|
164 |
+
|
165 |
+
class spec_join_Dataset_audioset_Valid(audio_spec_join_audioset_Dataset):
|
166 |
+
def __init__(self, dataset_cfg):
|
167 |
+
super().__init__(split='valid', **dataset_cfg)
|
168 |
+
|
169 |
+
class spec_join_Dataset_audioset_Test(audio_spec_join_audioset_Dataset):
|
170 |
+
def __init__(self, dataset_cfg):
|
171 |
+
super().__init__(split='test', **dataset_cfg)
|
ldm/data/video_spec_maa2_dataset.py
ADDED
@@ -0,0 +1,837 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import csv
|
2 |
+
import os
|
3 |
+
import pickle
|
4 |
+
import sys
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import random
|
9 |
+
import math
|
10 |
+
import librosa
|
11 |
+
|
12 |
+
class audio_video_spec_fullset_Dataset(torch.utils.data.Dataset):
|
13 |
+
# Only Load audio dataset: for training Stage1: Audio Npy Dataset
|
14 |
+
def __init__(self, split, dataset1, feat_type='clip', transforms=None, sr=22050, duration=10, truncate=220000, fps=21.5, drop=0.0, fix_frames=False, hop_len=256):
|
15 |
+
super().__init__()
|
16 |
+
|
17 |
+
if split == "train":
|
18 |
+
self.split = "Train"
|
19 |
+
|
20 |
+
elif split == "valid" or split == 'test':
|
21 |
+
self.split = "Test"
|
22 |
+
|
23 |
+
# Default params:
|
24 |
+
self.min_duration = 2
|
25 |
+
self.sr = sr # 22050
|
26 |
+
self.duration = duration # 10
|
27 |
+
self.truncate = truncate # 220000
|
28 |
+
self.fps = fps
|
29 |
+
self.fix_frames = fix_frames
|
30 |
+
self.hop_len = hop_len
|
31 |
+
self.drop = drop
|
32 |
+
print("Fix Frames: {}".format(self.fix_frames))
|
33 |
+
print("Use Drop: {}".format(self.drop))
|
34 |
+
|
35 |
+
# Dataset1: (VGGSound)
|
36 |
+
assert dataset1.dataset_name == "VGGSound"
|
37 |
+
|
38 |
+
# spec_dir: spectrogram path
|
39 |
+
# feat_dir: CAVP feature path
|
40 |
+
# video_dir: video path
|
41 |
+
|
42 |
+
dataset1_spec_dir = os.path.join(dataset1.data_dir, "mel_maa2", "npy")
|
43 |
+
dataset1_feat_dir = os.path.join(dataset1.data_dir, "cavp")
|
44 |
+
dataset1_video_dir = os.path.join(dataset1.video_dir, "tmp_vid")
|
45 |
+
|
46 |
+
split_txt_path = dataset1.split_txt_path
|
47 |
+
with open(os.path.join(split_txt_path, '{}.txt'.format(self.split)), "r") as f:
|
48 |
+
data_list1 = f.readlines()
|
49 |
+
data_list1 = list(map(lambda x: x.strip(), data_list1))
|
50 |
+
|
51 |
+
spec_list1 = list(map(lambda x: os.path.join(dataset1_spec_dir, x) + "_mel.npy", data_list1)) # spec
|
52 |
+
feat_list1 = list(map(lambda x: os.path.join(dataset1_feat_dir, x) + ".npz", data_list1)) # feat
|
53 |
+
video_list1 = list(map(lambda x: os.path.join(dataset1_video_dir, x) + "_new_fps_21.5_truncate_0_10.0.mp4", data_list1)) # video
|
54 |
+
|
55 |
+
|
56 |
+
# Merge Data:
|
57 |
+
self.data_list = data_list1 if self.split != "Test" else data_list1[:200]
|
58 |
+
self.spec_list = spec_list1 if self.split != "Test" else spec_list1[:200]
|
59 |
+
self.feat_list = feat_list1 if self.split != "Test" else feat_list1[:200]
|
60 |
+
self.video_list = video_list1 if self.split != "Test" else video_list1[:200]
|
61 |
+
|
62 |
+
assert len(self.data_list) == len(self.spec_list) == len(self.feat_list) == len(self.video_list)
|
63 |
+
|
64 |
+
shuffle_idx = np.random.permutation(np.arange(len(self.data_list)))
|
65 |
+
self.data_list = [self.data_list[i] for i in shuffle_idx]
|
66 |
+
self.spec_list = [self.spec_list[i] for i in shuffle_idx]
|
67 |
+
self.feat_list = [self.feat_list[i] for i in shuffle_idx]
|
68 |
+
self.video_list = [self.video_list[i] for i in shuffle_idx]
|
69 |
+
|
70 |
+
print('Split: {} Sample Num: {}'.format(split, len(self.data_list)))
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
def __len__(self):
|
75 |
+
return len(self.data_list)
|
76 |
+
|
77 |
+
|
78 |
+
def load_spec_and_feat(self, spec_path, video_feat_path):
|
79 |
+
"""Load audio spec and video feat"""
|
80 |
+
try:
|
81 |
+
spec_raw = np.load(spec_path).astype(np.float32) # channel: 1
|
82 |
+
except:
|
83 |
+
print(f"corrupted mel: {spec_path}", flush=True)
|
84 |
+
spec_raw = np.zeros((80, 625), dtype=np.float32) # [C, T]
|
85 |
+
|
86 |
+
p = np.random.uniform(0,1)
|
87 |
+
if p > self.drop:
|
88 |
+
try:
|
89 |
+
video_feat = np.load(video_feat_path)['feat'].astype(np.float32)
|
90 |
+
except:
|
91 |
+
print(f"corrupted video: {video_feat_path}", flush=True)
|
92 |
+
video_feat = np.load(os.path.join(os.path.dirname(video_feat_path), 'empty_vid.npz'))['feat'].astype(np.float32)
|
93 |
+
else:
|
94 |
+
video_feat = np.load(os.path.join(os.path.dirname(video_feat_path), 'empty_vid.npz'))['feat'].astype(np.float32)
|
95 |
+
|
96 |
+
spec_len = self.sr * self.duration / self.hop_len
|
97 |
+
if spec_raw.shape[1] < spec_len:
|
98 |
+
spec_raw = np.tile(spec_raw, math.ceil(spec_len / spec_raw.shape[1]))
|
99 |
+
spec_raw = spec_raw[:, :int(spec_len)]
|
100 |
+
|
101 |
+
feat_len = self.fps * self.duration
|
102 |
+
if video_feat.shape[0] < feat_len:
|
103 |
+
video_feat = np.tile(video_feat, (math.ceil(feat_len / video_feat.shape[0]), 1))
|
104 |
+
video_feat = video_feat[:int(feat_len)]
|
105 |
+
return spec_raw, video_feat
|
106 |
+
|
107 |
+
|
108 |
+
def mix_audio_and_feat(self, spec1=None, spec2=None, video_feat1=None, video_feat2=None, video_info_dict={}, mode='single'):
|
109 |
+
""" Return Mix Spec and Mix video feat"""
|
110 |
+
if mode == "single":
|
111 |
+
# spec1:
|
112 |
+
if not self.fix_frames:
|
113 |
+
start_idx = random.randint(0, self.sr * self.duration - self.truncate - 1) # audio start
|
114 |
+
else:
|
115 |
+
start_idx = 0
|
116 |
+
|
117 |
+
start_frame = int(self.fps * start_idx / self.sr)
|
118 |
+
truncate_frame = int(self.fps * self.truncate / self.sr)
|
119 |
+
|
120 |
+
# Spec Start & Truncate:
|
121 |
+
spec_start = int(start_idx / self.hop_len)
|
122 |
+
spec_truncate = int(self.truncate / self.hop_len)
|
123 |
+
|
124 |
+
spec1 = spec1[:, spec_start : spec_start + spec_truncate]
|
125 |
+
video_feat1 = video_feat1[start_frame: start_frame + truncate_frame]
|
126 |
+
|
127 |
+
# info_dict:
|
128 |
+
video_info_dict['video_time1'] = str(start_frame) + '_' + str(start_frame+truncate_frame) # Start frame, end frame
|
129 |
+
video_info_dict['video_time2'] = ""
|
130 |
+
return spec1, video_feat1, video_info_dict
|
131 |
+
|
132 |
+
elif mode == "concat":
|
133 |
+
total_spec_len = int(self.truncate / self.hop_len)
|
134 |
+
# Random Trucate len:
|
135 |
+
spec1_truncate_len = random.randint(self.min_duration * self.sr // self.hop_len, total_spec_len - self.min_duration * self.sr // self.hop_len - 1)
|
136 |
+
spec2_truncate_len = total_spec_len - spec1_truncate_len
|
137 |
+
|
138 |
+
# Sample spec clip:
|
139 |
+
spec_start1 = random.randint(0, total_spec_len - spec1_truncate_len - 1)
|
140 |
+
spec_start2 = random.randint(0, total_spec_len - spec2_truncate_len - 1)
|
141 |
+
spec_end1, spec_end2 = spec_start1 + spec1_truncate_len, spec_start2 + spec2_truncate_len
|
142 |
+
|
143 |
+
# concat spec:
|
144 |
+
spec1, spec2 = spec1[:, spec_start1 : spec_end1], spec2[:, spec_start2 : spec_end2]
|
145 |
+
concat_audio_spec = np.concatenate([spec1, spec2], axis=1)
|
146 |
+
|
147 |
+
# Concat Video Feat:
|
148 |
+
start1_frame, truncate1_frame = int(self.fps * spec_start1 * self.hop_len / self.sr), int(self.fps * spec1_truncate_len * self.hop_len / self.sr)
|
149 |
+
start2_frame, truncate2_frame = int(self.fps * spec_start2 * self.hop_len / self.sr), int(self.fps * self.truncate / self.sr) - truncate1_frame
|
150 |
+
video_feat1, video_feat2 = video_feat1[start1_frame : start1_frame + truncate1_frame], video_feat2[start2_frame : start2_frame + truncate2_frame]
|
151 |
+
concat_video_feat = np.concatenate([video_feat1, video_feat2])
|
152 |
+
|
153 |
+
video_info_dict['video_time1'] = str(start1_frame) + '_' + str(start1_frame+truncate1_frame) # Start frame, end frame
|
154 |
+
video_info_dict['video_time2'] = str(start2_frame) + '_' + str(start2_frame+truncate2_frame)
|
155 |
+
return concat_audio_spec, concat_video_feat, video_info_dict
|
156 |
+
|
157 |
+
|
158 |
+
|
159 |
+
def __getitem__(self, idx):
|
160 |
+
|
161 |
+
audio_name1 = self.data_list[idx]
|
162 |
+
spec_npy_path1 = self.spec_list[idx]
|
163 |
+
video_feat_path1 = self.feat_list[idx]
|
164 |
+
video_path1 = self.video_list[idx]
|
165 |
+
|
166 |
+
# select other video:
|
167 |
+
flag = False
|
168 |
+
if random.uniform(0, 1) < 0.5:
|
169 |
+
flag = True
|
170 |
+
random_idx = idx
|
171 |
+
while random_idx == idx:
|
172 |
+
random_idx = random.randint(0, len(self.data_list)-1)
|
173 |
+
audio_name2 = self.data_list[random_idx]
|
174 |
+
spec_npy_path2 = self.spec_list[random_idx]
|
175 |
+
video_feat_path2 = self.feat_list[random_idx]
|
176 |
+
video_path2 = self.video_list[random_idx]
|
177 |
+
|
178 |
+
# Load the Spec and Feat:
|
179 |
+
spec1, video_feat1 = self.load_spec_and_feat(spec_npy_path1, video_feat_path1)
|
180 |
+
|
181 |
+
if flag:
|
182 |
+
spec2, video_feat2 = self.load_spec_and_feat(spec_npy_path2, video_feat_path2)
|
183 |
+
video_info_dict = {'audio_name1':audio_name1, 'audio_name2': audio_name2, 'video_path1': video_path1, 'video_path2': video_path2}
|
184 |
+
mix_spec, mix_video_feat, mix_info = self.mix_audio_and_feat(spec1, spec2, video_feat1, video_feat2, video_info_dict, mode='concat')
|
185 |
+
else:
|
186 |
+
video_info_dict = {'audio_name1':audio_name1, 'audio_name2': "", 'video_path1': video_path1, 'video_path2': ""}
|
187 |
+
mix_spec, mix_video_feat, mix_info = self.mix_audio_and_feat(spec1=spec1, video_feat1=video_feat1, video_info_dict=video_info_dict, mode='single')
|
188 |
+
|
189 |
+
# print("mix spec shape:", mix_spec.shape)
|
190 |
+
# print("mix video feat:", mix_video_feat.shape)
|
191 |
+
data_dict = {}
|
192 |
+
# data_dict['mix_spec'] = mix_spec[None].repeat(3, axis=0) # TODO:要把这里改掉,否则无法适应maa的autoencoder
|
193 |
+
data_dict['mix_spec'] = mix_spec # (80, 512)
|
194 |
+
data_dict['mix_video_feat'] = mix_video_feat # (32, 512)
|
195 |
+
data_dict['mix_info_dict'] = mix_info
|
196 |
+
|
197 |
+
return data_dict
|
198 |
+
|
199 |
+
|
200 |
+
|
201 |
+
class audio_video_spec_fullset_Dataset_Train(audio_video_spec_fullset_Dataset):
|
202 |
+
def __init__(self, dataset_cfg):
|
203 |
+
super().__init__(split='train', **dataset_cfg)
|
204 |
+
|
205 |
+
class audio_video_spec_fullset_Dataset_Valid(audio_video_spec_fullset_Dataset):
|
206 |
+
def __init__(self, dataset_cfg):
|
207 |
+
super().__init__(split='valid', **dataset_cfg)
|
208 |
+
|
209 |
+
class audio_video_spec_fullset_Dataset_Test(audio_video_spec_fullset_Dataset):
|
210 |
+
def __init__(self, dataset_cfg):
|
211 |
+
super().__init__(split='test', **dataset_cfg)
|
212 |
+
|
213 |
+
|
214 |
+
|
215 |
+
class audio_video_spec_fullset_Dataset_inpaint(audio_video_spec_fullset_Dataset):
|
216 |
+
|
217 |
+
def __getitem__(self, idx):
|
218 |
+
|
219 |
+
audio_name1 = self.data_list[idx]
|
220 |
+
spec_npy_path1 = self.spec_list[idx]
|
221 |
+
video_feat_path1 = self.feat_list[idx]
|
222 |
+
video_path1 = self.video_list[idx]
|
223 |
+
|
224 |
+
# Load the Spec and Feat:
|
225 |
+
spec1, video_feat1 = self.load_spec_and_feat(spec_npy_path1, video_feat_path1)
|
226 |
+
|
227 |
+
video_info_dict = {'audio_name1': audio_name1, 'audio_name2': "", 'video_path1': video_path1, 'video_path2': ""}
|
228 |
+
mix_spec, mix_masked_spec, mix_video_feat, mix_info = self.mix_audio_and_feat(spec1=spec1, video_feat1=video_feat1, video_info_dict=video_info_dict)
|
229 |
+
|
230 |
+
# print("mix spec shape:", mix_spec.shape)
|
231 |
+
# print("mix video feat:", mix_video_feat.shape)
|
232 |
+
data_dict = {}
|
233 |
+
# data_dict['mix_spec'] = mix_spec[None].repeat(3, axis=0) # TODO:要把这里改掉,否则无法适应maa的autoencoder
|
234 |
+
data_dict['mix_spec'] = mix_spec # (80, 512)
|
235 |
+
data_dict['hybrid_feat'] = {'mix_video_feat': mix_video_feat, 'mix_spec': mix_masked_spec} # (32, 512)
|
236 |
+
data_dict['mix_info_dict'] = mix_info
|
237 |
+
|
238 |
+
return data_dict
|
239 |
+
|
240 |
+
def mix_audio_and_feat(self, spec1=None, video_feat1=None, video_info_dict={}):
|
241 |
+
""" Return Mix Spec and Mix video feat"""
|
242 |
+
|
243 |
+
# spec1:
|
244 |
+
if not self.fix_frames:
|
245 |
+
start_idx = random.randint(0, self.sr * self.duration - self.truncate - 1) # audio start
|
246 |
+
else:
|
247 |
+
start_idx = 0
|
248 |
+
|
249 |
+
start_frame = int(self.fps * start_idx / self.sr)
|
250 |
+
truncate_frame = int(self.fps * self.truncate / self.sr)
|
251 |
+
|
252 |
+
# Spec Start & Truncate:
|
253 |
+
spec_start = int(start_idx / self.hop_len)
|
254 |
+
spec_truncate = int(self.truncate / self.hop_len)
|
255 |
+
|
256 |
+
spec1 = spec1[:, spec_start: spec_start + spec_truncate]
|
257 |
+
video_feat1 = video_feat1[start_frame: start_frame + truncate_frame]
|
258 |
+
|
259 |
+
# Start masking frames:
|
260 |
+
masked_spec = random.randint(1, int(spec_truncate * 0.5 // 16)) * 16 # 16帧的倍数,最多mask 50%
|
261 |
+
masked_truncate = int(masked_spec * self.hop_len)
|
262 |
+
masked_frame = int(self.fps * masked_truncate / self.sr)
|
263 |
+
|
264 |
+
start_masked_idx = random.randint(0, self.truncate - masked_truncate - 1)
|
265 |
+
start_masked_frame = int(self.fps * start_masked_idx / self.sr)
|
266 |
+
start_masked_spec = int(start_masked_idx / self.hop_len)
|
267 |
+
|
268 |
+
masked_spec1 = np.zeros((80, spec_truncate)).astype(np.float32)
|
269 |
+
masked_spec1[:] = spec1[:]
|
270 |
+
masked_spec1[:, start_masked_spec:start_masked_spec+masked_spec] = np.zeros((80, masked_spec))
|
271 |
+
video_feat1[start_masked_frame:start_masked_frame+masked_frame, :] = np.zeros((masked_frame, 512))
|
272 |
+
# info_dict:
|
273 |
+
video_info_dict['video_time1'] = str(start_frame) + '_' + str(start_frame + truncate_frame) # Start frame, end frame
|
274 |
+
video_info_dict['video_time2'] = ""
|
275 |
+
return spec1, masked_spec1, video_feat1, video_info_dict
|
276 |
+
|
277 |
+
|
278 |
+
|
279 |
+
class audio_video_spec_fullset_Dataset_inpaint_Train(audio_video_spec_fullset_Dataset_inpaint):
|
280 |
+
def __init__(self, dataset_cfg):
|
281 |
+
super().__init__(split='train', **dataset_cfg)
|
282 |
+
|
283 |
+
class audio_video_spec_fullset_Dataset_inpaint_Valid(audio_video_spec_fullset_Dataset_inpaint):
|
284 |
+
def __init__(self, dataset_cfg):
|
285 |
+
super().__init__(split='valid', **dataset_cfg)
|
286 |
+
|
287 |
+
class audio_video_spec_fullset_Dataset_inpaint_Test(audio_video_spec_fullset_Dataset_inpaint):
|
288 |
+
def __init__(self, dataset_cfg):
|
289 |
+
super().__init__(split='test', **dataset_cfg)
|
290 |
+
|
291 |
+
|
292 |
+
|
293 |
+
class audio_Dataset(torch.utils.data.Dataset):
|
294 |
+
# Only Load audio dataset: for training Stage1: Audio Npy Dataset
|
295 |
+
def __init__(self, split, dataset1, sr=22050, duration=10, truncate=220000, debug_num=False, fix_frames=False, hop_len=256):
|
296 |
+
super().__init__()
|
297 |
+
|
298 |
+
if split == "train":
|
299 |
+
self.split = "Train"
|
300 |
+
|
301 |
+
elif split == "valid" or split == 'test':
|
302 |
+
self.split = "Test"
|
303 |
+
|
304 |
+
# Default params:
|
305 |
+
self.min_duration = 2
|
306 |
+
self.sr = sr # 22050
|
307 |
+
self.duration = duration # 10
|
308 |
+
self.truncate = truncate # 220000
|
309 |
+
self.fix_frames = fix_frames
|
310 |
+
self.hop_len = hop_len
|
311 |
+
print("Fix Frames: {}".format(self.fix_frames))
|
312 |
+
|
313 |
+
|
314 |
+
# Dataset1: (VGGSound)
|
315 |
+
assert dataset1.dataset_name == "VGGSound"
|
316 |
+
|
317 |
+
# spec_dir: spectrogram path
|
318 |
+
|
319 |
+
# dataset1_spec_dir = os.path.join(dataset1.data_dir, "codec")
|
320 |
+
dataset1_wav_dir = os.path.join(dataset1.wav_dir, "wav")
|
321 |
+
|
322 |
+
split_txt_path = dataset1.split_txt_path
|
323 |
+
with open(os.path.join(split_txt_path, '{}.txt'.format(self.split)), "r") as f:
|
324 |
+
data_list1 = f.readlines()
|
325 |
+
data_list1 = list(map(lambda x: x.strip(), data_list1))
|
326 |
+
wav_list1 = list(map(lambda x: os.path.join(dataset1_wav_dir, x) + ".wav", data_list1)) # feat
|
327 |
+
|
328 |
+
# Merge Data:
|
329 |
+
self.data_list = data_list1
|
330 |
+
self.wav_list = wav_list1
|
331 |
+
|
332 |
+
assert len(self.data_list) == len(self.wav_list)
|
333 |
+
|
334 |
+
shuffle_idx = np.random.permutation(np.arange(len(self.data_list)))
|
335 |
+
self.data_list = [self.data_list[i] for i in shuffle_idx]
|
336 |
+
self.wav_list = [self.wav_list[i] for i in shuffle_idx]
|
337 |
+
|
338 |
+
if debug_num:
|
339 |
+
self.data_list = self.data_list[:debug_num]
|
340 |
+
self.wav_list = self.wav_list[:debug_num]
|
341 |
+
|
342 |
+
print('Split: {} Sample Num: {}'.format(split, len(self.data_list)))
|
343 |
+
|
344 |
+
|
345 |
+
def __len__(self):
|
346 |
+
return len(self.data_list)
|
347 |
+
|
348 |
+
|
349 |
+
def load_spec_and_feat(self, wav_path):
|
350 |
+
"""Load audio spec and video feat"""
|
351 |
+
try:
|
352 |
+
wav_raw, sr = librosa.load(wav_path, sr=self.sr) # channel: 1
|
353 |
+
except:
|
354 |
+
print(f"corrupted wav: {wav_path}", flush=True)
|
355 |
+
wav_raw = np.zeros((160000,), dtype=np.float32) # [T]
|
356 |
+
|
357 |
+
wav_len = self.sr * self.duration
|
358 |
+
if wav_raw.shape[0] < wav_len:
|
359 |
+
wav_raw = np.tile(wav_raw, math.ceil(wav_len / wav_raw.shape[0]))
|
360 |
+
wav_raw = wav_raw[:int(wav_len)]
|
361 |
+
|
362 |
+
return wav_raw
|
363 |
+
|
364 |
+
|
365 |
+
def mix_audio_and_feat(self, wav_raw1=None, video_info_dict={}, mode='single'):
|
366 |
+
""" Return Mix Spec and Mix video feat"""
|
367 |
+
if mode == "single":
|
368 |
+
# spec1:
|
369 |
+
if not self.fix_frames:
|
370 |
+
start_idx = random.randint(0, self.sr * self.duration - self.truncate - 1) # audio start
|
371 |
+
else:
|
372 |
+
start_idx = 0
|
373 |
+
|
374 |
+
wav_start = start_idx
|
375 |
+
wav_truncate = self.truncate
|
376 |
+
wav_raw1 = wav_raw1[wav_start: wav_start + wav_truncate]
|
377 |
+
|
378 |
+
return wav_raw1, video_info_dict
|
379 |
+
|
380 |
+
elif mode == "concat":
|
381 |
+
total_spec_len = int(self.truncate / self.hop_len)
|
382 |
+
# Random Trucate len:
|
383 |
+
spec1_truncate_len = random.randint(self.min_duration * self.sr // self.hop_len, total_spec_len - self.min_duration * self.sr // self.hop_len - 1)
|
384 |
+
spec2_truncate_len = total_spec_len - spec1_truncate_len
|
385 |
+
|
386 |
+
# Sample spec clip:
|
387 |
+
spec_start1 = random.randint(0, total_spec_len - spec1_truncate_len - 1)
|
388 |
+
spec_start2 = random.randint(0, total_spec_len - spec2_truncate_len - 1)
|
389 |
+
spec_end1, spec_end2 = spec_start1 + spec1_truncate_len, spec_start2 + spec2_truncate_len
|
390 |
+
|
391 |
+
# concat spec:
|
392 |
+
return video_info_dict
|
393 |
+
|
394 |
+
|
395 |
+
def __getitem__(self, idx):
|
396 |
+
|
397 |
+
audio_name1 = self.data_list[idx]
|
398 |
+
wav_path1 = self.wav_list[idx]
|
399 |
+
# select other video:
|
400 |
+
flag = False
|
401 |
+
if random.uniform(0, 1) < -1:
|
402 |
+
flag = True
|
403 |
+
random_idx = idx
|
404 |
+
while random_idx == idx:
|
405 |
+
random_idx = random.randint(0, len(self.data_list)-1)
|
406 |
+
audio_name2 = self.data_list[random_idx]
|
407 |
+
spec_npy_path2 = self.spec_list[random_idx]
|
408 |
+
wav_path2 = self.wav_list[random_idx]
|
409 |
+
|
410 |
+
# Load the Spec and Feat:
|
411 |
+
wav_raw1 = self.load_spec_and_feat(wav_path1)
|
412 |
+
|
413 |
+
if flag:
|
414 |
+
spec2, video_feat2 = self.load_spec_and_feat(spec_npy_path2, wav_path2)
|
415 |
+
video_info_dict = {'audio_name1':audio_name1, 'audio_name2': audio_name2}
|
416 |
+
mix_spec, mix_video_feat, mix_info = self.mix_audio_and_feat(video_info_dict, mode='concat')
|
417 |
+
else:
|
418 |
+
video_info_dict = {'audio_name1':audio_name1, 'audio_name2': ""}
|
419 |
+
mix_wav, mix_info = self.mix_audio_and_feat(wav_raw1=wav_raw1, video_info_dict=video_info_dict, mode='single')
|
420 |
+
|
421 |
+
data_dict = {}
|
422 |
+
data_dict['mix_wav'] = mix_wav # (131072,)
|
423 |
+
data_dict['mix_info_dict'] = mix_info
|
424 |
+
|
425 |
+
return data_dict
|
426 |
+
|
427 |
+
|
428 |
+
class audio_Dataset_Train(audio_Dataset):
|
429 |
+
def __init__(self, dataset_cfg):
|
430 |
+
super().__init__(split='train', **dataset_cfg)
|
431 |
+
|
432 |
+
class audio_Dataset_Test(audio_Dataset):
|
433 |
+
def __init__(self, dataset_cfg):
|
434 |
+
super().__init__(split='test', **dataset_cfg)
|
435 |
+
|
436 |
+
class audio_Dataset_Valid(audio_Dataset):
|
437 |
+
def __init__(self, dataset_cfg):
|
438 |
+
super().__init__(split='valid', **dataset_cfg)
|
439 |
+
|
440 |
+
|
441 |
+
|
442 |
+
class video_codec_Dataset(torch.utils.data.Dataset):
|
443 |
+
# Only Load audio dataset: for training Stage1: Audio Npy Dataset
|
444 |
+
def __init__(self, split, dataset1, sr=22050, duration=10, truncate=220000, fps=21.5, debug_num=False, fix_frames=False, hop_len=256):
|
445 |
+
super().__init__()
|
446 |
+
|
447 |
+
if split == "train":
|
448 |
+
self.split = "Train"
|
449 |
+
|
450 |
+
elif split == "valid" or split == 'test':
|
451 |
+
self.split = "Test"
|
452 |
+
|
453 |
+
# Default params:
|
454 |
+
self.min_duration = 2
|
455 |
+
self.fps = fps
|
456 |
+
self.sr = sr # 22050
|
457 |
+
self.duration = duration # 10
|
458 |
+
self.truncate = truncate # 220000
|
459 |
+
self.fix_frames = fix_frames
|
460 |
+
self.hop_len = hop_len
|
461 |
+
print("Fix Frames: {}".format(self.fix_frames))
|
462 |
+
|
463 |
+
|
464 |
+
# Dataset1: (VGGSound)
|
465 |
+
assert dataset1.dataset_name == "VGGSound"
|
466 |
+
|
467 |
+
# spec_dir: spectrogram path
|
468 |
+
|
469 |
+
# dataset1_spec_dir = os.path.join(dataset1.data_dir, "codec")
|
470 |
+
dataset1_feat_dir = os.path.join(dataset1.data_dir, "cavp")
|
471 |
+
dataset1_wav_dir = os.path.join(dataset1.wav_dir, "wav")
|
472 |
+
|
473 |
+
split_txt_path = dataset1.split_txt_path
|
474 |
+
with open(os.path.join(split_txt_path, '{}.txt'.format(self.split)), "r") as f:
|
475 |
+
data_list1 = f.readlines()
|
476 |
+
data_list1 = list(map(lambda x: x.strip(), data_list1))
|
477 |
+
wav_list1 = list(map(lambda x: os.path.join(dataset1_wav_dir, x) + ".wav", data_list1)) # feat
|
478 |
+
feat_list1 = list(map(lambda x: os.path.join(dataset1_feat_dir, x) + ".npz", data_list1)) # feat
|
479 |
+
|
480 |
+
# Merge Data:
|
481 |
+
self.data_list = data_list1
|
482 |
+
self.wav_list = wav_list1
|
483 |
+
self.feat_list = feat_list1
|
484 |
+
|
485 |
+
assert len(self.data_list) == len(self.wav_list)
|
486 |
+
|
487 |
+
shuffle_idx = np.random.permutation(np.arange(len(self.data_list)))
|
488 |
+
self.data_list = [self.data_list[i] for i in shuffle_idx]
|
489 |
+
self.wav_list = [self.wav_list[i] for i in shuffle_idx]
|
490 |
+
self.feat_list = [self.feat_list[i] for i in shuffle_idx]
|
491 |
+
|
492 |
+
if debug_num:
|
493 |
+
self.data_list = self.data_list[:debug_num]
|
494 |
+
self.wav_list = self.wav_list[:debug_num]
|
495 |
+
self.feat_list = self.feat_list[:debug_num]
|
496 |
+
|
497 |
+
print('Split: {} Sample Num: {}'.format(split, len(self.data_list)))
|
498 |
+
|
499 |
+
|
500 |
+
def __len__(self):
|
501 |
+
return len(self.data_list)
|
502 |
+
|
503 |
+
|
504 |
+
def load_spec_and_feat(self, wav_path, video_feat_path):
|
505 |
+
"""Load audio spec and video feat"""
|
506 |
+
try:
|
507 |
+
wav_raw, sr = librosa.load(wav_path, sr=self.sr) # channel: 1
|
508 |
+
except:
|
509 |
+
print(f"corrupted wav: {wav_path}", flush=True)
|
510 |
+
wav_raw = np.zeros((160000,), dtype=np.float32) # [T]
|
511 |
+
|
512 |
+
try:
|
513 |
+
video_feat = np.load(video_feat_path)['feat'].astype(np.float32)
|
514 |
+
except:
|
515 |
+
print(f"corrupted video: {video_feat_path}", flush=True)
|
516 |
+
video_feat = np.load(os.path.join(os.path.dirname(video_feat_path), 'empty_vid.npz'))['feat'].astype(np.float32)
|
517 |
+
|
518 |
+
wav_len = self.sr * self.duration
|
519 |
+
if wav_raw.shape[0] < wav_len:
|
520 |
+
wav_raw = np.tile(wav_raw, math.ceil(wav_len / wav_raw.shape[0]))
|
521 |
+
wav_raw = wav_raw[:int(wav_len)]
|
522 |
+
|
523 |
+
feat_len = self.fps * self.duration
|
524 |
+
if video_feat.shape[0] < feat_len:
|
525 |
+
video_feat = np.tile(video_feat, (math.ceil(feat_len / video_feat.shape[0]), 1))
|
526 |
+
video_feat = video_feat[:int(feat_len)]
|
527 |
+
|
528 |
+
return wav_raw, video_feat
|
529 |
+
|
530 |
+
|
531 |
+
def mix_audio_and_feat(self, wav_raw1=None, video_feat1=None, video_info_dict={}, mode='single'):
|
532 |
+
""" Return Mix Spec and Mix video feat"""
|
533 |
+
if mode == "single":
|
534 |
+
# spec1:
|
535 |
+
if not self.fix_frames:
|
536 |
+
start_idx = random.randint(0, self.sr * self.duration - self.truncate - 1) # audio start
|
537 |
+
else:
|
538 |
+
start_idx = 0
|
539 |
+
|
540 |
+
wav_start = start_idx
|
541 |
+
wav_truncate = self.truncate
|
542 |
+
wav_raw1 = wav_raw1[wav_start: wav_start + wav_truncate]
|
543 |
+
|
544 |
+
start_frame = int(self.fps * start_idx / self.sr)
|
545 |
+
truncate_frame = int(self.fps * self.truncate / self.sr)
|
546 |
+
video_feat1 = video_feat1[start_frame: start_frame + truncate_frame]
|
547 |
+
|
548 |
+
# info_dict:
|
549 |
+
video_info_dict['video_time1'] = str(start_frame) + '_' + str(start_frame+truncate_frame) # Start frame, end frame
|
550 |
+
video_info_dict['video_time2'] = ""
|
551 |
+
|
552 |
+
return wav_raw1, video_feat1, video_info_dict
|
553 |
+
|
554 |
+
elif mode == "concat":
|
555 |
+
total_spec_len = int(self.truncate / self.hop_len)
|
556 |
+
# Random Trucate len:
|
557 |
+
spec1_truncate_len = random.randint(self.min_duration * self.sr // self.hop_len, total_spec_len - self.min_duration * self.sr // self.hop_len - 1)
|
558 |
+
spec2_truncate_len = total_spec_len - spec1_truncate_len
|
559 |
+
|
560 |
+
# Sample spec clip:
|
561 |
+
spec_start1 = random.randint(0, total_spec_len - spec1_truncate_len - 1)
|
562 |
+
spec_start2 = random.randint(0, total_spec_len - spec2_truncate_len - 1)
|
563 |
+
spec_end1, spec_end2 = spec_start1 + spec1_truncate_len, spec_start2 + spec2_truncate_len
|
564 |
+
|
565 |
+
# concat spec:
|
566 |
+
return video_info_dict
|
567 |
+
|
568 |
+
|
569 |
+
def __getitem__(self, idx):
|
570 |
+
|
571 |
+
audio_name1 = self.data_list[idx]
|
572 |
+
wav_path1 = self.wav_list[idx]
|
573 |
+
video_feat_path1 = self.feat_list[idx]
|
574 |
+
# select other video:
|
575 |
+
flag = False
|
576 |
+
if random.uniform(0, 1) < -1:
|
577 |
+
flag = True
|
578 |
+
random_idx = idx
|
579 |
+
while random_idx == idx:
|
580 |
+
random_idx = random.randint(0, len(self.data_list)-1)
|
581 |
+
audio_name2 = self.data_list[random_idx]
|
582 |
+
wav_path2 = self.wav_list[random_idx]
|
583 |
+
video_feat_path2 = self.feat_list[random_idx]
|
584 |
+
|
585 |
+
# Load the Spec and Feat:
|
586 |
+
wav_raw1, video_feat1 = self.load_spec_and_feat(wav_path1, video_feat_path1)
|
587 |
+
|
588 |
+
if flag:
|
589 |
+
wav_raw2, video_feat2 = self.load_spec_and_feat(wav_path2, video_feat_path2)
|
590 |
+
video_info_dict = {'audio_name1':audio_name1, 'audio_name2': audio_name2}
|
591 |
+
mix_spec, mix_video_feat, mix_info = self.mix_audio_and_feat(video_info_dict, mode='concat')
|
592 |
+
else:
|
593 |
+
video_info_dict = {'audio_name1':audio_name1, 'audio_name2': ""}
|
594 |
+
mix_wav, mix_video_feat, mix_info = self.mix_audio_and_feat(wav_raw1=wav_raw1, video_feat1=video_feat1, video_info_dict=video_info_dict, mode='single')
|
595 |
+
|
596 |
+
data_dict = {}
|
597 |
+
data_dict['mix_wav'] = mix_wav # (131072,)
|
598 |
+
data_dict['mix_video_feat'] = mix_video_feat # (32, 512)
|
599 |
+
data_dict['mix_info_dict'] = mix_info
|
600 |
+
|
601 |
+
return data_dict
|
602 |
+
|
603 |
+
|
604 |
+
class video_codec_Dataset_Train(video_codec_Dataset):
|
605 |
+
def __init__(self, dataset_cfg):
|
606 |
+
super().__init__(split='train', **dataset_cfg)
|
607 |
+
|
608 |
+
class video_codec_Dataset_Test(video_codec_Dataset):
|
609 |
+
def __init__(self, dataset_cfg):
|
610 |
+
super().__init__(split='test', **dataset_cfg)
|
611 |
+
|
612 |
+
class video_codec_Dataset_Valid(video_codec_Dataset):
|
613 |
+
def __init__(self, dataset_cfg):
|
614 |
+
super().__init__(split='valid', **dataset_cfg)
|
615 |
+
|
616 |
+
|
617 |
+
class audio_video_spec_fullset_Audioset_Dataset(torch.utils.data.Dataset):
|
618 |
+
# Only Load audio dataset: for training Stage1: Audio Npy Dataset
|
619 |
+
def __init__(self, split, dataset1, dataset2, sr=22050, duration=10, truncate=220000,
|
620 |
+
fps=21.5, drop=0.0, fix_frames=False, hop_len=256):
|
621 |
+
super().__init__()
|
622 |
+
|
623 |
+
if split == "train":
|
624 |
+
self.split = "Train"
|
625 |
+
|
626 |
+
elif split == "valid" or split == 'test':
|
627 |
+
self.split = "Test"
|
628 |
+
|
629 |
+
# Default params:
|
630 |
+
self.min_duration = 2
|
631 |
+
self.sr = sr # 22050
|
632 |
+
self.duration = duration # 10
|
633 |
+
self.truncate = truncate # 220000
|
634 |
+
self.fps = fps
|
635 |
+
self.fix_frames = fix_frames
|
636 |
+
self.hop_len = hop_len
|
637 |
+
self.drop = drop
|
638 |
+
print("Fix Frames: {}".format(self.fix_frames))
|
639 |
+
print("Use Drop: {}".format(self.drop))
|
640 |
+
|
641 |
+
# Dataset1: (VGGSound)
|
642 |
+
assert dataset1.dataset_name == "VGGSound"
|
643 |
+
assert dataset2.dataset_name == "Audioset"
|
644 |
+
|
645 |
+
# spec_dir: spectrogram path
|
646 |
+
# feat_dir: CAVP feature path
|
647 |
+
# video_dir: video path
|
648 |
+
|
649 |
+
dataset1_spec_dir = os.path.join(dataset1.data_dir, "mel_maa2", "npy")
|
650 |
+
dataset1_feat_dir = os.path.join(dataset1.data_dir, "cavp")
|
651 |
+
split_txt_path = dataset1.split_txt_path
|
652 |
+
with open(os.path.join(split_txt_path, '{}.txt'.format(self.split)), "r") as f:
|
653 |
+
data_list1 = f.readlines()
|
654 |
+
data_list1 = list(map(lambda x: x.strip(), data_list1))
|
655 |
+
|
656 |
+
spec_list1 = list(map(lambda x: os.path.join(dataset1_spec_dir, x) + "_mel.npy", data_list1)) # spec
|
657 |
+
feat_list1 = list(map(lambda x: os.path.join(dataset1_feat_dir, x) + ".npz", data_list1)) # feat
|
658 |
+
|
659 |
+
if split == "train":
|
660 |
+
dataset2_spec_dir = os.path.join(dataset2.data_dir, "mel")
|
661 |
+
dataset2_feat_dir = os.path.join(dataset2.data_dir, "cavp_renamed")
|
662 |
+
split_txt_path = dataset2.split_txt_path
|
663 |
+
with open(os.path.join(split_txt_path, '{}.txt'.format(self.split)), "r") as f:
|
664 |
+
data_list2 = f.readlines()
|
665 |
+
data_list2 = list(map(lambda x: x.strip(), data_list2))
|
666 |
+
|
667 |
+
spec_list2 = list(map(lambda x: os.path.join(dataset2_spec_dir, f'Y{x}') + "_mel.npy", data_list2)) # spec
|
668 |
+
feat_list2 = list(map(lambda x: os.path.join(dataset2_feat_dir, x) + ".npz", data_list2)) # feat
|
669 |
+
|
670 |
+
data_list1 += data_list2
|
671 |
+
spec_list1 += spec_list2
|
672 |
+
feat_list1 += feat_list2
|
673 |
+
|
674 |
+
# Merge Data:
|
675 |
+
self.data_list = data_list1 if self.split != "Test" else data_list1[:200]
|
676 |
+
self.spec_list = spec_list1 if self.split != "Test" else spec_list1[:200]
|
677 |
+
self.feat_list = feat_list1 if self.split != "Test" else feat_list1[:200]
|
678 |
+
|
679 |
+
assert len(self.data_list) == len(self.spec_list) == len(self.feat_list)
|
680 |
+
|
681 |
+
shuffle_idx = np.random.permutation(np.arange(len(self.data_list)))
|
682 |
+
self.data_list = [self.data_list[i] for i in shuffle_idx]
|
683 |
+
self.spec_list = [self.spec_list[i] for i in shuffle_idx]
|
684 |
+
self.feat_list = [self.feat_list[i] for i in shuffle_idx]
|
685 |
+
|
686 |
+
print('Split: {} Sample Num: {}'.format(split, len(self.data_list)))
|
687 |
+
|
688 |
+
# self.check(self.spec_list)
|
689 |
+
|
690 |
+
def __len__(self):
|
691 |
+
return len(self.data_list)
|
692 |
+
|
693 |
+
def check(self, feat_list):
|
694 |
+
from tqdm import tqdm
|
695 |
+
for spec_path in tqdm(feat_list):
|
696 |
+
mel = np.load(spec_path).astype(np.float32)
|
697 |
+
if mel.shape[0] != 80:
|
698 |
+
import ipdb
|
699 |
+
ipdb.set_trace()
|
700 |
+
|
701 |
+
|
702 |
+
|
703 |
+
def load_spec_and_feat(self, spec_path, video_feat_path):
|
704 |
+
"""Load audio spec and video feat"""
|
705 |
+
spec_raw = np.load(spec_path).astype(np.float32) # channel: 1
|
706 |
+
if spec_raw.shape[0] != 80:
|
707 |
+
print(f"corrupted mel: {spec_path}", flush=True)
|
708 |
+
spec_raw = np.zeros((80, 625), dtype=np.float32) # [C, T]
|
709 |
+
|
710 |
+
p = np.random.uniform(0, 1)
|
711 |
+
if p > self.drop:
|
712 |
+
try:
|
713 |
+
video_feat = np.load(video_feat_path)['feat'].astype(np.float32)
|
714 |
+
except:
|
715 |
+
print(f"corrupted video: {video_feat_path}", flush=True)
|
716 |
+
video_feat = np.load(os.path.join(os.path.dirname(video_feat_path), 'empty_vid.npz'))['feat'].astype(np.float32)
|
717 |
+
else:
|
718 |
+
video_feat = np.load(os.path.join(os.path.dirname(video_feat_path), 'empty_vid.npz'))['feat'].astype(np.float32)
|
719 |
+
|
720 |
+
spec_len = self.sr * self.duration / self.hop_len
|
721 |
+
if spec_raw.shape[1] < spec_len:
|
722 |
+
spec_raw = np.tile(spec_raw, math.ceil(spec_len / spec_raw.shape[1]))
|
723 |
+
spec_raw = spec_raw[:, :int(spec_len)]
|
724 |
+
|
725 |
+
feat_len = self.fps * self.duration
|
726 |
+
if video_feat.shape[0] < feat_len:
|
727 |
+
video_feat = np.tile(video_feat, (math.ceil(feat_len / video_feat.shape[0]), 1))
|
728 |
+
video_feat = video_feat[:int(feat_len)]
|
729 |
+
return spec_raw, video_feat
|
730 |
+
|
731 |
+
def mix_audio_and_feat(self, spec1=None, spec2=None, video_feat1=None, video_feat2=None, video_info_dict={},
|
732 |
+
mode='single'):
|
733 |
+
""" Return Mix Spec and Mix video feat"""
|
734 |
+
if mode == "single":
|
735 |
+
# spec1:
|
736 |
+
if not self.fix_frames:
|
737 |
+
start_idx = random.randint(0, self.sr * self.duration - self.truncate - 1) # audio start
|
738 |
+
else:
|
739 |
+
start_idx = 0
|
740 |
+
|
741 |
+
start_frame = int(self.fps * start_idx / self.sr)
|
742 |
+
truncate_frame = int(self.fps * self.truncate / self.sr)
|
743 |
+
|
744 |
+
# Spec Start & Truncate:
|
745 |
+
spec_start = int(start_idx / self.hop_len)
|
746 |
+
spec_truncate = int(self.truncate / self.hop_len)
|
747 |
+
|
748 |
+
spec1 = spec1[:, spec_start: spec_start + spec_truncate]
|
749 |
+
video_feat1 = video_feat1[start_frame: start_frame + truncate_frame]
|
750 |
+
|
751 |
+
# info_dict:
|
752 |
+
video_info_dict['video_time1'] = str(start_frame) + '_' + str(
|
753 |
+
start_frame + truncate_frame) # Start frame, end frame
|
754 |
+
video_info_dict['video_time2'] = ""
|
755 |
+
return spec1, video_feat1, video_info_dict
|
756 |
+
|
757 |
+
elif mode == "concat":
|
758 |
+
total_spec_len = int(self.truncate / self.hop_len)
|
759 |
+
# Random Trucate len:
|
760 |
+
spec1_truncate_len = random.randint(self.min_duration * self.sr // self.hop_len,
|
761 |
+
total_spec_len - self.min_duration * self.sr // self.hop_len - 1)
|
762 |
+
spec2_truncate_len = total_spec_len - spec1_truncate_len
|
763 |
+
|
764 |
+
# Sample spec clip:
|
765 |
+
spec_start1 = random.randint(0, total_spec_len - spec1_truncate_len - 1)
|
766 |
+
spec_start2 = random.randint(0, total_spec_len - spec2_truncate_len - 1)
|
767 |
+
spec_end1, spec_end2 = spec_start1 + spec1_truncate_len, spec_start2 + spec2_truncate_len
|
768 |
+
|
769 |
+
# concat spec:
|
770 |
+
spec1, spec2 = spec1[:, spec_start1: spec_end1], spec2[:, spec_start2: spec_end2]
|
771 |
+
concat_audio_spec = np.concatenate([spec1, spec2], axis=1)
|
772 |
+
|
773 |
+
# Concat Video Feat:
|
774 |
+
start1_frame, truncate1_frame = int(self.fps * spec_start1 * self.hop_len / self.sr), int(
|
775 |
+
self.fps * spec1_truncate_len * self.hop_len / self.sr)
|
776 |
+
start2_frame, truncate2_frame = int(self.fps * spec_start2 * self.hop_len / self.sr), int(
|
777 |
+
self.fps * self.truncate / self.sr) - truncate1_frame
|
778 |
+
video_feat1, video_feat2 = video_feat1[start1_frame: start1_frame + truncate1_frame], video_feat2[
|
779 |
+
start2_frame: start2_frame + truncate2_frame]
|
780 |
+
concat_video_feat = np.concatenate([video_feat1, video_feat2])
|
781 |
+
|
782 |
+
video_info_dict['video_time1'] = str(start1_frame) + '_' + str(
|
783 |
+
start1_frame + truncate1_frame) # Start frame, end frame
|
784 |
+
video_info_dict['video_time2'] = str(start2_frame) + '_' + str(start2_frame + truncate2_frame)
|
785 |
+
return concat_audio_spec, concat_video_feat, video_info_dict
|
786 |
+
|
787 |
+
def __getitem__(self, idx):
|
788 |
+
|
789 |
+
audio_name1 = self.data_list[idx]
|
790 |
+
spec_npy_path1 = self.spec_list[idx]
|
791 |
+
video_feat_path1 = self.feat_list[idx]
|
792 |
+
|
793 |
+
# select other video:
|
794 |
+
flag = False
|
795 |
+
if random.uniform(0, 1) < -1:
|
796 |
+
flag = True
|
797 |
+
random_idx = idx
|
798 |
+
while random_idx == idx:
|
799 |
+
random_idx = random.randint(0, len(self.data_list) - 1)
|
800 |
+
audio_name2 = self.data_list[random_idx]
|
801 |
+
spec_npy_path2 = self.spec_list[random_idx]
|
802 |
+
video_feat_path2 = self.feat_list[random_idx]
|
803 |
+
|
804 |
+
# Load the Spec and Feat:
|
805 |
+
spec1, video_feat1 = self.load_spec_and_feat(spec_npy_path1, video_feat_path1)
|
806 |
+
|
807 |
+
if flag:
|
808 |
+
spec2, video_feat2 = self.load_spec_and_feat(spec_npy_path2, video_feat_path2)
|
809 |
+
video_info_dict = {'audio_name1': audio_name1, 'audio_name2': audio_name2}
|
810 |
+
mix_spec, mix_video_feat, mix_info = self.mix_audio_and_feat(spec1, spec2, video_feat1, video_feat2, video_info_dict, mode='concat')
|
811 |
+
else:
|
812 |
+
video_info_dict = {'audio_name1': audio_name1, 'audio_name2': ""}
|
813 |
+
mix_spec, mix_video_feat, mix_info = self.mix_audio_and_feat(spec1=spec1, video_feat1=video_feat1, video_info_dict=video_info_dict, mode='single')
|
814 |
+
|
815 |
+
# print("mix spec shape:", mix_spec.shape)
|
816 |
+
# print("mix video feat:", mix_video_feat.shape)
|
817 |
+
data_dict = {}
|
818 |
+
data_dict['mix_spec'] = mix_spec # (80, 512)
|
819 |
+
data_dict['mix_video_feat'] = mix_video_feat # (32, 512)
|
820 |
+
data_dict['mix_info_dict'] = mix_info
|
821 |
+
|
822 |
+
return data_dict
|
823 |
+
|
824 |
+
|
825 |
+
class audio_video_spec_fullset_Audioset_Train(audio_video_spec_fullset_Audioset_Dataset):
|
826 |
+
def __init__(self, dataset_cfg):
|
827 |
+
super().__init__(split='train', **dataset_cfg)
|
828 |
+
|
829 |
+
|
830 |
+
class audio_video_spec_fullset_Audioset_Valid(audio_video_spec_fullset_Audioset_Dataset):
|
831 |
+
def __init__(self, dataset_cfg):
|
832 |
+
super().__init__(split='valid', **dataset_cfg)
|
833 |
+
|
834 |
+
|
835 |
+
class audio_video_spec_fullset_Audioset_Test(audio_video_spec_fullset_Audioset_Dataset):
|
836 |
+
def __init__(self, dataset_cfg):
|
837 |
+
super().__init__(split='test', **dataset_cfg)
|
ldm/lr_scheduler.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
|
4 |
+
class LambdaWarmUpCosineScheduler:
|
5 |
+
"""
|
6 |
+
note: use with a base_lr of 1.0
|
7 |
+
"""
|
8 |
+
def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0):
|
9 |
+
self.lr_warm_up_steps = warm_up_steps
|
10 |
+
self.lr_start = lr_start
|
11 |
+
self.lr_min = lr_min
|
12 |
+
self.lr_max = lr_max
|
13 |
+
self.lr_max_decay_steps = max_decay_steps
|
14 |
+
self.last_lr = 0.
|
15 |
+
self.verbosity_interval = verbosity_interval
|
16 |
+
|
17 |
+
def schedule(self, n, **kwargs):
|
18 |
+
if self.verbosity_interval > 0:
|
19 |
+
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
|
20 |
+
if n < self.lr_warm_up_steps:
|
21 |
+
lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start
|
22 |
+
self.last_lr = lr
|
23 |
+
return lr
|
24 |
+
else:
|
25 |
+
t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps)
|
26 |
+
t = min(t, 1.0)
|
27 |
+
lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
|
28 |
+
1 + np.cos(t * np.pi))
|
29 |
+
self.last_lr = lr
|
30 |
+
return lr
|
31 |
+
|
32 |
+
def __call__(self, n, **kwargs):
|
33 |
+
return self.schedule(n,**kwargs)
|
34 |
+
|
35 |
+
|
36 |
+
class LambdaWarmUpCosineScheduler2:
|
37 |
+
"""
|
38 |
+
supports repeated iterations, configurable via lists
|
39 |
+
note: use with a base_lr of 1.0.
|
40 |
+
"""
|
41 |
+
def __init__(self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0):
|
42 |
+
assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths)
|
43 |
+
self.lr_warm_up_steps = warm_up_steps
|
44 |
+
self.f_start = f_start
|
45 |
+
self.f_min = f_min
|
46 |
+
self.f_max = f_max
|
47 |
+
self.cycle_lengths = cycle_lengths
|
48 |
+
self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
|
49 |
+
self.last_f = 0.
|
50 |
+
self.verbosity_interval = verbosity_interval
|
51 |
+
|
52 |
+
def find_in_interval(self, n):
|
53 |
+
interval = 0
|
54 |
+
for cl in self.cum_cycles[1:]:
|
55 |
+
if n <= cl:
|
56 |
+
return interval
|
57 |
+
interval += 1
|
58 |
+
|
59 |
+
def schedule(self, n, **kwargs):
|
60 |
+
cycle = self.find_in_interval(n)
|
61 |
+
n = n - self.cum_cycles[cycle]
|
62 |
+
if self.verbosity_interval > 0:
|
63 |
+
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
|
64 |
+
f"current cycle {cycle}")
|
65 |
+
if n < self.lr_warm_up_steps[cycle]:
|
66 |
+
f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
|
67 |
+
self.last_f = f
|
68 |
+
return f
|
69 |
+
else:
|
70 |
+
t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle])
|
71 |
+
t = min(t, 1.0)
|
72 |
+
f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
|
73 |
+
1 + np.cos(t * np.pi))
|
74 |
+
self.last_f = f
|
75 |
+
return f
|
76 |
+
|
77 |
+
def __call__(self, n, **kwargs):
|
78 |
+
return self.schedule(n, **kwargs)
|
79 |
+
|
80 |
+
|
81 |
+
class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):
|
82 |
+
|
83 |
+
def schedule(self, n, **kwargs):
|
84 |
+
cycle = self.find_in_interval(n)
|
85 |
+
n = n - self.cum_cycles[cycle]
|
86 |
+
if self.verbosity_interval > 0:
|
87 |
+
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
|
88 |
+
f"current cycle {cycle}")
|
89 |
+
|
90 |
+
if n < self.lr_warm_up_steps[cycle]:
|
91 |
+
f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
|
92 |
+
self.last_f = f
|
93 |
+
return f
|
94 |
+
else:
|
95 |
+
f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle])
|
96 |
+
self.last_f = f
|
97 |
+
return f
|
98 |
+
|
ldm/models/__pycache__/autoencoder.cpython-38.pyc
ADDED
Binary file (15.5 kB). View file
|
|
ldm/models/__pycache__/autoencoder.cpython-39.pyc
ADDED
Binary file (15.5 kB). View file
|
|
ldm/models/__pycache__/autoencoder1d.cpython-38.pyc
ADDED
Binary file (13.4 kB). View file
|
|
ldm/models/autoencoder.py
ADDED
@@ -0,0 +1,503 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import pytorch_lightning as pl
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from contextlib import contextmanager
|
6 |
+
from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
|
7 |
+
from packaging import version
|
8 |
+
import numpy as np
|
9 |
+
from ldm.modules.diffusionmodules.model import Encoder, Decoder
|
10 |
+
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
11 |
+
from torch.optim.lr_scheduler import LambdaLR
|
12 |
+
from ldm.util import instantiate_from_config
|
13 |
+
|
14 |
+
class VQModel(pl.LightningModule):
|
15 |
+
def __init__(self,
|
16 |
+
ddconfig,
|
17 |
+
lossconfig,
|
18 |
+
n_embed,
|
19 |
+
embed_dim,
|
20 |
+
ckpt_path=None,
|
21 |
+
ignore_keys=[],
|
22 |
+
image_key="image",
|
23 |
+
colorize_nlabels=None,
|
24 |
+
monitor=None,
|
25 |
+
batch_resize_range=None,
|
26 |
+
scheduler_config=None,
|
27 |
+
lr_g_factor=1.0,
|
28 |
+
remap=None,
|
29 |
+
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
30 |
+
use_ema=False
|
31 |
+
):
|
32 |
+
super().__init__()
|
33 |
+
self.embed_dim = embed_dim
|
34 |
+
self.n_embed = n_embed
|
35 |
+
self.image_key = image_key
|
36 |
+
self.encoder = Encoder(**ddconfig)
|
37 |
+
self.decoder = Decoder(**ddconfig)
|
38 |
+
self.loss = instantiate_from_config(lossconfig)
|
39 |
+
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
|
40 |
+
remap=remap,
|
41 |
+
sane_index_shape=sane_index_shape)
|
42 |
+
self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
|
43 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
44 |
+
if colorize_nlabels is not None:
|
45 |
+
assert type(colorize_nlabels)==int
|
46 |
+
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
47 |
+
if monitor is not None:
|
48 |
+
self.monitor = monitor
|
49 |
+
self.batch_resize_range = batch_resize_range
|
50 |
+
if self.batch_resize_range is not None:
|
51 |
+
print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
|
52 |
+
|
53 |
+
self.use_ema = use_ema
|
54 |
+
if self.use_ema:
|
55 |
+
self.model_ema = LitEma(self)
|
56 |
+
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
57 |
+
|
58 |
+
if ckpt_path is not None:
|
59 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
60 |
+
self.scheduler_config = scheduler_config
|
61 |
+
self.lr_g_factor = lr_g_factor
|
62 |
+
|
63 |
+
@contextmanager
|
64 |
+
def ema_scope(self, context=None):
|
65 |
+
if self.use_ema:
|
66 |
+
self.model_ema.store(self.parameters())
|
67 |
+
self.model_ema.copy_to(self)
|
68 |
+
if context is not None:
|
69 |
+
print(f"{context}: Switched to EMA weights")
|
70 |
+
try:
|
71 |
+
yield None
|
72 |
+
finally:
|
73 |
+
if self.use_ema:
|
74 |
+
self.model_ema.restore(self.parameters())
|
75 |
+
if context is not None:
|
76 |
+
print(f"{context}: Restored training weights")
|
77 |
+
|
78 |
+
def init_from_ckpt(self, path, ignore_keys=list()):
|
79 |
+
sd = torch.load(path, map_location="cpu")["state_dict"]
|
80 |
+
keys = list(sd.keys())
|
81 |
+
for k in keys:
|
82 |
+
for ik in ignore_keys:
|
83 |
+
if k.startswith(ik):
|
84 |
+
print("Deleting key {} from state_dict.".format(k))
|
85 |
+
del sd[k]
|
86 |
+
missing, unexpected = self.load_state_dict(sd, strict=False)
|
87 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
88 |
+
if len(missing) > 0:
|
89 |
+
print(f"Missing Keys: {missing}")
|
90 |
+
print(f"Unexpected Keys: {unexpected}")
|
91 |
+
|
92 |
+
def on_train_batch_end(self, *args, **kwargs):
|
93 |
+
if self.use_ema:
|
94 |
+
self.model_ema(self)
|
95 |
+
|
96 |
+
def encode(self, x):
|
97 |
+
h = self.encoder(x)
|
98 |
+
h = self.quant_conv(h)
|
99 |
+
quant, emb_loss, info = self.quantize(h)
|
100 |
+
return quant, emb_loss, info
|
101 |
+
|
102 |
+
def encode_to_prequant(self, x):
|
103 |
+
h = self.encoder(x)
|
104 |
+
h = self.quant_conv(h)
|
105 |
+
return h
|
106 |
+
|
107 |
+
def decode(self, quant):
|
108 |
+
quant = self.post_quant_conv(quant)
|
109 |
+
dec = self.decoder(quant)
|
110 |
+
return dec
|
111 |
+
|
112 |
+
def decode_code(self, code_b):
|
113 |
+
quant_b = self.quantize.embed_code(code_b)
|
114 |
+
dec = self.decode(quant_b)
|
115 |
+
return dec
|
116 |
+
|
117 |
+
def forward(self, input, return_pred_indices=False):
|
118 |
+
quant, diff, (_,_,ind) = self.encode(input)
|
119 |
+
dec = self.decode(quant)
|
120 |
+
if return_pred_indices:
|
121 |
+
return dec, diff, ind
|
122 |
+
return dec, diff
|
123 |
+
|
124 |
+
def get_input(self, batch, k):
|
125 |
+
x = batch[k]
|
126 |
+
if len(x.shape) == 3:
|
127 |
+
x = x[..., None]
|
128 |
+
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
129 |
+
if self.batch_resize_range is not None:
|
130 |
+
lower_size = self.batch_resize_range[0]
|
131 |
+
upper_size = self.batch_resize_range[1]
|
132 |
+
if self.global_step <= 4:
|
133 |
+
# do the first few batches with max size to avoid later oom
|
134 |
+
new_resize = upper_size
|
135 |
+
else:
|
136 |
+
new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
|
137 |
+
if new_resize != x.shape[2]:
|
138 |
+
x = F.interpolate(x, size=new_resize, mode="bicubic")
|
139 |
+
x = x.detach()
|
140 |
+
return x
|
141 |
+
|
142 |
+
def training_step(self, batch, batch_idx, optimizer_idx):
|
143 |
+
# https://github.com/pytorch/pytorch/issues/37142
|
144 |
+
# try not to fool the heuristics
|
145 |
+
x = self.get_input(batch, self.image_key)
|
146 |
+
xrec, qloss, ind = self(x, return_pred_indices=True)
|
147 |
+
|
148 |
+
if optimizer_idx == 0:
|
149 |
+
# autoencode
|
150 |
+
aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
151 |
+
last_layer=self.get_last_layer(), split="train",
|
152 |
+
predicted_indices=ind)
|
153 |
+
|
154 |
+
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
155 |
+
return aeloss
|
156 |
+
|
157 |
+
if optimizer_idx == 1:
|
158 |
+
# discriminator
|
159 |
+
discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
160 |
+
last_layer=self.get_last_layer(), split="train")
|
161 |
+
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
162 |
+
return discloss
|
163 |
+
|
164 |
+
def validation_step(self, batch, batch_idx):
|
165 |
+
log_dict = self._validation_step(batch, batch_idx)
|
166 |
+
with self.ema_scope():
|
167 |
+
log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
|
168 |
+
return log_dict
|
169 |
+
|
170 |
+
def _validation_step(self, batch, batch_idx, suffix=""):
|
171 |
+
x = self.get_input(batch, self.image_key)
|
172 |
+
xrec, qloss, ind = self(x, return_pred_indices=True)
|
173 |
+
aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
|
174 |
+
self.global_step,
|
175 |
+
last_layer=self.get_last_layer(),
|
176 |
+
split="val"+suffix,
|
177 |
+
predicted_indices=ind
|
178 |
+
)
|
179 |
+
|
180 |
+
discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
|
181 |
+
self.global_step,
|
182 |
+
last_layer=self.get_last_layer(),
|
183 |
+
split="val"+suffix,
|
184 |
+
predicted_indices=ind
|
185 |
+
)
|
186 |
+
rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
|
187 |
+
self.log(f"val{suffix}/rec_loss", rec_loss,
|
188 |
+
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
189 |
+
self.log(f"val{suffix}/aeloss", aeloss,
|
190 |
+
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
191 |
+
if version.parse(pl.__version__) >= version.parse('1.4.0'):
|
192 |
+
del log_dict_ae[f"val{suffix}/rec_loss"]
|
193 |
+
self.log_dict(log_dict_ae)
|
194 |
+
self.log_dict(log_dict_disc)
|
195 |
+
return self.log_dict
|
196 |
+
|
197 |
+
def test_step(self, batch, batch_idx):
|
198 |
+
x = self.get_input(batch, self.image_key)
|
199 |
+
xrec, qloss, ind = self(x, return_pred_indices=True)
|
200 |
+
reconstructions = (xrec + 1)/2 # to mel scale
|
201 |
+
test_ckpt_path = os.path.basename(self.trainer.tested_ckpt_path)
|
202 |
+
savedir = os.path.join(self.trainer.log_dir,f'output_imgs_{test_ckpt_path}','fake_class')
|
203 |
+
if not os.path.exists(savedir):
|
204 |
+
os.makedirs(savedir)
|
205 |
+
|
206 |
+
file_names = batch['f_name']
|
207 |
+
# print(f"reconstructions.shape:{reconstructions.shape}",file_names)
|
208 |
+
reconstructions = reconstructions.cpu().numpy().squeeze(1) # squuze channel dim
|
209 |
+
for b in range(reconstructions.shape[0]):
|
210 |
+
vname_num_split_index = file_names[b].rfind('_')# file_names[b]:video_name+'_'+num
|
211 |
+
v_n,num = file_names[b][:vname_num_split_index],file_names[b][vname_num_split_index+1:]
|
212 |
+
save_img_path = os.path.join(savedir,f'{v_n}_sample_{num}.npy')
|
213 |
+
np.save(save_img_path,reconstructions[b])
|
214 |
+
|
215 |
+
return None
|
216 |
+
|
217 |
+
def configure_optimizers(self):
|
218 |
+
lr_d = self.learning_rate
|
219 |
+
lr_g = self.lr_g_factor*self.learning_rate
|
220 |
+
print("lr_d", lr_d)
|
221 |
+
print("lr_g", lr_g)
|
222 |
+
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
223 |
+
list(self.decoder.parameters())+
|
224 |
+
list(self.quantize.parameters())+
|
225 |
+
list(self.quant_conv.parameters())+
|
226 |
+
list(self.post_quant_conv.parameters()),
|
227 |
+
lr=lr_g, betas=(0.5, 0.9))
|
228 |
+
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
229 |
+
lr=lr_d, betas=(0.5, 0.9))
|
230 |
+
|
231 |
+
if self.scheduler_config is not None:
|
232 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
233 |
+
|
234 |
+
print("Setting up LambdaLR scheduler...")
|
235 |
+
scheduler = [
|
236 |
+
{
|
237 |
+
'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
|
238 |
+
'interval': 'step',
|
239 |
+
'frequency': 1
|
240 |
+
},
|
241 |
+
{
|
242 |
+
'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
|
243 |
+
'interval': 'step',
|
244 |
+
'frequency': 1
|
245 |
+
},
|
246 |
+
]
|
247 |
+
return [opt_ae, opt_disc], scheduler
|
248 |
+
return [opt_ae, opt_disc], []
|
249 |
+
|
250 |
+
def get_last_layer(self):
|
251 |
+
return self.decoder.conv_out.weight
|
252 |
+
|
253 |
+
def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
|
254 |
+
log = dict()
|
255 |
+
x = self.get_input(batch, self.image_key)
|
256 |
+
x = x.to(self.device)
|
257 |
+
if only_inputs:
|
258 |
+
log["inputs"] = x
|
259 |
+
return log
|
260 |
+
xrec, _ = self(x)
|
261 |
+
if x.shape[1] > 3:
|
262 |
+
# colorize with random projection
|
263 |
+
assert xrec.shape[1] > 3
|
264 |
+
x = self.to_rgb(x)
|
265 |
+
xrec = self.to_rgb(xrec)
|
266 |
+
log["inputs"] = x
|
267 |
+
log["reconstructions"] = xrec
|
268 |
+
if plot_ema:
|
269 |
+
with self.ema_scope():
|
270 |
+
xrec_ema, _ = self(x)
|
271 |
+
if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
|
272 |
+
log["reconstructions_ema"] = xrec_ema
|
273 |
+
return log
|
274 |
+
|
275 |
+
def to_rgb(self, x):
|
276 |
+
assert self.image_key == "segmentation"
|
277 |
+
if not hasattr(self, "colorize"):
|
278 |
+
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
279 |
+
x = F.conv2d(x, weight=self.colorize)
|
280 |
+
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
281 |
+
return x
|
282 |
+
|
283 |
+
|
284 |
+
class VQModelInterface(VQModel):
|
285 |
+
def __init__(self, embed_dim, *args, **kwargs):
|
286 |
+
super().__init__(embed_dim=embed_dim, *args, **kwargs)
|
287 |
+
self.embed_dim = embed_dim
|
288 |
+
|
289 |
+
def encode(self, x):# VQModel的quantize写在encoder里,VQModelInterface则将其写在decoder里
|
290 |
+
h = self.encoder(x)
|
291 |
+
h = self.quant_conv(h)
|
292 |
+
return h
|
293 |
+
|
294 |
+
def decode(self, h, force_not_quantize=False):
|
295 |
+
# also go through quantization layer
|
296 |
+
if not force_not_quantize:
|
297 |
+
quant, emb_loss, info = self.quantize(h)
|
298 |
+
else:
|
299 |
+
quant = h
|
300 |
+
quant = self.post_quant_conv(quant)
|
301 |
+
dec = self.decoder(quant)
|
302 |
+
return dec
|
303 |
+
|
304 |
+
|
305 |
+
class AutoencoderKL(pl.LightningModule):
|
306 |
+
def __init__(self,
|
307 |
+
ddconfig,
|
308 |
+
lossconfig,
|
309 |
+
embed_dim,
|
310 |
+
ckpt_path=None,
|
311 |
+
ignore_keys=[],
|
312 |
+
image_key="image",
|
313 |
+
colorize_nlabels=None,
|
314 |
+
monitor=None,
|
315 |
+
):
|
316 |
+
super().__init__()
|
317 |
+
self.to_1d = False
|
318 |
+
print(f"to_1d is {self.to_1d} in AUTOENCODER")
|
319 |
+
self.image_key = image_key
|
320 |
+
self.encoder = Encoder(**ddconfig)
|
321 |
+
self.decoder = Decoder(**ddconfig)
|
322 |
+
self.loss = instantiate_from_config(lossconfig)
|
323 |
+
assert ddconfig["double_z"]
|
324 |
+
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
|
325 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
326 |
+
self.embed_dim = embed_dim
|
327 |
+
if colorize_nlabels is not None:
|
328 |
+
assert type(colorize_nlabels)==int
|
329 |
+
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
330 |
+
if monitor is not None:
|
331 |
+
self.monitor = monitor
|
332 |
+
if ckpt_path is not None:
|
333 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
334 |
+
# self.automatic_optimization = False # hjw for debug
|
335 |
+
|
336 |
+
def init_from_ckpt(self, path, ignore_keys=list()):
|
337 |
+
sd = torch.load(path, map_location="cpu")["state_dict"]
|
338 |
+
keys = list(sd.keys())
|
339 |
+
for k in keys:
|
340 |
+
for ik in ignore_keys:
|
341 |
+
if k.startswith(ik):
|
342 |
+
print("Deleting key {} from state_dict.".format(k))
|
343 |
+
del sd[k]
|
344 |
+
self.load_state_dict(sd, strict=False)
|
345 |
+
print(f"Restored from {path}")
|
346 |
+
|
347 |
+
def encode(self, x):
|
348 |
+
if self.to_1d and len(x.shape)==3:
|
349 |
+
x = x.unsqueeze(1)
|
350 |
+
h = self.encoder(x)
|
351 |
+
moments = self.quant_conv(h)
|
352 |
+
if self.to_1d:
|
353 |
+
b,c,h,w = moments.shape
|
354 |
+
moments = moments.reshape(b,c*h,w)
|
355 |
+
posterior = DiagonalGaussianDistribution(moments)
|
356 |
+
return posterior
|
357 |
+
|
358 |
+
def decode(self, z):
|
359 |
+
if self.to_1d:
|
360 |
+
b,c_h,w = z.shape
|
361 |
+
c = self.post_quant_conv.in_channels
|
362 |
+
z = z.reshape(b,c,-1,w)
|
363 |
+
z = self.post_quant_conv(z)
|
364 |
+
dec = self.decoder(z)
|
365 |
+
return dec
|
366 |
+
|
367 |
+
def forward(self, input, sample_posterior=True):
|
368 |
+
posterior = self.encode(input)
|
369 |
+
if sample_posterior:
|
370 |
+
z = posterior.sample()
|
371 |
+
else:
|
372 |
+
z = posterior.mode()
|
373 |
+
dec = self.decode(z)
|
374 |
+
return dec, posterior
|
375 |
+
|
376 |
+
def get_input(self, batch, k):
|
377 |
+
x = batch[k]
|
378 |
+
if len(x.shape) == 3:
|
379 |
+
x = x[..., None]
|
380 |
+
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
381 |
+
return x
|
382 |
+
|
383 |
+
def training_step(self, batch, batch_idx, optimizer_idx):
|
384 |
+
inputs = self.get_input(batch, self.image_key)
|
385 |
+
reconstructions, posterior = self(inputs)
|
386 |
+
|
387 |
+
if optimizer_idx == 0:
|
388 |
+
# train encoder+decoder+logvar
|
389 |
+
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
390 |
+
last_layer=self.get_last_layer(), split="train")
|
391 |
+
self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
392 |
+
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
393 |
+
# print(optimizer_idx,log_dict_ae)
|
394 |
+
return aeloss
|
395 |
+
|
396 |
+
if optimizer_idx == 1:
|
397 |
+
# train the discriminator
|
398 |
+
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
399 |
+
last_layer=self.get_last_layer(), split="train")
|
400 |
+
|
401 |
+
self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
402 |
+
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
403 |
+
# print(optimizer_idx,log_dict_disc)
|
404 |
+
return discloss
|
405 |
+
|
406 |
+
def validation_step(self, batch, batch_idx):
|
407 |
+
inputs = self.get_input(batch, self.image_key)
|
408 |
+
reconstructions, posterior = self(inputs)
|
409 |
+
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
|
410 |
+
last_layer=self.get_last_layer(), split="val")
|
411 |
+
|
412 |
+
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
|
413 |
+
last_layer=self.get_last_layer(), split="val")
|
414 |
+
|
415 |
+
self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
|
416 |
+
self.log_dict(log_dict_ae)
|
417 |
+
self.log_dict(log_dict_disc)
|
418 |
+
return self.log_dict
|
419 |
+
|
420 |
+
def test_step(self, batch, batch_idx):
|
421 |
+
inputs = self.get_input(batch, self.image_key)# inputs shape:(b,mel_len,T)
|
422 |
+
reconstructions, posterior = self(inputs)# reconstructions:(b,mel_len,T)
|
423 |
+
mse_loss = torch.nn.functional.mse_loss(reconstructions,inputs)
|
424 |
+
self.log('test/mse_loss',mse_loss)
|
425 |
+
|
426 |
+
test_ckpt_path = os.path.basename(self.trainer.tested_ckpt_path)
|
427 |
+
savedir = os.path.join(self.trainer.log_dir,f'output_imgs_{test_ckpt_path}','fake_class')
|
428 |
+
if batch_idx == 0:
|
429 |
+
print(f"save_path is: {savedir}")
|
430 |
+
if not os.path.exists(savedir):
|
431 |
+
os.makedirs(savedir)
|
432 |
+
print(f"save_path is: {savedir}")
|
433 |
+
|
434 |
+
file_names = batch['f_name']
|
435 |
+
# print(f"reconstructions.shape:{reconstructions.shape}",file_names)
|
436 |
+
# reconstructions = (reconstructions + 1)/2 # to mel scale
|
437 |
+
reconstructions = reconstructions.cpu().numpy().squeeze(1) # squeeze channel dim
|
438 |
+
for b in range(reconstructions.shape[0]):
|
439 |
+
vname_num_split_index = file_names[b].rfind('_')# file_names[b]:video_name+'_'+num
|
440 |
+
v_n,num = file_names[b][:vname_num_split_index],file_names[b][vname_num_split_index+1:]
|
441 |
+
save_img_path = os.path.join(savedir, f'{v_n}.npy') # f'{v_n}_sample_{num}.npy' f'{v_n}.npy'
|
442 |
+
np.save(save_img_path,reconstructions[b])
|
443 |
+
|
444 |
+
return None
|
445 |
+
|
446 |
+
def configure_optimizers(self):
|
447 |
+
lr = self.learning_rate
|
448 |
+
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
449 |
+
list(self.decoder.parameters())+
|
450 |
+
list(self.quant_conv.parameters())+
|
451 |
+
list(self.post_quant_conv.parameters()),
|
452 |
+
lr=lr, betas=(0.5, 0.9))
|
453 |
+
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
454 |
+
lr=lr, betas=(0.5, 0.9))
|
455 |
+
return [opt_ae, opt_disc], []
|
456 |
+
|
457 |
+
def get_last_layer(self):
|
458 |
+
return self.decoder.conv_out.weight
|
459 |
+
|
460 |
+
@torch.no_grad()
|
461 |
+
def log_images(self, batch, only_inputs=False,save_dir = 'mel_result_ae13_26_debug/fake_class', **kwargs): # 在main.py的on_validation_batch_end中调用
|
462 |
+
log = dict()
|
463 |
+
x = self.get_input(batch, self.image_key)
|
464 |
+
x = x.to(self.device)
|
465 |
+
if not only_inputs:
|
466 |
+
xrec, posterior = self(x)
|
467 |
+
if x.shape[1] > 3:
|
468 |
+
# colorize with random projection
|
469 |
+
assert xrec.shape[1] > 3
|
470 |
+
x = self.to_rgb(x)
|
471 |
+
xrec = self.to_rgb(xrec)
|
472 |
+
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
|
473 |
+
log["reconstructions"] = xrec
|
474 |
+
log["inputs"] = x
|
475 |
+
return log
|
476 |
+
|
477 |
+
def to_rgb(self, x):
|
478 |
+
assert self.image_key == "segmentation"
|
479 |
+
if not hasattr(self, "colorize"):
|
480 |
+
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
481 |
+
x = F.conv2d(x, weight=self.colorize)
|
482 |
+
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
483 |
+
return x
|
484 |
+
|
485 |
+
|
486 |
+
class IdentityFirstStage(torch.nn.Module):
|
487 |
+
def __init__(self, *args, vq_interface=False, **kwargs):
|
488 |
+
self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
|
489 |
+
super().__init__()
|
490 |
+
|
491 |
+
def encode(self, x, *args, **kwargs):
|
492 |
+
return x
|
493 |
+
|
494 |
+
def decode(self, x, *args, **kwargs):
|
495 |
+
return x
|
496 |
+
|
497 |
+
def quantize(self, x, *args, **kwargs):
|
498 |
+
if self.vq_interface:
|
499 |
+
return x, None, [None, None, None]
|
500 |
+
return x
|
501 |
+
|
502 |
+
def forward(self, x, *args, **kwargs):
|
503 |
+
return x
|
ldm/models/autoencoder1d.py
ADDED
@@ -0,0 +1,517 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
与autoencoder.py的区别在于,autoencoder.py是(B,1,80,T) ->(B,C,80/8,T/8),现在vae要变成(B,80,T) -> (B,80/downsample_c,T/downsample_t)
|
3 |
+
"""
|
4 |
+
|
5 |
+
import os
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import pytorch_lightning as pl
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from contextlib import contextmanager
|
11 |
+
from packaging import version
|
12 |
+
import numpy as np
|
13 |
+
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
14 |
+
from torch.optim.lr_scheduler import LambdaLR
|
15 |
+
from ldm.util import instantiate_from_config
|
16 |
+
|
17 |
+
|
18 |
+
class AutoencoderKL(pl.LightningModule):
|
19 |
+
def __init__(self,
|
20 |
+
embed_dim,
|
21 |
+
ddconfig,
|
22 |
+
lossconfig,
|
23 |
+
ckpt_path=None,
|
24 |
+
ignore_keys=[],
|
25 |
+
image_key="image",
|
26 |
+
monitor=None,
|
27 |
+
):
|
28 |
+
super().__init__()
|
29 |
+
self.image_key = image_key
|
30 |
+
self.encoder = Encoder1D(**ddconfig)
|
31 |
+
self.decoder = Decoder1D(**ddconfig)
|
32 |
+
self.loss = instantiate_from_config(lossconfig)
|
33 |
+
assert ddconfig["double_z"]
|
34 |
+
self.quant_conv = torch.nn.Conv1d(2*ddconfig["z_channels"], 2*embed_dim, 1)
|
35 |
+
self.post_quant_conv = torch.nn.Conv1d(embed_dim, ddconfig["z_channels"], 1)
|
36 |
+
self.embed_dim = embed_dim
|
37 |
+
if monitor is not None:
|
38 |
+
self.monitor = monitor
|
39 |
+
if ckpt_path is not None:
|
40 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
41 |
+
|
42 |
+
def init_from_ckpt(self, path, ignore_keys=list()):
|
43 |
+
sd = torch.load(path, map_location="cpu")["state_dict"]
|
44 |
+
keys = list(sd.keys())
|
45 |
+
for k in keys:
|
46 |
+
for ik in ignore_keys:
|
47 |
+
if k.startswith(ik):
|
48 |
+
print("Deleting key {} from state_dict.".format(k))
|
49 |
+
del sd[k]
|
50 |
+
self.load_state_dict(sd, strict=False)
|
51 |
+
print(f"AutoencoderKL Restored from {path} Done")
|
52 |
+
|
53 |
+
def encode(self, x):
|
54 |
+
h = self.encoder(x)
|
55 |
+
moments = self.quant_conv(h)
|
56 |
+
posterior = DiagonalGaussianDistribution(moments)
|
57 |
+
return posterior
|
58 |
+
|
59 |
+
def decode(self, z):
|
60 |
+
z = self.post_quant_conv(z)
|
61 |
+
dec = self.decoder(z)
|
62 |
+
return dec
|
63 |
+
|
64 |
+
def forward(self, input, sample_posterior=True):
|
65 |
+
posterior = self.encode(input)
|
66 |
+
if sample_posterior:
|
67 |
+
z = posterior.sample()
|
68 |
+
else:
|
69 |
+
z = posterior.mode()
|
70 |
+
dec = self.decode(z)
|
71 |
+
return dec, posterior
|
72 |
+
|
73 |
+
def get_input(self, batch, k):
|
74 |
+
x = batch[k]
|
75 |
+
assert len(x.shape) == 3
|
76 |
+
x = x.to(memory_format=torch.contiguous_format).float()
|
77 |
+
return x
|
78 |
+
|
79 |
+
def training_step(self, batch, batch_idx, optimizer_idx):
|
80 |
+
inputs = self.get_input(batch, self.image_key)
|
81 |
+
# print(inputs.shape)
|
82 |
+
reconstructions, posterior = self(inputs)
|
83 |
+
|
84 |
+
if optimizer_idx == 0:
|
85 |
+
# train encoder+decoder+logvar
|
86 |
+
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
87 |
+
last_layer=self.get_last_layer(), split="train")
|
88 |
+
self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
89 |
+
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
90 |
+
return aeloss
|
91 |
+
|
92 |
+
if optimizer_idx == 1:
|
93 |
+
# train the discriminator
|
94 |
+
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
95 |
+
last_layer=self.get_last_layer(), split="train")
|
96 |
+
|
97 |
+
self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
98 |
+
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
99 |
+
return discloss
|
100 |
+
|
101 |
+
def validation_step(self, batch, batch_idx):
|
102 |
+
inputs = self.get_input(batch, self.image_key)
|
103 |
+
reconstructions, posterior = self(inputs)
|
104 |
+
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
|
105 |
+
last_layer=self.get_last_layer(), split="val")
|
106 |
+
|
107 |
+
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
|
108 |
+
last_layer=self.get_last_layer(), split="val")
|
109 |
+
|
110 |
+
self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
|
111 |
+
self.log_dict(log_dict_ae)
|
112 |
+
self.log_dict(log_dict_disc)
|
113 |
+
return self.log_dict
|
114 |
+
|
115 |
+
def test_step(self, batch, batch_idx):
|
116 |
+
inputs = self.get_input(batch, self.image_key)# inputs shape:(b,mel_len,T)
|
117 |
+
reconstructions, posterior = self(inputs)# reconstructions:(b,mel_len,T)
|
118 |
+
mse_loss = torch.nn.functional.mse_loss(reconstructions,inputs)
|
119 |
+
self.log('test/mse_loss',mse_loss)
|
120 |
+
|
121 |
+
test_ckpt_path = os.path.basename(self.trainer.tested_ckpt_path)
|
122 |
+
savedir = os.path.join(self.trainer.log_dir,f'output_imgs_{test_ckpt_path}','fake_class')
|
123 |
+
if batch_idx == 0:
|
124 |
+
print(f"save_path is: {savedir}")
|
125 |
+
if not os.path.exists(savedir):
|
126 |
+
os.makedirs(savedir)
|
127 |
+
print(f"save_path is: {savedir}")
|
128 |
+
|
129 |
+
file_names = batch['f_name']
|
130 |
+
# print(f"reconstructions.shape:{reconstructions.shape}",file_names)
|
131 |
+
# reconstructions = (reconstructions + 1)/2 # to mel scale
|
132 |
+
reconstructions = reconstructions.cpu().numpy() # squuze channel dim
|
133 |
+
for b in range(reconstructions.shape[0]):
|
134 |
+
vname_num_split_index = file_names[b].rfind('_')# file_names[b]:video_name+'_'+num
|
135 |
+
v_n,num = file_names[b][:vname_num_split_index],file_names[b][vname_num_split_index+1:]
|
136 |
+
save_img_path = os.path.join(savedir, f'{v_n}.npy') # f'{v_n}_sample_{num}.npy' f'{v_n}.npy'
|
137 |
+
np.save(save_img_path,reconstructions[b])
|
138 |
+
|
139 |
+
return None
|
140 |
+
|
141 |
+
def configure_optimizers(self):
|
142 |
+
lr = self.learning_rate
|
143 |
+
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
144 |
+
list(self.decoder.parameters())+
|
145 |
+
list(self.quant_conv.parameters())+
|
146 |
+
list(self.post_quant_conv.parameters()),
|
147 |
+
lr=lr, betas=(0.5, 0.9))
|
148 |
+
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
149 |
+
lr=lr, betas=(0.5, 0.9))
|
150 |
+
return [opt_ae, opt_disc], []
|
151 |
+
|
152 |
+
def get_last_layer(self):
|
153 |
+
return self.decoder.conv_out.weight
|
154 |
+
|
155 |
+
@torch.no_grad()
|
156 |
+
def log_images(self, batch, only_inputs=False, **kwargs):
|
157 |
+
log = dict()
|
158 |
+
x = self.get_input(batch, self.image_key)
|
159 |
+
x = x.to(self.device)
|
160 |
+
|
161 |
+
if not only_inputs:
|
162 |
+
xrec, posterior = self(x)
|
163 |
+
log["samples"] = self.decode(torch.randn_like(posterior.sample())).unsqueeze(1) # (b,1,H,W)
|
164 |
+
log["reconstructions"] = xrec.unsqueeze(1)
|
165 |
+
log["inputs"] = x.unsqueeze(1)
|
166 |
+
return log
|
167 |
+
|
168 |
+
|
169 |
+
def Normalize(in_channels, num_groups=32):
|
170 |
+
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
171 |
+
|
172 |
+
def nonlinearity(x):
|
173 |
+
# swish
|
174 |
+
return x*torch.sigmoid(x)
|
175 |
+
|
176 |
+
class ResnetBlock1D(nn.Module):
|
177 |
+
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
178 |
+
dropout, temb_channels=512,kernel_size = 3):
|
179 |
+
super().__init__()
|
180 |
+
self.in_channels = in_channels
|
181 |
+
out_channels = in_channels if out_channels is None else out_channels
|
182 |
+
self.out_channels = out_channels
|
183 |
+
self.use_conv_shortcut = conv_shortcut
|
184 |
+
|
185 |
+
self.norm1 = Normalize(in_channels)
|
186 |
+
self.conv1 = torch.nn.Conv1d(in_channels,
|
187 |
+
out_channels,
|
188 |
+
kernel_size=kernel_size,
|
189 |
+
stride=1,
|
190 |
+
padding=kernel_size//2)
|
191 |
+
if temb_channels > 0:
|
192 |
+
self.temb_proj = torch.nn.Linear(temb_channels,
|
193 |
+
out_channels)
|
194 |
+
self.norm2 = Normalize(out_channels)
|
195 |
+
self.dropout = torch.nn.Dropout(dropout)
|
196 |
+
self.conv2 = torch.nn.Conv1d(out_channels,
|
197 |
+
out_channels,
|
198 |
+
kernel_size=kernel_size,
|
199 |
+
stride=1,
|
200 |
+
padding=kernel_size//2)
|
201 |
+
if self.in_channels != self.out_channels:
|
202 |
+
if self.use_conv_shortcut:
|
203 |
+
self.conv_shortcut = torch.nn.Conv1d(in_channels,
|
204 |
+
out_channels,
|
205 |
+
kernel_size=kernel_size,
|
206 |
+
stride=1,
|
207 |
+
padding=kernel_size//2)
|
208 |
+
else:
|
209 |
+
self.nin_shortcut = torch.nn.Conv1d(in_channels,
|
210 |
+
out_channels,
|
211 |
+
kernel_size=1,
|
212 |
+
stride=1,
|
213 |
+
padding=0)
|
214 |
+
|
215 |
+
def forward(self, x, temb):
|
216 |
+
h = x
|
217 |
+
h = self.norm1(h)
|
218 |
+
h = nonlinearity(h)
|
219 |
+
h = self.conv1(h)
|
220 |
+
|
221 |
+
if temb is not None:
|
222 |
+
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
|
223 |
+
|
224 |
+
h = self.norm2(h)
|
225 |
+
h = nonlinearity(h)
|
226 |
+
h = self.dropout(h)
|
227 |
+
h = self.conv2(h)
|
228 |
+
|
229 |
+
if self.in_channels != self.out_channels:
|
230 |
+
if self.use_conv_shortcut:
|
231 |
+
x = self.conv_shortcut(x)
|
232 |
+
else:
|
233 |
+
x = self.nin_shortcut(x)
|
234 |
+
|
235 |
+
return x+h
|
236 |
+
|
237 |
+
class AttnBlock1D(nn.Module):
|
238 |
+
def __init__(self, in_channels):
|
239 |
+
super().__init__()
|
240 |
+
self.in_channels = in_channels
|
241 |
+
|
242 |
+
self.norm = Normalize(in_channels)
|
243 |
+
self.q = torch.nn.Conv1d(in_channels,
|
244 |
+
in_channels,
|
245 |
+
kernel_size=1)
|
246 |
+
self.k = torch.nn.Conv1d(in_channels,
|
247 |
+
in_channels,
|
248 |
+
kernel_size=1)
|
249 |
+
self.v = torch.nn.Conv1d(in_channels,
|
250 |
+
in_channels,
|
251 |
+
kernel_size=1)
|
252 |
+
self.proj_out = torch.nn.Conv1d(in_channels,
|
253 |
+
in_channels,
|
254 |
+
kernel_size=1)
|
255 |
+
|
256 |
+
|
257 |
+
def forward(self, x):
|
258 |
+
h_ = x
|
259 |
+
h_ = self.norm(h_)
|
260 |
+
q = self.q(h_)
|
261 |
+
k = self.k(h_)
|
262 |
+
v = self.v(h_)
|
263 |
+
|
264 |
+
# compute attention
|
265 |
+
b,t,c = q.shape
|
266 |
+
q = q.permute(0,2,1) # b,t,c
|
267 |
+
w_ = torch.bmm(q,k) # b,t,t w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
268 |
+
# if still 2d attn (q:b,hw,c ,k:b,c,hw -> w_:b,hw,hw)
|
269 |
+
w_ = w_ * (int(t)**(-0.5))
|
270 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
271 |
+
|
272 |
+
# attend to values
|
273 |
+
w_ = w_.permute(0,2,1) # b,t,t (first t of k, second of q)
|
274 |
+
h_ = torch.bmm(v,w_) # b,c,t (t of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
275 |
+
|
276 |
+
h_ = self.proj_out(h_)
|
277 |
+
|
278 |
+
return x+h_
|
279 |
+
|
280 |
+
class Upsample1D(nn.Module):
|
281 |
+
def __init__(self, in_channels, with_conv):
|
282 |
+
super().__init__()
|
283 |
+
self.with_conv = with_conv
|
284 |
+
if self.with_conv:
|
285 |
+
self.conv = torch.nn.Conv1d(in_channels,
|
286 |
+
in_channels,
|
287 |
+
kernel_size=3,
|
288 |
+
stride=1,
|
289 |
+
padding=1)
|
290 |
+
|
291 |
+
def forward(self, x):
|
292 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") # support 3D tensor(B,C,T)
|
293 |
+
if self.with_conv:
|
294 |
+
x = self.conv(x)
|
295 |
+
return x
|
296 |
+
|
297 |
+
|
298 |
+
class Downsample1D(nn.Module):
|
299 |
+
def __init__(self, in_channels, with_conv):
|
300 |
+
super().__init__()
|
301 |
+
self.with_conv = with_conv
|
302 |
+
if self.with_conv:
|
303 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
304 |
+
self.conv = torch.nn.Conv1d(in_channels,
|
305 |
+
in_channels,
|
306 |
+
kernel_size=3,
|
307 |
+
stride=2,
|
308 |
+
padding=0)
|
309 |
+
|
310 |
+
def forward(self, x):
|
311 |
+
if self.with_conv:
|
312 |
+
pad = (0,1)
|
313 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
314 |
+
x = self.conv(x)
|
315 |
+
else:
|
316 |
+
x = torch.nn.functional.avg_pool1d(x, kernel_size=2, stride=2)
|
317 |
+
return x
|
318 |
+
|
319 |
+
class Encoder1D(nn.Module):
|
320 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
321 |
+
attn_layers = [],down_layers = [], dropout=0.0, resamp_with_conv=True, in_channels,
|
322 |
+
z_channels, double_z=True,kernel_size=3, **ignore_kwargs):
|
323 |
+
""" out_ch is only used in decoder,not used here
|
324 |
+
"""
|
325 |
+
super().__init__()
|
326 |
+
self.ch = ch
|
327 |
+
self.temb_ch = 0
|
328 |
+
self.num_layers = len(ch_mult)
|
329 |
+
self.num_res_blocks = num_res_blocks
|
330 |
+
self.in_channels = in_channels
|
331 |
+
print(f"downsample rates is {2**len(down_layers)}")
|
332 |
+
self.down_layers = down_layers
|
333 |
+
self.attn_layers = attn_layers
|
334 |
+
self.conv_in = torch.nn.Conv1d(in_channels,
|
335 |
+
self.ch,
|
336 |
+
kernel_size=kernel_size,
|
337 |
+
stride=1,
|
338 |
+
padding=kernel_size//2)
|
339 |
+
|
340 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
341 |
+
self.in_ch_mult = in_ch_mult
|
342 |
+
# downsampling
|
343 |
+
self.down = nn.ModuleList()
|
344 |
+
for i_level in range(self.num_layers):
|
345 |
+
block = nn.ModuleList()
|
346 |
+
attn = nn.ModuleList()
|
347 |
+
block_in = ch*in_ch_mult[i_level]
|
348 |
+
block_out = ch*ch_mult[i_level]
|
349 |
+
for i_block in range(self.num_res_blocks):
|
350 |
+
block.append(ResnetBlock1D(in_channels=block_in,
|
351 |
+
out_channels=block_out,
|
352 |
+
temb_channels=self.temb_ch,
|
353 |
+
dropout=dropout,
|
354 |
+
kernel_size=kernel_size))
|
355 |
+
block_in = block_out
|
356 |
+
if i_level in attn_layers:
|
357 |
+
# print(f"add attn in layer:{i_level}")
|
358 |
+
attn.append(AttnBlock1D(block_in))
|
359 |
+
down = nn.Module()
|
360 |
+
down.block = block
|
361 |
+
down.attn = attn
|
362 |
+
if i_level in down_layers:
|
363 |
+
down.downsample = Downsample1D(block_in, resamp_with_conv)
|
364 |
+
self.down.append(down)
|
365 |
+
|
366 |
+
# middle
|
367 |
+
self.mid = nn.Module()
|
368 |
+
self.mid.block_1 = ResnetBlock1D(in_channels=block_in,
|
369 |
+
out_channels=block_in,
|
370 |
+
temb_channels=self.temb_ch,
|
371 |
+
dropout=dropout,
|
372 |
+
kernel_size=kernel_size)
|
373 |
+
self.mid.attn_1 = AttnBlock1D(block_in)
|
374 |
+
self.mid.block_2 = ResnetBlock1D(in_channels=block_in,
|
375 |
+
out_channels=block_in,
|
376 |
+
temb_channels=self.temb_ch,
|
377 |
+
dropout=dropout,
|
378 |
+
kernel_size=kernel_size)
|
379 |
+
|
380 |
+
# end
|
381 |
+
self.norm_out = Normalize(block_in)# GroupNorm
|
382 |
+
self.conv_out = torch.nn.Conv1d(block_in,
|
383 |
+
2*z_channels if double_z else z_channels,
|
384 |
+
kernel_size=kernel_size,
|
385 |
+
stride=1,
|
386 |
+
padding=kernel_size//2)
|
387 |
+
|
388 |
+
def forward(self, x):
|
389 |
+
# timestep embedding
|
390 |
+
temb = None
|
391 |
+
|
392 |
+
# downsampling
|
393 |
+
hs = [self.conv_in(x)]
|
394 |
+
for i_level in range(self.num_layers):
|
395 |
+
for i_block in range(self.num_res_blocks):
|
396 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
397 |
+
if len(self.down[i_level].attn) > 0:
|
398 |
+
h = self.down[i_level].attn[i_block](h)
|
399 |
+
hs.append(h)
|
400 |
+
if i_level in self.down_layers:
|
401 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
402 |
+
|
403 |
+
# middle
|
404 |
+
h = hs[-1]
|
405 |
+
h = self.mid.block_1(h, temb)
|
406 |
+
h = self.mid.attn_1(h)
|
407 |
+
h = self.mid.block_2(h, temb)
|
408 |
+
|
409 |
+
# end
|
410 |
+
h = self.norm_out(h)
|
411 |
+
h = nonlinearity(h)
|
412 |
+
h = self.conv_out(h)
|
413 |
+
return h
|
414 |
+
|
415 |
+
class Decoder1D(nn.Module):
|
416 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
417 |
+
attn_layers = [],down_layers = [], dropout=0.0,kernel_size=3, resamp_with_conv=True, in_channels,
|
418 |
+
z_channels, give_pre_end=False, tanh_out=False, **ignorekwargs):
|
419 |
+
super().__init__()
|
420 |
+
self.ch = ch
|
421 |
+
self.temb_ch = 0
|
422 |
+
self.num_layers = len(ch_mult)
|
423 |
+
self.num_res_blocks = num_res_blocks
|
424 |
+
self.in_channels = in_channels
|
425 |
+
self.give_pre_end = give_pre_end
|
426 |
+
self.tanh_out = tanh_out
|
427 |
+
self.down_layers = [i+1 for i in down_layers] # each downlayer add one
|
428 |
+
print(f"upsample rates is {2**len(down_layers)}")
|
429 |
+
|
430 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
431 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
432 |
+
block_in = ch*ch_mult[self.num_layers-1]
|
433 |
+
|
434 |
+
|
435 |
+
# z to block_in
|
436 |
+
self.conv_in = torch.nn.Conv1d(z_channels,
|
437 |
+
block_in,
|
438 |
+
kernel_size=kernel_size,
|
439 |
+
stride=1,
|
440 |
+
padding=kernel_size//2)
|
441 |
+
|
442 |
+
# middle
|
443 |
+
self.mid = nn.Module()
|
444 |
+
self.mid.block_1 = ResnetBlock1D(in_channels=block_in,
|
445 |
+
out_channels=block_in,
|
446 |
+
temb_channels=self.temb_ch,
|
447 |
+
dropout=dropout)
|
448 |
+
self.mid.attn_1 = AttnBlock1D(block_in)
|
449 |
+
self.mid.block_2 = ResnetBlock1D(in_channels=block_in,
|
450 |
+
out_channels=block_in,
|
451 |
+
temb_channels=self.temb_ch,
|
452 |
+
dropout=dropout)
|
453 |
+
|
454 |
+
# upsampling
|
455 |
+
self.up = nn.ModuleList()
|
456 |
+
for i_level in reversed(range(self.num_layers)):
|
457 |
+
block = nn.ModuleList()
|
458 |
+
attn = nn.ModuleList()
|
459 |
+
block_out = ch*ch_mult[i_level]
|
460 |
+
for i_block in range(self.num_res_blocks+1):
|
461 |
+
block.append(ResnetBlock1D(in_channels=block_in,
|
462 |
+
out_channels=block_out,
|
463 |
+
temb_channels=self.temb_ch,
|
464 |
+
dropout=dropout))
|
465 |
+
block_in = block_out
|
466 |
+
if i_level in attn_layers:
|
467 |
+
# print(f"add attn in layer:{i_level}")
|
468 |
+
attn.append(AttnBlock1D(block_in))
|
469 |
+
up = nn.Module()
|
470 |
+
up.block = block
|
471 |
+
up.attn = attn
|
472 |
+
if i_level in self.down_layers:
|
473 |
+
up.upsample = Upsample1D(block_in, resamp_with_conv)
|
474 |
+
self.up.insert(0, up) # prepend to get consistent order
|
475 |
+
|
476 |
+
# end
|
477 |
+
self.norm_out = Normalize(block_in)
|
478 |
+
self.conv_out = torch.nn.Conv1d(block_in,
|
479 |
+
out_ch,
|
480 |
+
kernel_size=kernel_size,
|
481 |
+
stride=1,
|
482 |
+
padding=kernel_size//2)
|
483 |
+
|
484 |
+
def forward(self, z):
|
485 |
+
#assert z.shape[1:] == self.z_shape[1:]
|
486 |
+
self.last_z_shape = z.shape
|
487 |
+
|
488 |
+
# timestep embedding
|
489 |
+
temb = None
|
490 |
+
|
491 |
+
# z to block_in
|
492 |
+
h = self.conv_in(z)
|
493 |
+
|
494 |
+
# middle
|
495 |
+
h = self.mid.block_1(h, temb)
|
496 |
+
h = self.mid.attn_1(h)
|
497 |
+
h = self.mid.block_2(h, temb)
|
498 |
+
|
499 |
+
# upsampling
|
500 |
+
for i_level in reversed(range(self.num_layers)):
|
501 |
+
for i_block in range(self.num_res_blocks+1):
|
502 |
+
h = self.up[i_level].block[i_block](h, temb)
|
503 |
+
if len(self.up[i_level].attn) > 0:
|
504 |
+
h = self.up[i_level].attn[i_block](h)
|
505 |
+
if i_level in self.down_layers:
|
506 |
+
h = self.up[i_level].upsample(h)
|
507 |
+
|
508 |
+
# end
|
509 |
+
if self.give_pre_end:
|
510 |
+
return h
|
511 |
+
|
512 |
+
h = self.norm_out(h)
|
513 |
+
h = nonlinearity(h)
|
514 |
+
h = self.conv_out(h)
|
515 |
+
if self.tanh_out:
|
516 |
+
h = torch.tanh(h)
|
517 |
+
return h
|
ldm/models/diffusion/__init__.py
ADDED
File without changes
|
ldm/models/diffusion/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (177 Bytes). View file
|
|
ldm/models/diffusion/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (177 Bytes). View file
|
|
ldm/models/diffusion/__pycache__/cfm1_audio.cpython-38.pyc
ADDED
Binary file (11 kB). View file
|
|
ldm/models/diffusion/__pycache__/cfm1_audio.cpython-39.pyc
ADDED
Binary file (11 kB). View file
|
|
ldm/models/diffusion/__pycache__/ddim.cpython-38.pyc
ADDED
Binary file (7.62 kB). View file
|
|
ldm/models/diffusion/__pycache__/ddim.cpython-39.pyc
ADDED
Binary file (7.56 kB). View file
|
|
ldm/models/diffusion/__pycache__/ddpm.cpython-38.pyc
ADDED
Binary file (44.4 kB). View file
|
|
ldm/models/diffusion/__pycache__/ddpm.cpython-39.pyc
ADDED
Binary file (44.3 kB). View file
|
|
ldm/models/diffusion/__pycache__/ddpm_audio.cpython-38.pyc
ADDED
Binary file (25.9 kB). View file
|
|
ldm/models/diffusion/__pycache__/ddpm_audio.cpython-39.pyc
ADDED
Binary file (25.9 kB). View file
|
|
ldm/models/diffusion/__pycache__/plms.cpython-38.pyc
ADDED
Binary file (7.38 kB). View file
|
|
ldm/models/diffusion/__pycache__/plms.cpython-39.pyc
ADDED
Binary file (7.31 kB). View file
|
|
ldm/models/diffusion/audioldm.py
ADDED
@@ -0,0 +1,818 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from tqdm import tqdm
|
6 |
+
from audioldm.utils import default, instantiate_from_config, save_wave
|
7 |
+
from audioldm.latent_diffusion.ddpm import DDPM
|
8 |
+
from audioldm.variational_autoencoder.distributions import DiagonalGaussianDistribution
|
9 |
+
from audioldm.latent_diffusion.util import noise_like
|
10 |
+
from audioldm.latent_diffusion.ddim import DDIMSampler
|
11 |
+
import os
|
12 |
+
|
13 |
+
|
14 |
+
def disabled_train(self, mode=True):
|
15 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
16 |
+
does not change anymore."""
|
17 |
+
return self
|
18 |
+
|
19 |
+
|
20 |
+
class LatentDiffusion(DDPM):
|
21 |
+
"""main class"""
|
22 |
+
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
device="cuda",
|
26 |
+
first_stage_config=None,
|
27 |
+
cond_stage_config=None,
|
28 |
+
num_timesteps_cond=None,
|
29 |
+
cond_stage_key="image",
|
30 |
+
cond_stage_trainable=False,
|
31 |
+
concat_mode=True,
|
32 |
+
cond_stage_forward=None,
|
33 |
+
conditioning_key=None,
|
34 |
+
scale_factor=1.0,
|
35 |
+
scale_by_std=False,
|
36 |
+
base_learning_rate=None,
|
37 |
+
*args,
|
38 |
+
**kwargs,
|
39 |
+
):
|
40 |
+
self.device = device
|
41 |
+
self.learning_rate = base_learning_rate
|
42 |
+
self.num_timesteps_cond = default(num_timesteps_cond, 1)
|
43 |
+
self.scale_by_std = scale_by_std
|
44 |
+
assert self.num_timesteps_cond <= kwargs["timesteps"]
|
45 |
+
# for backwards compatibility after implementation of DiffusionWrapper
|
46 |
+
if conditioning_key is None:
|
47 |
+
conditioning_key = "concat" if concat_mode else "crossattn"
|
48 |
+
if cond_stage_config == "__is_unconditional__":
|
49 |
+
conditioning_key = None
|
50 |
+
ckpt_path = kwargs.pop("ckpt_path", None)
|
51 |
+
ignore_keys = kwargs.pop("ignore_keys", [])
|
52 |
+
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
|
53 |
+
self.concat_mode = concat_mode
|
54 |
+
self.cond_stage_trainable = cond_stage_trainable
|
55 |
+
self.cond_stage_key = cond_stage_key
|
56 |
+
self.cond_stage_key_orig = cond_stage_key
|
57 |
+
try:
|
58 |
+
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
|
59 |
+
except:
|
60 |
+
self.num_downs = 0
|
61 |
+
if not scale_by_std:
|
62 |
+
self.scale_factor = scale_factor
|
63 |
+
else:
|
64 |
+
self.register_buffer("scale_factor", torch.tensor(scale_factor))
|
65 |
+
self.instantiate_first_stage(first_stage_config)
|
66 |
+
self.instantiate_cond_stage(cond_stage_config)
|
67 |
+
self.cond_stage_forward = cond_stage_forward
|
68 |
+
self.clip_denoised = False
|
69 |
+
|
70 |
+
def make_cond_schedule(
|
71 |
+
self,
|
72 |
+
):
|
73 |
+
self.cond_ids = torch.full(
|
74 |
+
size=(self.num_timesteps,),
|
75 |
+
fill_value=self.num_timesteps - 1,
|
76 |
+
dtype=torch.long,
|
77 |
+
)
|
78 |
+
ids = torch.round(
|
79 |
+
torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)
|
80 |
+
).long()
|
81 |
+
self.cond_ids[: self.num_timesteps_cond] = ids
|
82 |
+
|
83 |
+
def register_schedule(
|
84 |
+
self,
|
85 |
+
given_betas=None,
|
86 |
+
beta_schedule="linear",
|
87 |
+
timesteps=1000,
|
88 |
+
linear_start=1e-4,
|
89 |
+
linear_end=2e-2,
|
90 |
+
cosine_s=8e-3,
|
91 |
+
):
|
92 |
+
super().register_schedule(
|
93 |
+
given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s
|
94 |
+
)
|
95 |
+
|
96 |
+
self.shorten_cond_schedule = self.num_timesteps_cond > 1
|
97 |
+
if self.shorten_cond_schedule:
|
98 |
+
self.make_cond_schedule()
|
99 |
+
|
100 |
+
def instantiate_first_stage(self, config):
|
101 |
+
model = instantiate_from_config(config)
|
102 |
+
self.first_stage_model = model.eval()
|
103 |
+
self.first_stage_model.train = disabled_train
|
104 |
+
for param in self.first_stage_model.parameters():
|
105 |
+
param.requires_grad = False
|
106 |
+
|
107 |
+
def instantiate_cond_stage(self, config):
|
108 |
+
if not self.cond_stage_trainable:
|
109 |
+
if config == "__is_first_stage__":
|
110 |
+
print("Using first stage also as cond stage.")
|
111 |
+
self.cond_stage_model = self.first_stage_model
|
112 |
+
elif config == "__is_unconditional__":
|
113 |
+
print(f"Training {self.__class__.__name__} as an unconditional model.")
|
114 |
+
self.cond_stage_model = None
|
115 |
+
# self.be_unconditional = True
|
116 |
+
else:
|
117 |
+
model = instantiate_from_config(config)
|
118 |
+
self.cond_stage_model = model.eval()
|
119 |
+
self.cond_stage_model.train = disabled_train
|
120 |
+
for param in self.cond_stage_model.parameters():
|
121 |
+
param.requires_grad = False
|
122 |
+
else:
|
123 |
+
assert config != "__is_first_stage__"
|
124 |
+
assert config != "__is_unconditional__"
|
125 |
+
model = instantiate_from_config(config)
|
126 |
+
self.cond_stage_model = model
|
127 |
+
self.cond_stage_model = self.cond_stage_model.to(self.device)
|
128 |
+
|
129 |
+
def get_first_stage_encoding(self, encoder_posterior):
|
130 |
+
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
|
131 |
+
z = encoder_posterior.sample()
|
132 |
+
elif isinstance(encoder_posterior, torch.Tensor):
|
133 |
+
z = encoder_posterior
|
134 |
+
else:
|
135 |
+
raise NotImplementedError(
|
136 |
+
f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented"
|
137 |
+
)
|
138 |
+
return self.scale_factor * z
|
139 |
+
|
140 |
+
def get_learned_conditioning(self, c):
|
141 |
+
if self.cond_stage_forward is None:
|
142 |
+
if hasattr(self.cond_stage_model, "encode") and callable(
|
143 |
+
self.cond_stage_model.encode
|
144 |
+
):
|
145 |
+
c = self.cond_stage_model.encode(c)
|
146 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
147 |
+
c = c.mode()
|
148 |
+
else:
|
149 |
+
# Text input is list
|
150 |
+
if type(c) == list and len(c) == 1:
|
151 |
+
c = self.cond_stage_model([c[0], c[0]])
|
152 |
+
c = c[0:1] # (2,1,512) -> (1,1,512)
|
153 |
+
else:
|
154 |
+
c = self.cond_stage_model(c)
|
155 |
+
else:
|
156 |
+
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
|
157 |
+
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
|
158 |
+
return c
|
159 |
+
|
160 |
+
@torch.no_grad()
|
161 |
+
def get_input(
|
162 |
+
self,
|
163 |
+
batch,
|
164 |
+
k,
|
165 |
+
return_first_stage_encode=True,
|
166 |
+
return_first_stage_outputs=False,
|
167 |
+
force_c_encode=False,
|
168 |
+
cond_key=None,
|
169 |
+
return_original_cond=False,
|
170 |
+
bs=None,
|
171 |
+
):
|
172 |
+
x = super().get_input(batch, k)# shape(b,1,T=1024,melbins=64)
|
173 |
+
|
174 |
+
if bs is not None:
|
175 |
+
x = x[:bs]
|
176 |
+
|
177 |
+
x = x.to(self.device)
|
178 |
+
|
179 |
+
if return_first_stage_encode:
|
180 |
+
encoder_posterior = self.encode_first_stage(x)
|
181 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()# z:(b,8,256,16) 长压缩4倍,宽压缩4倍,dim增到8倍,基本没做压缩嘛
|
182 |
+
else:
|
183 |
+
z = None
|
184 |
+
|
185 |
+
if self.model.conditioning_key is not None:
|
186 |
+
if cond_key is None:
|
187 |
+
cond_key = self.cond_stage_key
|
188 |
+
if cond_key != self.first_stage_key:
|
189 |
+
if cond_key in ["caption", "coordinates_bbox"]:
|
190 |
+
xc = batch[cond_key]
|
191 |
+
elif cond_key == "class_label":
|
192 |
+
xc = batch
|
193 |
+
else:
|
194 |
+
# [bs, 1, 527]
|
195 |
+
xc = super().get_input(batch, cond_key)
|
196 |
+
if type(xc) == torch.Tensor:
|
197 |
+
xc = xc.to(self.device)
|
198 |
+
else:
|
199 |
+
xc = x
|
200 |
+
if not self.cond_stage_trainable or force_c_encode:
|
201 |
+
if isinstance(xc, dict) or isinstance(xc, list):
|
202 |
+
c = self.get_learned_conditioning(xc)
|
203 |
+
else:
|
204 |
+
c = self.get_learned_conditioning(xc.to(self.device))
|
205 |
+
else:
|
206 |
+
c = xc
|
207 |
+
|
208 |
+
if bs is not None:
|
209 |
+
c = c[:bs]
|
210 |
+
|
211 |
+
else:
|
212 |
+
c = None
|
213 |
+
xc = None
|
214 |
+
if self.use_positional_encodings:
|
215 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
216 |
+
c = {"pos_x": pos_x, "pos_y": pos_y}
|
217 |
+
out = [z, c]# z:(b,8,256,16)
|
218 |
+
if return_first_stage_outputs:
|
219 |
+
xrec = self.decode_first_stage(z)
|
220 |
+
out.extend([x, xrec])
|
221 |
+
if return_original_cond:
|
222 |
+
out.append(xc)
|
223 |
+
return out
|
224 |
+
|
225 |
+
@torch.no_grad()
|
226 |
+
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
227 |
+
if predict_cids:
|
228 |
+
if z.dim() == 4:
|
229 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
230 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
231 |
+
z = rearrange(z, "b h w c -> b c h w").contiguous()
|
232 |
+
|
233 |
+
z = 1.0 / self.scale_factor * z
|
234 |
+
return self.first_stage_model.decode(z)
|
235 |
+
|
236 |
+
def mel_spectrogram_to_waveform(self, mel):
|
237 |
+
# Mel: [bs, 1, t-steps, fbins]
|
238 |
+
if len(mel.size()) == 4:
|
239 |
+
mel = mel.squeeze(1)
|
240 |
+
mel = mel.permute(0, 2, 1)
|
241 |
+
waveform = self.first_stage_model.vocoder(mel)
|
242 |
+
waveform = waveform.cpu().detach().numpy()
|
243 |
+
return waveform
|
244 |
+
|
245 |
+
@torch.no_grad()
|
246 |
+
def encode_first_stage(self, x):
|
247 |
+
return self.first_stage_model.encode(x)
|
248 |
+
|
249 |
+
def apply_model(self, x_noisy, t, cond, return_ids=False):
|
250 |
+
|
251 |
+
if isinstance(cond, dict):
|
252 |
+
# hybrid case, cond is exptected to be a dict
|
253 |
+
pass
|
254 |
+
else:
|
255 |
+
if not isinstance(cond, list):
|
256 |
+
cond = [cond]
|
257 |
+
if self.model.conditioning_key == "concat":
|
258 |
+
key = "c_concat"
|
259 |
+
elif self.model.conditioning_key == "crossattn":
|
260 |
+
key = "c_crossattn"
|
261 |
+
else:
|
262 |
+
key = "c_film"
|
263 |
+
|
264 |
+
cond = {key: cond}
|
265 |
+
|
266 |
+
x_recon = self.model(x_noisy, t, **cond)
|
267 |
+
|
268 |
+
if isinstance(x_recon, tuple) and not return_ids:
|
269 |
+
return x_recon[0]
|
270 |
+
else:
|
271 |
+
return x_recon
|
272 |
+
|
273 |
+
def p_mean_variance(
|
274 |
+
self,
|
275 |
+
x,
|
276 |
+
c,
|
277 |
+
t,
|
278 |
+
clip_denoised: bool,
|
279 |
+
return_codebook_ids=False,
|
280 |
+
quantize_denoised=False,
|
281 |
+
return_x0=False,
|
282 |
+
score_corrector=None,
|
283 |
+
corrector_kwargs=None,
|
284 |
+
):
|
285 |
+
t_in = t
|
286 |
+
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
|
287 |
+
|
288 |
+
if score_corrector is not None:
|
289 |
+
assert self.parameterization == "eps"
|
290 |
+
model_out = score_corrector.modify_score(
|
291 |
+
self, model_out, x, t, c, **corrector_kwargs
|
292 |
+
)
|
293 |
+
|
294 |
+
if return_codebook_ids:
|
295 |
+
model_out, logits = model_out
|
296 |
+
|
297 |
+
if self.parameterization == "eps":
|
298 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
299 |
+
elif self.parameterization == "x0":
|
300 |
+
x_recon = model_out
|
301 |
+
else:
|
302 |
+
raise NotImplementedError()
|
303 |
+
|
304 |
+
if clip_denoised:
|
305 |
+
x_recon.clamp_(-1.0, 1.0)
|
306 |
+
if quantize_denoised:
|
307 |
+
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
|
308 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(
|
309 |
+
x_start=x_recon, x_t=x, t=t
|
310 |
+
)
|
311 |
+
if return_codebook_ids:
|
312 |
+
return model_mean, posterior_variance, posterior_log_variance, logits
|
313 |
+
elif return_x0:
|
314 |
+
return model_mean, posterior_variance, posterior_log_variance, x_recon
|
315 |
+
else:
|
316 |
+
return model_mean, posterior_variance, posterior_log_variance
|
317 |
+
|
318 |
+
@torch.no_grad()
|
319 |
+
def p_sample(
|
320 |
+
self,
|
321 |
+
x,
|
322 |
+
c,
|
323 |
+
t,
|
324 |
+
clip_denoised=False,
|
325 |
+
repeat_noise=False,
|
326 |
+
return_codebook_ids=False,
|
327 |
+
quantize_denoised=False,
|
328 |
+
return_x0=False,
|
329 |
+
temperature=1.0,
|
330 |
+
noise_dropout=0.0,
|
331 |
+
score_corrector=None,
|
332 |
+
corrector_kwargs=None,
|
333 |
+
):
|
334 |
+
b, *_, device = *x.shape, x.device
|
335 |
+
outputs = self.p_mean_variance(
|
336 |
+
x=x,
|
337 |
+
c=c,
|
338 |
+
t=t,
|
339 |
+
clip_denoised=clip_denoised,
|
340 |
+
return_codebook_ids=return_codebook_ids,
|
341 |
+
quantize_denoised=quantize_denoised,
|
342 |
+
return_x0=return_x0,
|
343 |
+
score_corrector=score_corrector,
|
344 |
+
corrector_kwargs=corrector_kwargs,
|
345 |
+
)
|
346 |
+
if return_codebook_ids:
|
347 |
+
raise DeprecationWarning("Support dropped.")
|
348 |
+
model_mean, _, model_log_variance, logits = outputs
|
349 |
+
elif return_x0:
|
350 |
+
model_mean, _, model_log_variance, x0 = outputs
|
351 |
+
else:
|
352 |
+
model_mean, _, model_log_variance = outputs
|
353 |
+
|
354 |
+
noise = noise_like(x.shape, device, repeat_noise) * temperature
|
355 |
+
if noise_dropout > 0.0:
|
356 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
357 |
+
# no noise when t == 0
|
358 |
+
nonzero_mask = (
|
359 |
+
(1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))).contiguous()
|
360 |
+
)
|
361 |
+
|
362 |
+
if return_codebook_ids:
|
363 |
+
return model_mean + nonzero_mask * (
|
364 |
+
0.5 * model_log_variance
|
365 |
+
).exp() * noise, logits.argmax(dim=1)
|
366 |
+
if return_x0:
|
367 |
+
return (
|
368 |
+
model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise,
|
369 |
+
x0,
|
370 |
+
)
|
371 |
+
else:
|
372 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
373 |
+
|
374 |
+
@torch.no_grad()
|
375 |
+
def progressive_denoising(
|
376 |
+
self,
|
377 |
+
cond,
|
378 |
+
shape,
|
379 |
+
verbose=True,
|
380 |
+
callback=None,
|
381 |
+
quantize_denoised=False,
|
382 |
+
img_callback=None,
|
383 |
+
mask=None,
|
384 |
+
x0=None,
|
385 |
+
temperature=1.0,
|
386 |
+
noise_dropout=0.0,
|
387 |
+
score_corrector=None,
|
388 |
+
corrector_kwargs=None,
|
389 |
+
batch_size=None,
|
390 |
+
x_T=None,
|
391 |
+
start_T=None,
|
392 |
+
log_every_t=None,
|
393 |
+
):
|
394 |
+
if not log_every_t:
|
395 |
+
log_every_t = self.log_every_t
|
396 |
+
timesteps = self.num_timesteps
|
397 |
+
if batch_size is not None:
|
398 |
+
b = batch_size if batch_size is not None else shape[0]
|
399 |
+
shape = [batch_size] + list(shape)
|
400 |
+
else:
|
401 |
+
b = batch_size = shape[0]
|
402 |
+
if x_T is None:
|
403 |
+
img = torch.randn(shape, device=self.device)
|
404 |
+
else:
|
405 |
+
img = x_T
|
406 |
+
intermediates = []
|
407 |
+
if cond is not None:
|
408 |
+
if isinstance(cond, dict):
|
409 |
+
cond = {
|
410 |
+
key: cond[key][:batch_size]
|
411 |
+
if not isinstance(cond[key], list)
|
412 |
+
else list(map(lambda x: x[:batch_size], cond[key]))
|
413 |
+
for key in cond
|
414 |
+
}
|
415 |
+
else:
|
416 |
+
cond = (
|
417 |
+
[c[:batch_size] for c in cond]
|
418 |
+
if isinstance(cond, list)
|
419 |
+
else cond[:batch_size]
|
420 |
+
)
|
421 |
+
|
422 |
+
if start_T is not None:
|
423 |
+
timesteps = min(timesteps, start_T)
|
424 |
+
iterator = (
|
425 |
+
tqdm(
|
426 |
+
reversed(range(0, timesteps)),
|
427 |
+
desc="Progressive Generation",
|
428 |
+
total=timesteps,
|
429 |
+
)
|
430 |
+
if verbose
|
431 |
+
else reversed(range(0, timesteps))
|
432 |
+
)
|
433 |
+
if type(temperature) == float:
|
434 |
+
temperature = [temperature] * timesteps
|
435 |
+
|
436 |
+
for i in iterator:
|
437 |
+
ts = torch.full((b,), i, device=self.device, dtype=torch.long)
|
438 |
+
if self.shorten_cond_schedule:
|
439 |
+
assert self.model.conditioning_key != "hybrid"
|
440 |
+
tc = self.cond_ids[ts].to(cond.device)
|
441 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
442 |
+
|
443 |
+
img, x0_partial = self.p_sample(
|
444 |
+
img,
|
445 |
+
cond,
|
446 |
+
ts,
|
447 |
+
clip_denoised=self.clip_denoised,
|
448 |
+
quantize_denoised=quantize_denoised,
|
449 |
+
return_x0=True,
|
450 |
+
temperature=temperature[i],
|
451 |
+
noise_dropout=noise_dropout,
|
452 |
+
score_corrector=score_corrector,
|
453 |
+
corrector_kwargs=corrector_kwargs,
|
454 |
+
)
|
455 |
+
if mask is not None:
|
456 |
+
assert x0 is not None
|
457 |
+
img_orig = self.q_sample(x0, ts)
|
458 |
+
img = img_orig * mask + (1.0 - mask) * img
|
459 |
+
|
460 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
461 |
+
intermediates.append(x0_partial)
|
462 |
+
if callback:
|
463 |
+
callback(i)
|
464 |
+
if img_callback:
|
465 |
+
img_callback(img, i)
|
466 |
+
return img, intermediates
|
467 |
+
|
468 |
+
@torch.no_grad()
|
469 |
+
def p_sample_loop(
|
470 |
+
self,
|
471 |
+
cond,
|
472 |
+
shape,
|
473 |
+
return_intermediates=False,
|
474 |
+
x_T=None,
|
475 |
+
verbose=True,
|
476 |
+
callback=None,
|
477 |
+
timesteps=None,
|
478 |
+
quantize_denoised=False,
|
479 |
+
mask=None,
|
480 |
+
x0=None,
|
481 |
+
img_callback=None,
|
482 |
+
start_T=None,
|
483 |
+
log_every_t=None,
|
484 |
+
):
|
485 |
+
|
486 |
+
if not log_every_t:
|
487 |
+
log_every_t = self.log_every_t
|
488 |
+
device = self.betas.device
|
489 |
+
b = shape[0]
|
490 |
+
if x_T is None:
|
491 |
+
img = torch.randn(shape, device=device)
|
492 |
+
else:
|
493 |
+
img = x_T
|
494 |
+
|
495 |
+
intermediates = [img]
|
496 |
+
if timesteps is None:
|
497 |
+
timesteps = self.num_timesteps
|
498 |
+
|
499 |
+
if start_T is not None:
|
500 |
+
timesteps = min(timesteps, start_T)
|
501 |
+
iterator = (
|
502 |
+
tqdm(reversed(range(0, timesteps)), desc="Sampling t", total=timesteps)
|
503 |
+
if verbose
|
504 |
+
else reversed(range(0, timesteps))
|
505 |
+
)
|
506 |
+
|
507 |
+
if mask is not None:
|
508 |
+
assert x0 is not None
|
509 |
+
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
|
510 |
+
|
511 |
+
for i in iterator:
|
512 |
+
ts = torch.full((b,), i, device=device, dtype=torch.long)
|
513 |
+
if self.shorten_cond_schedule:
|
514 |
+
assert self.model.conditioning_key != "hybrid"
|
515 |
+
tc = self.cond_ids[ts].to(cond.device)
|
516 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
517 |
+
|
518 |
+
img = self.p_sample(
|
519 |
+
img,
|
520 |
+
cond,
|
521 |
+
ts,
|
522 |
+
clip_denoised=self.clip_denoised,
|
523 |
+
quantize_denoised=quantize_denoised,
|
524 |
+
)
|
525 |
+
if mask is not None:
|
526 |
+
img_orig = self.q_sample(x0, ts)
|
527 |
+
img = img_orig * mask + (1.0 - mask) * img
|
528 |
+
|
529 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
530 |
+
intermediates.append(img)
|
531 |
+
if callback:
|
532 |
+
callback(i)
|
533 |
+
if img_callback:
|
534 |
+
img_callback(img, i)
|
535 |
+
|
536 |
+
if return_intermediates:
|
537 |
+
return img, intermediates
|
538 |
+
return img
|
539 |
+
|
540 |
+
@torch.no_grad()
|
541 |
+
def sample(
|
542 |
+
self,
|
543 |
+
cond,
|
544 |
+
batch_size=16,
|
545 |
+
return_intermediates=False,
|
546 |
+
x_T=None,
|
547 |
+
verbose=True,
|
548 |
+
timesteps=None,
|
549 |
+
quantize_denoised=False,
|
550 |
+
mask=None,
|
551 |
+
x0=None,
|
552 |
+
shape=None,
|
553 |
+
**kwargs,
|
554 |
+
):
|
555 |
+
if shape is None:
|
556 |
+
shape = (batch_size, self.channels, self.latent_t_size, self.latent_f_size)
|
557 |
+
if cond is not None:
|
558 |
+
if isinstance(cond, dict):
|
559 |
+
cond = {
|
560 |
+
key: cond[key][:batch_size]
|
561 |
+
if not isinstance(cond[key], list)
|
562 |
+
else list(map(lambda x: x[:batch_size], cond[key]))
|
563 |
+
for key in cond
|
564 |
+
}
|
565 |
+
else:
|
566 |
+
cond = (
|
567 |
+
[c[:batch_size] for c in cond]
|
568 |
+
if isinstance(cond, list)
|
569 |
+
else cond[:batch_size]
|
570 |
+
)
|
571 |
+
return self.p_sample_loop(
|
572 |
+
cond,
|
573 |
+
shape,
|
574 |
+
return_intermediates=return_intermediates,
|
575 |
+
x_T=x_T,
|
576 |
+
verbose=verbose,
|
577 |
+
timesteps=timesteps,
|
578 |
+
quantize_denoised=quantize_denoised,
|
579 |
+
mask=mask,
|
580 |
+
x0=x0,
|
581 |
+
**kwargs,
|
582 |
+
)
|
583 |
+
|
584 |
+
@torch.no_grad()
|
585 |
+
def sample_log(
|
586 |
+
self,
|
587 |
+
cond,
|
588 |
+
batch_size,
|
589 |
+
ddim,
|
590 |
+
ddim_steps,
|
591 |
+
unconditional_guidance_scale=1.0,
|
592 |
+
unconditional_conditioning=None,
|
593 |
+
use_plms=False,
|
594 |
+
mask=None,
|
595 |
+
**kwargs,
|
596 |
+
):
|
597 |
+
|
598 |
+
if mask is not None:
|
599 |
+
shape = (self.channels, mask.size()[-2], mask.size()[-1])
|
600 |
+
else:
|
601 |
+
shape = (self.channels, self.latent_t_size, self.latent_f_size)
|
602 |
+
|
603 |
+
intermediate = None
|
604 |
+
if ddim and not use_plms:
|
605 |
+
# print("Use ddim sampler")
|
606 |
+
|
607 |
+
ddim_sampler = DDIMSampler(self)
|
608 |
+
samples, intermediates = ddim_sampler.sample(
|
609 |
+
ddim_steps,
|
610 |
+
batch_size,
|
611 |
+
shape,
|
612 |
+
cond,
|
613 |
+
verbose=False,
|
614 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
615 |
+
unconditional_conditioning=unconditional_conditioning,
|
616 |
+
mask=mask,
|
617 |
+
**kwargs,
|
618 |
+
)
|
619 |
+
|
620 |
+
else:
|
621 |
+
# print("Use DDPM sampler")
|
622 |
+
samples, intermediates = self.sample(
|
623 |
+
cond=cond,
|
624 |
+
batch_size=batch_size,
|
625 |
+
return_intermediates=True,
|
626 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
627 |
+
mask=mask,
|
628 |
+
unconditional_conditioning=unconditional_conditioning,
|
629 |
+
**kwargs,
|
630 |
+
)
|
631 |
+
|
632 |
+
return samples, intermediate
|
633 |
+
|
634 |
+
@torch.no_grad()
|
635 |
+
def generate_sample(
|
636 |
+
self,
|
637 |
+
batchs,
|
638 |
+
ddim_steps=200,
|
639 |
+
ddim_eta=1.0,
|
640 |
+
x_T=None,
|
641 |
+
n_candidate_gen_per_text=1,
|
642 |
+
unconditional_guidance_scale=1.0,
|
643 |
+
unconditional_conditioning=None,
|
644 |
+
name="waveform",
|
645 |
+
use_plms=False,
|
646 |
+
save=False,
|
647 |
+
**kwargs,
|
648 |
+
):
|
649 |
+
# Generate n_candidate_gen_per_text times and select the best
|
650 |
+
# Batch: audio, text, fnames
|
651 |
+
assert x_T is None
|
652 |
+
try:
|
653 |
+
batchs = iter(batchs)
|
654 |
+
except TypeError:
|
655 |
+
raise ValueError("The first input argument should be an iterable object")
|
656 |
+
|
657 |
+
if use_plms:
|
658 |
+
assert ddim_steps is not None
|
659 |
+
use_ddim = ddim_steps is not None
|
660 |
+
# waveform_save_path = os.path.join(self.get_log_dir(), name)
|
661 |
+
# os.makedirs(waveform_save_path, exist_ok=True)
|
662 |
+
# print("Waveform save path: ", waveform_save_path)
|
663 |
+
|
664 |
+
with self.ema_scope("Generate"):
|
665 |
+
for batch in batchs:
|
666 |
+
z, c = self.get_input(
|
667 |
+
batch,
|
668 |
+
self.first_stage_key,
|
669 |
+
cond_key=self.cond_stage_key,
|
670 |
+
return_first_stage_outputs=False,
|
671 |
+
force_c_encode=True,
|
672 |
+
return_original_cond=False,
|
673 |
+
bs=None,
|
674 |
+
)
|
675 |
+
text = super().get_input(batch, "text")
|
676 |
+
|
677 |
+
# Generate multiple samples
|
678 |
+
batch_size = z.shape[0] * n_candidate_gen_per_text
|
679 |
+
c = torch.cat([c] * n_candidate_gen_per_text, dim=0)
|
680 |
+
text = text * n_candidate_gen_per_text
|
681 |
+
|
682 |
+
if unconditional_guidance_scale != 1.0:
|
683 |
+
unconditional_conditioning = (
|
684 |
+
self.cond_stage_model.get_unconditional_condition(batch_size)
|
685 |
+
)
|
686 |
+
|
687 |
+
samples, _ = self.sample_log(
|
688 |
+
cond=c,
|
689 |
+
batch_size=batch_size,
|
690 |
+
x_T=x_T,
|
691 |
+
ddim=use_ddim,
|
692 |
+
ddim_steps=ddim_steps,
|
693 |
+
eta=ddim_eta,
|
694 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
695 |
+
unconditional_conditioning=unconditional_conditioning,
|
696 |
+
use_plms=use_plms,
|
697 |
+
)
|
698 |
+
|
699 |
+
if(torch.max(torch.abs(samples)) > 1e2):
|
700 |
+
samples = torch.clip(samples, min=-10, max=10)
|
701 |
+
|
702 |
+
mel = self.decode_first_stage(samples)
|
703 |
+
|
704 |
+
waveform = self.mel_spectrogram_to_waveform(mel)
|
705 |
+
|
706 |
+
if waveform.shape[0] > 1:
|
707 |
+
similarity = self.cond_stage_model.cos_similarity(
|
708 |
+
torch.FloatTensor(waveform).squeeze(1), text
|
709 |
+
)
|
710 |
+
|
711 |
+
best_index = []
|
712 |
+
for i in range(z.shape[0]):
|
713 |
+
candidates = similarity[i :: z.shape[0]]
|
714 |
+
max_index = torch.argmax(candidates).item()
|
715 |
+
best_index.append(i + max_index * z.shape[0])
|
716 |
+
|
717 |
+
waveform = waveform[best_index]
|
718 |
+
# print("Similarity between generated audio and text", similarity)
|
719 |
+
# print("Choose the following indexes:", best_index)
|
720 |
+
|
721 |
+
return waveform
|
722 |
+
|
723 |
+
@torch.no_grad()
|
724 |
+
def generate_sample_masked(
|
725 |
+
self,
|
726 |
+
batchs,
|
727 |
+
ddim_steps=200,
|
728 |
+
ddim_eta=1.0,
|
729 |
+
x_T=None,
|
730 |
+
n_candidate_gen_per_text=1,
|
731 |
+
unconditional_guidance_scale=1.0,
|
732 |
+
unconditional_conditioning=None,
|
733 |
+
name="waveform",
|
734 |
+
use_plms=False,
|
735 |
+
time_mask_ratio_start_and_end=(0.25, 0.75),
|
736 |
+
freq_mask_ratio_start_and_end=(0.75, 1.0),
|
737 |
+
save=False,
|
738 |
+
**kwargs,
|
739 |
+
):
|
740 |
+
# Generate n_candidate_gen_per_text times and select the best
|
741 |
+
# Batch: audio, text, fnames
|
742 |
+
assert x_T is None
|
743 |
+
try:
|
744 |
+
batchs = iter(batchs)
|
745 |
+
except TypeError:
|
746 |
+
raise ValueError("The first input argument should be an iterable object")
|
747 |
+
|
748 |
+
if use_plms:
|
749 |
+
assert ddim_steps is not None
|
750 |
+
use_ddim = ddim_steps is not None
|
751 |
+
# waveform_save_path = os.path.join(self.get_log_dir(), name)
|
752 |
+
# os.makedirs(waveform_save_path, exist_ok=True)
|
753 |
+
# print("Waveform save path: ", waveform_save_path)
|
754 |
+
|
755 |
+
with self.ema_scope("Generate"):
|
756 |
+
for batch in batchs:
|
757 |
+
z, c = self.get_input(
|
758 |
+
batch,
|
759 |
+
self.first_stage_key,
|
760 |
+
cond_key=self.cond_stage_key,
|
761 |
+
return_first_stage_outputs=False,
|
762 |
+
force_c_encode=True,
|
763 |
+
return_original_cond=False,
|
764 |
+
bs=None,
|
765 |
+
)
|
766 |
+
text = super().get_input(batch, "text")
|
767 |
+
|
768 |
+
# Generate multiple samples
|
769 |
+
batch_size = z.shape[0] * n_candidate_gen_per_text
|
770 |
+
|
771 |
+
_, h, w = z.shape[0], z.shape[2], z.shape[3]
|
772 |
+
|
773 |
+
mask = torch.ones(batch_size, h, w).to(self.device)
|
774 |
+
|
775 |
+
mask[:, int(h * time_mask_ratio_start_and_end[0]) : int(h * time_mask_ratio_start_and_end[1]), :] = 0
|
776 |
+
mask[:, :, int(w * freq_mask_ratio_start_and_end[0]) : int(w * freq_mask_ratio_start_and_end[1])] = 0
|
777 |
+
mask = mask[:, None, ...]
|
778 |
+
|
779 |
+
c = torch.cat([c] * n_candidate_gen_per_text, dim=0)
|
780 |
+
text = text * n_candidate_gen_per_text
|
781 |
+
|
782 |
+
if unconditional_guidance_scale != 1.0:
|
783 |
+
unconditional_conditioning = (
|
784 |
+
self.cond_stage_model.get_unconditional_condition(batch_size)
|
785 |
+
)
|
786 |
+
|
787 |
+
samples, _ = self.sample_log(
|
788 |
+
cond=c,
|
789 |
+
batch_size=batch_size,
|
790 |
+
x_T=x_T,
|
791 |
+
ddim=use_ddim,
|
792 |
+
ddim_steps=ddim_steps,
|
793 |
+
eta=ddim_eta,
|
794 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
795 |
+
unconditional_conditioning=unconditional_conditioning,
|
796 |
+
use_plms=use_plms, mask=mask, x0=torch.cat([z] * n_candidate_gen_per_text)
|
797 |
+
)
|
798 |
+
|
799 |
+
mel = self.decode_first_stage(samples)
|
800 |
+
|
801 |
+
waveform = self.mel_spectrogram_to_waveform(mel)
|
802 |
+
|
803 |
+
if waveform.shape[0] > 1:
|
804 |
+
similarity = self.cond_stage_model.cos_similarity(
|
805 |
+
torch.FloatTensor(waveform).squeeze(1), text
|
806 |
+
)
|
807 |
+
|
808 |
+
best_index = []
|
809 |
+
for i in range(z.shape[0]):
|
810 |
+
candidates = similarity[i :: z.shape[0]]
|
811 |
+
max_index = torch.argmax(candidates).item()
|
812 |
+
best_index.append(i + max_index * z.shape[0])
|
813 |
+
|
814 |
+
waveform = waveform[best_index]
|
815 |
+
# print("Similarity between generated audio and text", similarity)
|
816 |
+
# print("Choose the following indexes:", best_index)
|
817 |
+
|
818 |
+
return waveform
|
ldm/models/diffusion/cfm1_audio.py
ADDED
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pytorch_memlab import LineProfiler,profile
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import numpy as np
|
6 |
+
import pytorch_lightning as pl
|
7 |
+
from torch.optim.lr_scheduler import LambdaLR
|
8 |
+
from einops import rearrange, repeat
|
9 |
+
from contextlib import contextmanager
|
10 |
+
from functools import partial
|
11 |
+
from tqdm import tqdm
|
12 |
+
|
13 |
+
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps
|
14 |
+
from torchvision.utils import make_grid
|
15 |
+
try:
|
16 |
+
from pytorch_lightning.utilities.distributed import rank_zero_only
|
17 |
+
except:
|
18 |
+
from pytorch_lightning.utilities import rank_zero_only # torch2
|
19 |
+
from torchdyn.core import NeuralODE
|
20 |
+
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
|
21 |
+
from ldm.models.diffusion.ddpm_audio import LatentDiffusion_audio, disabled_train
|
22 |
+
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
|
23 |
+
from omegaconf import ListConfig
|
24 |
+
|
25 |
+
__conditioning_keys__ = {'concat': 'c_concat',
|
26 |
+
'crossattn': 'c_crossattn',
|
27 |
+
'adm': 'y'}
|
28 |
+
|
29 |
+
|
30 |
+
class CFM(LatentDiffusion_audio):
|
31 |
+
|
32 |
+
def __init__(self, **kwargs):
|
33 |
+
|
34 |
+
super(CFM, self).__init__(**kwargs)
|
35 |
+
self.sigma_min = 1e-4
|
36 |
+
|
37 |
+
def p_losses(self, x_start, cond, t, noise=None):
|
38 |
+
x1 = x_start
|
39 |
+
x0 = default(noise, lambda: torch.randn_like(x_start))
|
40 |
+
ut = x1 - (1 - self.sigma_min) * x0 # 和ut的梯度没关系
|
41 |
+
t_unsqueeze = t.unsqueeze(1).unsqueeze(1).float() / self.num_timesteps
|
42 |
+
x_noisy = t_unsqueeze * x1 + (1. - (1 - self.sigma_min) * t_unsqueeze) * x0
|
43 |
+
|
44 |
+
model_output = self.apply_model(x_noisy, t, cond)
|
45 |
+
|
46 |
+
loss_dict = {}
|
47 |
+
prefix = 'train' if self.training else 'val'
|
48 |
+
target = ut
|
49 |
+
|
50 |
+
mean_dims = list(range(1,len(target.shape)))
|
51 |
+
loss_simple = self.get_loss(model_output, target, mean=False).mean(dim=mean_dims)
|
52 |
+
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
|
53 |
+
|
54 |
+
loss = loss_simple
|
55 |
+
loss = self.l_simple_weight * loss.mean()
|
56 |
+
loss_dict.update({f'{prefix}/loss': loss})
|
57 |
+
|
58 |
+
return loss, loss_dict
|
59 |
+
|
60 |
+
@torch.no_grad()
|
61 |
+
def sample(self, cond, batch_size=16, timesteps=None, shape=None, x_latent=None, t_start=None, **kwargs):
|
62 |
+
if shape is None:
|
63 |
+
if self.channels > 0:
|
64 |
+
shape = (batch_size, self.channels, self.mel_dim, self.mel_length)
|
65 |
+
else:
|
66 |
+
shape = (batch_size, self.mel_dim, self.mel_length)
|
67 |
+
if cond is not None:
|
68 |
+
if isinstance(cond, dict):
|
69 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
70 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
71 |
+
else:
|
72 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
73 |
+
|
74 |
+
neural_ode = NeuralODE(self.ode_wrapper(cond), solver='euler', sensitivity="adjoint", atol=1e-4, rtol=1e-4)
|
75 |
+
t_span = torch.linspace(0, 1, 25 if timesteps is None else timesteps)
|
76 |
+
if t_start is not None:
|
77 |
+
t_span = t_span[t_start:]
|
78 |
+
|
79 |
+
x0 = torch.randn(shape, device=self.device) if x_latent is None else x_latent
|
80 |
+
eval_points, traj = neural_ode(x0, t_span)
|
81 |
+
|
82 |
+
return traj[-1], traj
|
83 |
+
|
84 |
+
def ode_wrapper(self, cond):
|
85 |
+
# self.estimator receives x, mask, mu, t, spk as arguments
|
86 |
+
return Wrapper(self, cond)
|
87 |
+
|
88 |
+
@torch.no_grad()
|
89 |
+
def sample_cfg(self, cond, unconditional_guidance_scale, unconditional_conditioning, batch_size=16, timesteps=None, shape=None, x_latent=None, t_start=None, **kwargs):
|
90 |
+
if shape is None:
|
91 |
+
if self.channels > 0:
|
92 |
+
shape = (batch_size, self.channels, self.mel_dim, self.mel_length)
|
93 |
+
else:
|
94 |
+
shape = (batch_size, self.mel_dim, self.mel_length)
|
95 |
+
if cond is not None:
|
96 |
+
if isinstance(cond, dict):
|
97 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
98 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
99 |
+
else:
|
100 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
101 |
+
|
102 |
+
neural_ode = NeuralODE(self.ode_wrapper_cfg(cond, unconditional_guidance_scale, unconditional_conditioning), solver='euler', sensitivity="adjoint", atol=1e-4, rtol=1e-4)
|
103 |
+
t_span = torch.linspace(0, 1, 25 if timesteps is None else timesteps)
|
104 |
+
|
105 |
+
if t_start is not None:
|
106 |
+
t_span = t_span[t_start:]
|
107 |
+
|
108 |
+
x0 = torch.randn(shape, device=self.device) if x_latent is None else x_latent
|
109 |
+
eval_points, traj = neural_ode(x0, t_span)
|
110 |
+
|
111 |
+
return traj[-1], traj
|
112 |
+
|
113 |
+
def ode_wrapper_cfg(self, cond, unconditional_guidance_scale, unconditional_conditioning):
|
114 |
+
# self.estimator receives x, mask, mu, t, spk as arguments
|
115 |
+
return Wrapper_cfg(self, cond, unconditional_guidance_scale, unconditional_conditioning)
|
116 |
+
|
117 |
+
|
118 |
+
@torch.no_grad()
|
119 |
+
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
120 |
+
# fast, but does not allow for exact reconstruction
|
121 |
+
# t serves as an index to gather the correct alphas
|
122 |
+
# if use_original_steps:
|
123 |
+
# sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
124 |
+
# sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
125 |
+
# else:
|
126 |
+
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
127 |
+
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
128 |
+
if noise is None:
|
129 |
+
noise = torch.randn_like(x0)
|
130 |
+
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
|
131 |
+
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
|
132 |
+
|
133 |
+
|
134 |
+
class Wrapper(nn.Module):
|
135 |
+
def __init__(self, net, cond):
|
136 |
+
super(Wrapper, self).__init__()
|
137 |
+
self.net = net
|
138 |
+
self.cond = cond
|
139 |
+
|
140 |
+
def forward(self, t, x, args):
|
141 |
+
t = torch.tensor([t * 1000] * x.shape[0], device=t.device).long()
|
142 |
+
return self.net.apply_model(x, t, self.cond)
|
143 |
+
|
144 |
+
|
145 |
+
class Wrapper_cfg(nn.Module):
|
146 |
+
|
147 |
+
def __init__(self, net, cond, unconditional_guidance_scale, unconditional_conditioning):
|
148 |
+
super(Wrapper_cfg, self).__init__()
|
149 |
+
self.net = net
|
150 |
+
self.cond = cond
|
151 |
+
self.unconditional_conditioning = unconditional_conditioning
|
152 |
+
self.unconditional_guidance_scale = unconditional_guidance_scale
|
153 |
+
|
154 |
+
def forward(self, t, x, args):
|
155 |
+
x_in = torch.cat([x] * 2)
|
156 |
+
t = torch.tensor([t * 1000] * x.shape[0], device=t.device).long()
|
157 |
+
t_in = torch.cat([t] * 2)
|
158 |
+
c_in = torch.cat([self.unconditional_conditioning, self.cond]) # c/uc shape [b,seq_len=77,dim=1024],c_in shape [b*2,seq_len,dim]
|
159 |
+
e_t_uncond, e_t = self.net.apply_model(x_in, t_in, c_in).chunk(2)
|
160 |
+
e_t = e_t_uncond + self.unconditional_guidance_scale * (e_t - e_t_uncond)
|
161 |
+
return e_t
|
162 |
+
|
163 |
+
|
164 |
+
class CFM_inpaint(CFM):
|
165 |
+
|
166 |
+
@torch.no_grad()
|
167 |
+
def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
|
168 |
+
cond_key=None, return_original_cond=False, bs=None):
|
169 |
+
x = batch[k]
|
170 |
+
if self.channels > 0: # use 4d input
|
171 |
+
if len(x.shape) == 3:
|
172 |
+
x = x[..., None]
|
173 |
+
x = rearrange(x, 'b h w c -> b c h w')
|
174 |
+
x = x.to(memory_format=torch.contiguous_format).float()
|
175 |
+
|
176 |
+
if bs is not None:
|
177 |
+
x = x[:bs]
|
178 |
+
x = x.to(self.device)
|
179 |
+
encoder_posterior = self.encode_first_stage(x)
|
180 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
181 |
+
|
182 |
+
if self.model.conditioning_key is not None:
|
183 |
+
if cond_key is None:
|
184 |
+
cond_key = self.cond_stage_key
|
185 |
+
if cond_key != self.first_stage_key:
|
186 |
+
if cond_key in ['caption', 'coordinates_bbox', 'hybrid_feat']:
|
187 |
+
xc = batch[cond_key]
|
188 |
+
elif cond_key == 'class_label':
|
189 |
+
xc = batch
|
190 |
+
else:
|
191 |
+
xc = super().get_input(batch, cond_key).to(self.device)
|
192 |
+
else:
|
193 |
+
xc = x
|
194 |
+
##### Testing #######
|
195 |
+
spec = xc['mix_spec'].to(self.device)
|
196 |
+
encoder_posterior = self.encode_first_stage(spec)
|
197 |
+
z_spec = self.get_first_stage_encoding(encoder_posterior).detach()
|
198 |
+
c = {"mix_spec": z_spec, "mix_video_feat": xc['mix_video_feat']}
|
199 |
+
##### Testing #######
|
200 |
+
if bs is not None:
|
201 |
+
c = {"mix_spec": c["mix_spec"][:bs], "mix_video_feat": c['mix_video_feat'][:bs]}
|
202 |
+
# Testing #
|
203 |
+
if cond_key == 'masked_image':
|
204 |
+
mask = super().get_input(batch, "mask")
|
205 |
+
cc = torch.nn.functional.interpolate(mask, size=c.shape[-2:]) # [B, 1, 10, 106]
|
206 |
+
c = torch.cat((c, cc), dim=1) # [B, 5, 10, 106]
|
207 |
+
# Testing #
|
208 |
+
if self.use_positional_encodings:
|
209 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
210 |
+
ckey = __conditioning_keys__[self.model.conditioning_key]
|
211 |
+
c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
|
212 |
+
|
213 |
+
else:
|
214 |
+
c = None
|
215 |
+
xc = None
|
216 |
+
if self.use_positional_encodings:
|
217 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
218 |
+
c = {'pos_x': pos_x, 'pos_y': pos_y}
|
219 |
+
out = [z, c]
|
220 |
+
if return_first_stage_outputs:
|
221 |
+
xrec = self.decode_first_stage(z)
|
222 |
+
out.extend([x, xrec])
|
223 |
+
if return_original_cond:
|
224 |
+
out.append(xc)
|
225 |
+
return out
|
226 |
+
|
227 |
+
|
228 |
+
def apply_model(self, x_noisy, t, cond, return_ids=False):
|
229 |
+
|
230 |
+
if isinstance(cond, dict):
|
231 |
+
# hybrid case, cond is exptected to be a dict
|
232 |
+
key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
|
233 |
+
cond = {key: cond}
|
234 |
+
else:
|
235 |
+
if not isinstance(cond, list):
|
236 |
+
cond = [cond]
|
237 |
+
if self.model.conditioning_key == "concat":
|
238 |
+
key = "c_concat"
|
239 |
+
elif self.model.conditioning_key == "crossattn" or self.model.conditioning_key == "hybrid_inpaint":
|
240 |
+
key = "c_crossattn"
|
241 |
+
else:
|
242 |
+
key = "c_film"
|
243 |
+
cond = {key: cond}
|
244 |
+
|
245 |
+
|
246 |
+
x_recon = self.model(x_noisy, t, **cond)
|
247 |
+
|
248 |
+
if isinstance(x_recon, tuple) and not return_ids:
|
249 |
+
return x_recon[0]
|
250 |
+
else:
|
251 |
+
return x_recon
|
252 |
+
|
253 |
+
|
254 |
+
|
255 |
+
@torch.no_grad()
|
256 |
+
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
257 |
+
quantize_denoised=True, inpaint=False, plot_denoise_rows=False, plot_progressive_rows=True,
|
258 |
+
plot_diffusion_rows=True, **kwargs):
|
259 |
+
|
260 |
+
log = dict()
|
261 |
+
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
|
262 |
+
return_first_stage_outputs=True,
|
263 |
+
force_c_encode=True,
|
264 |
+
return_original_cond=True,
|
265 |
+
bs=N) # z is latent,c is condition embedding, xc is condition(caption) list
|
266 |
+
N = min(x.shape[0], N)
|
267 |
+
n_row = min(x.shape[0], n_row)
|
268 |
+
log["inputs"] = x if len(x.shape)==4 else x.unsqueeze(1)
|
269 |
+
log["reconstruction"] = xrec if len(xrec.shape)==4 else xrec.unsqueeze(1)
|
270 |
+
if self.model.conditioning_key is not None:
|
271 |
+
if hasattr(self.cond_stage_model, "decode") and self.cond_stage_key != "masked_image":
|
272 |
+
xc = self.cond_stage_model.decode(c)
|
273 |
+
log["conditioning"] = xc
|
274 |
+
elif self.cond_stage_key == "masked_image":
|
275 |
+
log["mask"] = c[:, -1, :, :][:, None, :, :]
|
276 |
+
xc = self.cond_stage_model.decode(c[:, :self.cond_stage_model.embed_dim, :, :])
|
277 |
+
log["conditioning"] = xc
|
278 |
+
elif self.cond_stage_key in ["caption"]:
|
279 |
+
pass
|
280 |
+
# xc = log_txt_as_img((256, 256), batch["caption"])
|
281 |
+
# log["conditioning"] = xc
|
282 |
+
elif self.cond_stage_key == 'class_label':
|
283 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
|
284 |
+
log['conditioning'] = xc
|
285 |
+
elif isimage(xc):
|
286 |
+
log["conditioning"] = xc
|
287 |
+
|
288 |
+
if plot_diffusion_rows:
|
289 |
+
# get diffusion row
|
290 |
+
diffusion_row = list()
|
291 |
+
z_start = z[:n_row]
|
292 |
+
for t in range(self.num_timesteps):
|
293 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
294 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
295 |
+
t = t.to(self.device).long()
|
296 |
+
noise = torch.randn_like(z_start)
|
297 |
+
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
298 |
+
diffusion_row.append(self.decode_first_stage(z_noisy))
|
299 |
+
if len(diffusion_row[0].shape) == 3:
|
300 |
+
diffusion_row = [x.unsqueeze(1) for x in diffusion_row]
|
301 |
+
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
302 |
+
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
303 |
+
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
304 |
+
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
305 |
+
log["diffusion_row"] = diffusion_grid
|
306 |
+
|
307 |
+
if return_keys:
|
308 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
309 |
+
return log
|
310 |
+
else:
|
311 |
+
return {key: log[key] for key in return_keys}
|
312 |
+
return log
|
ldm/models/diffusion/cfm1_audio_sampler.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pytorch_memlab import LineProfiler,profile
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import numpy as np
|
6 |
+
import pytorch_lightning as pl
|
7 |
+
from torch.optim.lr_scheduler import LambdaLR
|
8 |
+
from einops import rearrange, repeat
|
9 |
+
from contextlib import contextmanager
|
10 |
+
from functools import partial
|
11 |
+
from tqdm import tqdm
|
12 |
+
|
13 |
+
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps
|
14 |
+
from torchvision.utils import make_grid
|
15 |
+
try:
|
16 |
+
from pytorch_lightning.utilities.distributed import rank_zero_only
|
17 |
+
except:
|
18 |
+
from pytorch_lightning.utilities import rank_zero_only # torch2
|
19 |
+
from torchdyn.core import NeuralODE
|
20 |
+
from ldm.models.diffusion.cfm_audio import Wrapper, Wrapper_cfg
|
21 |
+
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
|
22 |
+
from omegaconf import ListConfig
|
23 |
+
|
24 |
+
from ldm.util import log_txt_as_img, exists, default
|
25 |
+
|
26 |
+
class CFMSampler(object):
|
27 |
+
|
28 |
+
def __init__(self, model, num_timesteps, schedule="linear", **kwargs):
|
29 |
+
super().__init__()
|
30 |
+
self.model = model
|
31 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
32 |
+
self.num_timesteps = num_timesteps
|
33 |
+
self.schedule = schedule
|
34 |
+
|
35 |
+
def register_buffer(self, name, attr):
|
36 |
+
if type(attr) == torch.Tensor:
|
37 |
+
if attr.device != torch.device("cuda"):
|
38 |
+
attr = attr.to(torch.device("cuda"))
|
39 |
+
setattr(self, name, attr)
|
40 |
+
|
41 |
+
def stochastic_encode(self, x_start, t, noise=None):
|
42 |
+
x1 = x_start
|
43 |
+
x0 = default(noise, lambda: torch.randn_like(x_start))
|
44 |
+
t_unsqueeze = 1 - t.unsqueeze(1).unsqueeze(1).float() / self.num_timesteps
|
45 |
+
x_noisy = t_unsqueeze * x1 + (1. - (1 - self.model.sigma_min) * t_unsqueeze) * x0
|
46 |
+
return x_noisy
|
47 |
+
|
48 |
+
@torch.no_grad()
|
49 |
+
def sample(self, cond, batch_size=16, timesteps=None, shape=None, x_latent=None, t_start=None, **kwargs):
|
50 |
+
if shape is None:
|
51 |
+
if self.model.channels > 0:
|
52 |
+
shape = (batch_size, self.model.channels, self.model.mel_dim, self.model.mel_length)
|
53 |
+
else:
|
54 |
+
shape = (batch_size, self.model.mel_dim, self.model.mel_length)
|
55 |
+
# if cond is not None:
|
56 |
+
# if isinstance(cond, dict):
|
57 |
+
# cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
58 |
+
# list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
59 |
+
# else:
|
60 |
+
# cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
61 |
+
|
62 |
+
|
63 |
+
neural_ode = NeuralODE(self.ode_wrapper(cond), solver='euler', sensitivity="adjoint", atol=1e-4, rtol=1e-4)
|
64 |
+
t_span = torch.linspace(0, 1, 25 if timesteps is None else timesteps)
|
65 |
+
if t_start is not None:
|
66 |
+
t_span = t_span[t_start:]
|
67 |
+
|
68 |
+
x0 = torch.randn(shape, device=self.model.device) if x_latent is None else x_latent
|
69 |
+
eval_points, traj = neural_ode(x0, t_span)
|
70 |
+
|
71 |
+
return traj[-1], traj
|
72 |
+
|
73 |
+
def ode_wrapper(self, cond):
|
74 |
+
# self.estimator receives x, mask, mu, t, spk as arguments
|
75 |
+
return Wrapper(self.model, cond)
|
76 |
+
|
77 |
+
@torch.no_grad()
|
78 |
+
def sample_cfg(self, cond, unconditional_guidance_scale, unconditional_conditioning, batch_size=16, timesteps=None, shape=None, x_latent=None, t_start=None, **kwargs):
|
79 |
+
if shape is None:
|
80 |
+
if self.model.channels > 0:
|
81 |
+
shape = (batch_size, self.model.channels, self.model.mel_dim, self.model.mel_length)
|
82 |
+
else:
|
83 |
+
shape = (batch_size, self.model.mel_dim, self.model.mel_length)
|
84 |
+
# if cond is not None:
|
85 |
+
# if isinstance(cond, dict):
|
86 |
+
# cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
87 |
+
# list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
88 |
+
# else:
|
89 |
+
# cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
90 |
+
|
91 |
+
neural_ode = NeuralODE(self.ode_wrapper_cfg(cond, unconditional_guidance_scale, unconditional_conditioning), solver='euler', sensitivity="adjoint", atol=1e-4, rtol=1e-4)
|
92 |
+
t_span = torch.linspace(0, 1, 25 if timesteps is None else timesteps)
|
93 |
+
|
94 |
+
if t_start is not None:
|
95 |
+
t_span = t_span[t_start:]
|
96 |
+
|
97 |
+
x0 = torch.randn(shape, device=self.model.device) if x_latent is None else x_latent
|
98 |
+
eval_points, traj = neural_ode(x0, t_span)
|
99 |
+
|
100 |
+
return traj[-1], traj
|
101 |
+
|
102 |
+
def ode_wrapper_cfg(self, cond, unconditional_guidance_scale, unconditional_conditioning):
|
103 |
+
# self.estimator receives x, mask, mu, t, spk as arguments
|
104 |
+
return Wrapper_cfg(self.model, cond, unconditional_guidance_scale, unconditional_conditioning)
|
105 |
+
|
ldm/models/diffusion/classifier.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import pytorch_lightning as pl
|
4 |
+
from omegaconf import OmegaConf
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from torch.optim import AdamW
|
7 |
+
from torch.optim.lr_scheduler import LambdaLR
|
8 |
+
from copy import deepcopy
|
9 |
+
from einops import rearrange
|
10 |
+
from glob import glob
|
11 |
+
from natsort import natsorted
|
12 |
+
|
13 |
+
from ldm.modules.diffusionmodules.openaimodel import EncoderUNetModel, UNetModel
|
14 |
+
from ldm.util import log_txt_as_img, default, ismap, instantiate_from_config
|
15 |
+
|
16 |
+
__models__ = {
|
17 |
+
'class_label': EncoderUNetModel,
|
18 |
+
'segmentation': UNetModel
|
19 |
+
}
|
20 |
+
|
21 |
+
|
22 |
+
def disabled_train(self, mode=True):
|
23 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
24 |
+
does not change anymore."""
|
25 |
+
return self
|
26 |
+
|
27 |
+
|
28 |
+
class NoisyLatentImageClassifier(pl.LightningModule):
|
29 |
+
|
30 |
+
def __init__(self,
|
31 |
+
diffusion_path,
|
32 |
+
num_classes,
|
33 |
+
ckpt_path=None,
|
34 |
+
pool='attention',
|
35 |
+
label_key=None,
|
36 |
+
diffusion_ckpt_path=None,
|
37 |
+
scheduler_config=None,
|
38 |
+
weight_decay=1.e-2,
|
39 |
+
log_steps=10,
|
40 |
+
monitor='val/loss',
|
41 |
+
*args,
|
42 |
+
**kwargs):
|
43 |
+
super().__init__(*args, **kwargs)
|
44 |
+
self.num_classes = num_classes
|
45 |
+
# get latest config of diffusion model
|
46 |
+
diffusion_config = natsorted(glob(os.path.join(diffusion_path, 'configs', '*-project.yaml')))[-1]
|
47 |
+
self.diffusion_config = OmegaConf.load(diffusion_config).model
|
48 |
+
self.diffusion_config.params.ckpt_path = diffusion_ckpt_path
|
49 |
+
self.load_diffusion()
|
50 |
+
|
51 |
+
self.monitor = monitor
|
52 |
+
self.numd = self.diffusion_model.first_stage_model.encoder.num_resolutions - 1
|
53 |
+
self.log_time_interval = self.diffusion_model.num_timesteps // log_steps
|
54 |
+
self.log_steps = log_steps
|
55 |
+
|
56 |
+
self.label_key = label_key if not hasattr(self.diffusion_model, 'cond_stage_key') \
|
57 |
+
else self.diffusion_model.cond_stage_key
|
58 |
+
|
59 |
+
assert self.label_key is not None, 'label_key neither in diffusion model nor in model.params'
|
60 |
+
|
61 |
+
if self.label_key not in __models__:
|
62 |
+
raise NotImplementedError()
|
63 |
+
|
64 |
+
self.load_classifier(ckpt_path, pool)
|
65 |
+
|
66 |
+
self.scheduler_config = scheduler_config
|
67 |
+
self.use_scheduler = self.scheduler_config is not None
|
68 |
+
self.weight_decay = weight_decay
|
69 |
+
|
70 |
+
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
71 |
+
sd = torch.load(path, map_location="cpu")
|
72 |
+
if "state_dict" in list(sd.keys()):
|
73 |
+
sd = sd["state_dict"]
|
74 |
+
keys = list(sd.keys())
|
75 |
+
for k in keys:
|
76 |
+
for ik in ignore_keys:
|
77 |
+
if k.startswith(ik):
|
78 |
+
print("Deleting key {} from state_dict.".format(k))
|
79 |
+
del sd[k]
|
80 |
+
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
81 |
+
sd, strict=False)
|
82 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
83 |
+
if len(missing) > 0:
|
84 |
+
print(f"Missing Keys: {missing}")
|
85 |
+
if len(unexpected) > 0:
|
86 |
+
print(f"Unexpected Keys: {unexpected}")
|
87 |
+
|
88 |
+
def load_diffusion(self):
|
89 |
+
model = instantiate_from_config(self.diffusion_config)
|
90 |
+
self.diffusion_model = model.eval()
|
91 |
+
self.diffusion_model.train = disabled_train
|
92 |
+
for param in self.diffusion_model.parameters():
|
93 |
+
param.requires_grad = False
|
94 |
+
|
95 |
+
def load_classifier(self, ckpt_path, pool):
|
96 |
+
model_config = deepcopy(self.diffusion_config.params.unet_config.params)
|
97 |
+
model_config.in_channels = self.diffusion_config.params.unet_config.params.out_channels
|
98 |
+
model_config.out_channels = self.num_classes
|
99 |
+
if self.label_key == 'class_label':
|
100 |
+
model_config.pool = pool
|
101 |
+
|
102 |
+
self.model = __models__[self.label_key](**model_config)
|
103 |
+
if ckpt_path is not None:
|
104 |
+
print('#####################################################################')
|
105 |
+
print(f'load from ckpt "{ckpt_path}"')
|
106 |
+
print('#####################################################################')
|
107 |
+
self.init_from_ckpt(ckpt_path)
|
108 |
+
|
109 |
+
@torch.no_grad()
|
110 |
+
def get_x_noisy(self, x, t, noise=None):
|
111 |
+
noise = default(noise, lambda: torch.randn_like(x))
|
112 |
+
continuous_sqrt_alpha_cumprod = None
|
113 |
+
if self.diffusion_model.use_continuous_noise:
|
114 |
+
continuous_sqrt_alpha_cumprod = self.diffusion_model.sample_continuous_noise_level(x.shape[0], t + 1)
|
115 |
+
# todo: make sure t+1 is correct here
|
116 |
+
|
117 |
+
return self.diffusion_model.q_sample(x_start=x, t=t, noise=noise,
|
118 |
+
continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod)
|
119 |
+
|
120 |
+
def forward(self, x_noisy, t, *args, **kwargs):
|
121 |
+
return self.model(x_noisy, t)
|
122 |
+
|
123 |
+
@torch.no_grad()
|
124 |
+
def get_input(self, batch, k):
|
125 |
+
x = batch[k]
|
126 |
+
if len(x.shape) == 3:
|
127 |
+
x = x[..., None]
|
128 |
+
x = rearrange(x, 'b h w c -> b c h w')
|
129 |
+
x = x.to(memory_format=torch.contiguous_format).float()
|
130 |
+
return x
|
131 |
+
|
132 |
+
@torch.no_grad()
|
133 |
+
def get_conditioning(self, batch, k=None):
|
134 |
+
if k is None:
|
135 |
+
k = self.label_key
|
136 |
+
assert k is not None, 'Needs to provide label key'
|
137 |
+
|
138 |
+
targets = batch[k].to(self.device)
|
139 |
+
|
140 |
+
if self.label_key == 'segmentation':
|
141 |
+
targets = rearrange(targets, 'b h w c -> b c h w')
|
142 |
+
for down in range(self.numd):
|
143 |
+
h, w = targets.shape[-2:]
|
144 |
+
targets = F.interpolate(targets, size=(h // 2, w // 2), mode='nearest')
|
145 |
+
|
146 |
+
# targets = rearrange(targets,'b c h w -> b h w c')
|
147 |
+
|
148 |
+
return targets
|
149 |
+
|
150 |
+
def compute_top_k(self, logits, labels, k, reduction="mean"):
|
151 |
+
_, top_ks = torch.topk(logits, k, dim=1)
|
152 |
+
if reduction == "mean":
|
153 |
+
return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item()
|
154 |
+
elif reduction == "none":
|
155 |
+
return (top_ks == labels[:, None]).float().sum(dim=-1)
|
156 |
+
|
157 |
+
def on_train_epoch_start(self):
|
158 |
+
# save some memory
|
159 |
+
self.diffusion_model.model.to('cpu')
|
160 |
+
|
161 |
+
@torch.no_grad()
|
162 |
+
def write_logs(self, loss, logits, targets):
|
163 |
+
log_prefix = 'train' if self.training else 'val'
|
164 |
+
log = {}
|
165 |
+
log[f"{log_prefix}/loss"] = loss.mean()
|
166 |
+
log[f"{log_prefix}/acc@1"] = self.compute_top_k(
|
167 |
+
logits, targets, k=1, reduction="mean"
|
168 |
+
)
|
169 |
+
log[f"{log_prefix}/acc@5"] = self.compute_top_k(
|
170 |
+
logits, targets, k=5, reduction="mean"
|
171 |
+
)
|
172 |
+
|
173 |
+
self.log_dict(log, prog_bar=False, logger=True, on_step=self.training, on_epoch=True)
|
174 |
+
self.log('loss', log[f"{log_prefix}/loss"], prog_bar=True, logger=False)
|
175 |
+
self.log('global_step', self.global_step, logger=False, on_epoch=False, prog_bar=True)
|
176 |
+
lr = self.optimizers().param_groups[0]['lr']
|
177 |
+
self.log('lr_abs', lr, on_step=True, logger=True, on_epoch=False, prog_bar=True)
|
178 |
+
|
179 |
+
def shared_step(self, batch, t=None):
|
180 |
+
x, *_ = self.diffusion_model.get_input(batch, k=self.diffusion_model.first_stage_key)
|
181 |
+
targets = self.get_conditioning(batch)
|
182 |
+
if targets.dim() == 4:
|
183 |
+
targets = targets.argmax(dim=1)
|
184 |
+
if t is None:
|
185 |
+
t = torch.randint(0, self.diffusion_model.num_timesteps, (x.shape[0],), device=self.device).long()
|
186 |
+
else:
|
187 |
+
t = torch.full(size=(x.shape[0],), fill_value=t, device=self.device).long()
|
188 |
+
x_noisy = self.get_x_noisy(x, t)
|
189 |
+
logits = self(x_noisy, t)
|
190 |
+
|
191 |
+
loss = F.cross_entropy(logits, targets, reduction='none')
|
192 |
+
|
193 |
+
self.write_logs(loss.detach(), logits.detach(), targets.detach())
|
194 |
+
|
195 |
+
loss = loss.mean()
|
196 |
+
return loss, logits, x_noisy, targets
|
197 |
+
|
198 |
+
def training_step(self, batch, batch_idx):
|
199 |
+
loss, *_ = self.shared_step(batch)
|
200 |
+
return loss
|
201 |
+
|
202 |
+
def reset_noise_accs(self):
|
203 |
+
self.noisy_acc = {t: {'acc@1': [], 'acc@5': []} for t in
|
204 |
+
range(0, self.diffusion_model.num_timesteps, self.diffusion_model.log_every_t)}
|
205 |
+
|
206 |
+
def on_validation_start(self):
|
207 |
+
self.reset_noise_accs()
|
208 |
+
|
209 |
+
@torch.no_grad()
|
210 |
+
def validation_step(self, batch, batch_idx):
|
211 |
+
loss, *_ = self.shared_step(batch)
|
212 |
+
|
213 |
+
for t in self.noisy_acc:
|
214 |
+
_, logits, _, targets = self.shared_step(batch, t)
|
215 |
+
self.noisy_acc[t]['acc@1'].append(self.compute_top_k(logits, targets, k=1, reduction='mean'))
|
216 |
+
self.noisy_acc[t]['acc@5'].append(self.compute_top_k(logits, targets, k=5, reduction='mean'))
|
217 |
+
|
218 |
+
return loss
|
219 |
+
|
220 |
+
def configure_optimizers(self):
|
221 |
+
optimizer = AdamW(self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay)
|
222 |
+
|
223 |
+
if self.use_scheduler:
|
224 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
225 |
+
|
226 |
+
print("Setting up LambdaLR scheduler...")
|
227 |
+
scheduler = [
|
228 |
+
{
|
229 |
+
'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule),
|
230 |
+
'interval': 'step',
|
231 |
+
'frequency': 1
|
232 |
+
}]
|
233 |
+
return [optimizer], scheduler
|
234 |
+
|
235 |
+
return optimizer
|
236 |
+
|
237 |
+
@torch.no_grad()
|
238 |
+
def log_images(self, batch, N=8, *args, **kwargs):
|
239 |
+
log = dict()
|
240 |
+
x = self.get_input(batch, self.diffusion_model.first_stage_key)
|
241 |
+
log['inputs'] = x
|
242 |
+
|
243 |
+
y = self.get_conditioning(batch)
|
244 |
+
|
245 |
+
if self.label_key == 'class_label':
|
246 |
+
y = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
|
247 |
+
log['labels'] = y
|
248 |
+
|
249 |
+
if ismap(y):
|
250 |
+
log['labels'] = self.diffusion_model.to_rgb(y)
|
251 |
+
|
252 |
+
for step in range(self.log_steps):
|
253 |
+
current_time = step * self.log_time_interval
|
254 |
+
|
255 |
+
_, logits, x_noisy, _ = self.shared_step(batch, t=current_time)
|
256 |
+
|
257 |
+
log[f'inputs@t{current_time}'] = x_noisy
|
258 |
+
|
259 |
+
pred = F.one_hot(logits.argmax(dim=1), num_classes=self.num_classes)
|
260 |
+
pred = rearrange(pred, 'b h w c -> b c h w')
|
261 |
+
|
262 |
+
log[f'pred@t{current_time}'] = self.diffusion_model.to_rgb(pred)
|
263 |
+
|
264 |
+
for key in log:
|
265 |
+
log[key] = log[key][:N]
|
266 |
+
|
267 |
+
return log
|
ldm/models/diffusion/ddim.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""SAMPLING ONLY."""
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from tqdm import tqdm
|
6 |
+
from functools import partial
|
7 |
+
|
8 |
+
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, \
|
9 |
+
extract_into_tensor
|
10 |
+
|
11 |
+
|
12 |
+
class DDIMSampler(object):
|
13 |
+
def __init__(self, model, schedule="linear", **kwargs):
|
14 |
+
super().__init__()
|
15 |
+
self.model = model
|
16 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
17 |
+
self.schedule = schedule
|
18 |
+
|
19 |
+
def register_buffer(self, name, attr):
|
20 |
+
if type(attr) == torch.Tensor:
|
21 |
+
if attr.device != torch.device("cuda"):
|
22 |
+
attr = attr.to(torch.device("cuda"))
|
23 |
+
setattr(self, name, attr)
|
24 |
+
|
25 |
+
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
26 |
+
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
27 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
28 |
+
alphas_cumprod = self.model.alphas_cumprod
|
29 |
+
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
30 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
31 |
+
|
32 |
+
self.register_buffer('betas', to_torch(self.model.betas))
|
33 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
34 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
35 |
+
|
36 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
37 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
38 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
39 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
40 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
41 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
42 |
+
|
43 |
+
# ddim sampling parameters
|
44 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
45 |
+
ddim_timesteps=self.ddim_timesteps,
|
46 |
+
eta=ddim_eta,verbose=verbose)
|
47 |
+
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
48 |
+
self.register_buffer('ddim_alphas', ddim_alphas)
|
49 |
+
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
50 |
+
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
51 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
52 |
+
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
53 |
+
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
54 |
+
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
55 |
+
|
56 |
+
@torch.no_grad()
|
57 |
+
def sample(self,
|
58 |
+
S,
|
59 |
+
batch_size,
|
60 |
+
shape,
|
61 |
+
conditioning=None,
|
62 |
+
callback=None,
|
63 |
+
normals_sequence=None,
|
64 |
+
img_callback=None,
|
65 |
+
quantize_x0=False,
|
66 |
+
eta=0.,
|
67 |
+
mask=None,
|
68 |
+
x0=None,
|
69 |
+
temperature=1.,
|
70 |
+
noise_dropout=0.,
|
71 |
+
score_corrector=None,
|
72 |
+
corrector_kwargs=None,
|
73 |
+
verbose=True,
|
74 |
+
x_T=None,
|
75 |
+
log_every_t=100,
|
76 |
+
unconditional_guidance_scale=1.,
|
77 |
+
unconditional_conditioning=None,
|
78 |
+
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
79 |
+
**kwargs
|
80 |
+
):
|
81 |
+
if conditioning is not None:
|
82 |
+
if isinstance(conditioning, dict):
|
83 |
+
ctmp = conditioning[list(conditioning.keys())[0]]
|
84 |
+
while isinstance(ctmp, list): ctmp = ctmp[0]
|
85 |
+
cbs = ctmp.shape[0]
|
86 |
+
if cbs != batch_size:
|
87 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
88 |
+
else:
|
89 |
+
if conditioning.shape[0] != batch_size:
|
90 |
+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
91 |
+
|
92 |
+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
93 |
+
# sampling
|
94 |
+
if len(shape)==3:
|
95 |
+
C, H, W = shape
|
96 |
+
size = (batch_size, C, H, W)
|
97 |
+
else:
|
98 |
+
C, T = shape
|
99 |
+
size = (batch_size, C, T)
|
100 |
+
# print(f'Data shape for DDIM sampling is {size}, eta {eta}')
|
101 |
+
|
102 |
+
samples, intermediates = self.ddim_sampling(conditioning, size,
|
103 |
+
callback=callback,
|
104 |
+
img_callback=img_callback,
|
105 |
+
quantize_denoised=quantize_x0,
|
106 |
+
mask=mask, x0=x0,
|
107 |
+
ddim_use_original_steps=False,
|
108 |
+
noise_dropout=noise_dropout,
|
109 |
+
temperature=temperature,
|
110 |
+
score_corrector=score_corrector,
|
111 |
+
corrector_kwargs=corrector_kwargs,
|
112 |
+
x_T=x_T,
|
113 |
+
log_every_t=log_every_t,
|
114 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
115 |
+
unconditional_conditioning=unconditional_conditioning,
|
116 |
+
)
|
117 |
+
return samples, intermediates
|
118 |
+
|
119 |
+
@torch.no_grad()
|
120 |
+
def ddim_sampling(self, cond, shape,
|
121 |
+
x_T=None, ddim_use_original_steps=False,
|
122 |
+
callback=None, timesteps=None, quantize_denoised=False,
|
123 |
+
mask=None, x0=None, img_callback=None, log_every_t=100,
|
124 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
125 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None,):
|
126 |
+
device = self.model.betas.device
|
127 |
+
b = shape[0]
|
128 |
+
if x_T is None:
|
129 |
+
img = torch.randn(shape, device=device)
|
130 |
+
else:
|
131 |
+
img = x_T
|
132 |
+
|
133 |
+
if timesteps is None:
|
134 |
+
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
135 |
+
elif timesteps is not None and not ddim_use_original_steps:
|
136 |
+
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
137 |
+
timesteps = self.ddim_timesteps[:subset_end]
|
138 |
+
|
139 |
+
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
140 |
+
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
|
141 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
142 |
+
|
143 |
+
# iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
|
144 |
+
|
145 |
+
for i, step in enumerate(time_range):
|
146 |
+
index = total_steps - i - 1
|
147 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
148 |
+
|
149 |
+
if mask is not None:
|
150 |
+
assert x0 is not None
|
151 |
+
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
152 |
+
img = img_orig * mask + (1. - mask) * img
|
153 |
+
|
154 |
+
outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
155 |
+
quantize_denoised=quantize_denoised, temperature=temperature,
|
156 |
+
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
157 |
+
corrector_kwargs=corrector_kwargs,
|
158 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
159 |
+
unconditional_conditioning=unconditional_conditioning)
|
160 |
+
img, pred_x0 = outs
|
161 |
+
if callback: callback(i)
|
162 |
+
if img_callback: img_callback(pred_x0, i)
|
163 |
+
|
164 |
+
if index % log_every_t == 0 or index == total_steps - 1:
|
165 |
+
intermediates['x_inter'].append(img)
|
166 |
+
intermediates['pred_x0'].append(pred_x0)
|
167 |
+
|
168 |
+
return img, intermediates
|
169 |
+
|
170 |
+
@torch.no_grad()
|
171 |
+
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
172 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
173 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None):
|
174 |
+
b, *_, device = *x.shape, x.device
|
175 |
+
|
176 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
177 |
+
e_t = self.model.apply_model(x, t, c)
|
178 |
+
else:
|
179 |
+
x_in = torch.cat([x] * 2)
|
180 |
+
t_in = torch.cat([t] * 2)
|
181 |
+
if isinstance(c, dict):
|
182 |
+
assert isinstance(unconditional_conditioning, dict)
|
183 |
+
c_in = dict()
|
184 |
+
for k in c:
|
185 |
+
if isinstance(c[k], list):
|
186 |
+
c_in[k] = [torch.cat([
|
187 |
+
unconditional_conditioning[k][i],
|
188 |
+
c[k][i]]) for i in range(len(c[k]))]
|
189 |
+
else:
|
190 |
+
c_in[k] = torch.cat([
|
191 |
+
unconditional_conditioning[k],
|
192 |
+
c[k]])
|
193 |
+
elif isinstance(c, list):
|
194 |
+
c_in = list()
|
195 |
+
assert isinstance(unconditional_conditioning, list)
|
196 |
+
for i in range(len(c)):
|
197 |
+
c_in.append(torch.cat([unconditional_conditioning[i], c[i]]))
|
198 |
+
else:
|
199 |
+
c_in = torch.cat([unconditional_conditioning, c])# c/uc shape [b,seq_len=77,dim=1024],c_in shape [b*2,seq_len,dim]
|
200 |
+
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
201 |
+
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
202 |
+
|
203 |
+
if score_corrector is not None:
|
204 |
+
assert self.model.parameterization == "eps"
|
205 |
+
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
206 |
+
|
207 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
208 |
+
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
209 |
+
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
210 |
+
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
211 |
+
# select parameters corresponding to the currently considered timestep
|
212 |
+
full_shape = (b,) + tuple([1 for dim in range(len(x.shape)-1)])
|
213 |
+
a_t = torch.full(full_shape, alphas[index], device=device)
|
214 |
+
a_prev = torch.full(full_shape, alphas_prev[index], device=device)
|
215 |
+
sigma_t = torch.full(full_shape, sigmas[index], device=device)
|
216 |
+
sqrt_one_minus_at = torch.full(full_shape, sqrt_one_minus_alphas[index],device=device)
|
217 |
+
|
218 |
+
# current prediction for x_0
|
219 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
220 |
+
if quantize_denoised:
|
221 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
222 |
+
# direction pointing to x_t
|
223 |
+
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
224 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
225 |
+
if noise_dropout > 0.:
|
226 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
227 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
228 |
+
return x_prev, pred_x0
|
229 |
+
|
230 |
+
@torch.no_grad()
|
231 |
+
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
232 |
+
# fast, but does not allow for exact reconstruction
|
233 |
+
# t serves as an index to gather the correct alphas
|
234 |
+
if use_original_steps:
|
235 |
+
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
236 |
+
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
237 |
+
else:
|
238 |
+
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
239 |
+
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
240 |
+
|
241 |
+
if noise is None:
|
242 |
+
noise = torch.randn_like(x0)
|
243 |
+
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
|
244 |
+
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
|
245 |
+
|
246 |
+
@torch.no_grad()
|
247 |
+
def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
|
248 |
+
use_original_steps=False):
|
249 |
+
|
250 |
+
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
|
251 |
+
timesteps = timesteps[:t_start]
|
252 |
+
|
253 |
+
time_range = np.flip(timesteps)
|
254 |
+
total_steps = timesteps.shape[0]
|
255 |
+
x_dec = x_latent
|
256 |
+
for i, step in enumerate(time_range):
|
257 |
+
index = total_steps - i - 1
|
258 |
+
ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
|
259 |
+
x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
|
260 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
261 |
+
unconditional_conditioning=unconditional_conditioning)
|
262 |
+
return x_dec
|
ldm/models/diffusion/ddpm.py
ADDED
@@ -0,0 +1,1461 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
wild mixture of
|
3 |
+
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
4 |
+
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
|
5 |
+
https://github.com/CompVis/taming-transformers
|
6 |
+
-- merci
|
7 |
+
"""
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import numpy as np
|
11 |
+
import pytorch_lightning as pl
|
12 |
+
from torch.optim.lr_scheduler import LambdaLR
|
13 |
+
from einops import rearrange, repeat
|
14 |
+
from contextlib import contextmanager
|
15 |
+
from functools import partial
|
16 |
+
from tqdm import tqdm
|
17 |
+
from torchvision.utils import make_grid
|
18 |
+
try:
|
19 |
+
from pytorch_lightning.utilities.distributed import rank_zero_only
|
20 |
+
except:
|
21 |
+
from pytorch_lightning.utilities import rank_zero_only # torch2
|
22 |
+
|
23 |
+
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
|
24 |
+
from ldm.modules.ema import LitEma
|
25 |
+
from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
|
26 |
+
from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
|
27 |
+
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
|
28 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
29 |
+
|
30 |
+
|
31 |
+
__conditioning_keys__ = {'concat': 'c_concat',
|
32 |
+
'crossattn': 'c_crossattn',
|
33 |
+
'adm': 'y'}
|
34 |
+
|
35 |
+
|
36 |
+
def disabled_train(self, mode=True):
|
37 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
38 |
+
does not change anymore."""
|
39 |
+
return self
|
40 |
+
|
41 |
+
|
42 |
+
def uniform_on_device(r1, r2, shape, device):
|
43 |
+
return (r1 - r2) * torch.rand(*shape, device=device) + r2
|
44 |
+
|
45 |
+
|
46 |
+
class DDPM(pl.LightningModule):
|
47 |
+
# classic DDPM with Gaussian diffusion, in image space
|
48 |
+
def __init__(self,
|
49 |
+
unet_config,
|
50 |
+
timesteps=1000,
|
51 |
+
beta_schedule="linear",
|
52 |
+
loss_type="l2",
|
53 |
+
ckpt_path=None,
|
54 |
+
ignore_keys=[],
|
55 |
+
load_only_unet=False,
|
56 |
+
monitor="val/loss",
|
57 |
+
use_ema=True,
|
58 |
+
first_stage_key="image",
|
59 |
+
image_size=256,
|
60 |
+
channels=3,
|
61 |
+
log_every_t=100,
|
62 |
+
clip_denoised=True,
|
63 |
+
linear_start=1e-4,
|
64 |
+
linear_end=2e-2,
|
65 |
+
cosine_s=8e-3,
|
66 |
+
given_betas=None,
|
67 |
+
original_elbo_weight=0.,
|
68 |
+
v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
|
69 |
+
l_simple_weight=1.,
|
70 |
+
conditioning_key=None,
|
71 |
+
parameterization="eps", # all config files uses "eps"
|
72 |
+
scheduler_config=None,
|
73 |
+
use_positional_encodings=False,
|
74 |
+
learn_logvar=False,
|
75 |
+
logvar_init=0.,
|
76 |
+
):
|
77 |
+
super().__init__()
|
78 |
+
assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
|
79 |
+
self.parameterization = parameterization
|
80 |
+
print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
|
81 |
+
self.cond_stage_model = None
|
82 |
+
self.clip_denoised = clip_denoised
|
83 |
+
self.log_every_t = log_every_t
|
84 |
+
self.first_stage_key = first_stage_key
|
85 |
+
self.image_size = image_size # try conv?
|
86 |
+
self.channels = channels
|
87 |
+
self.use_positional_encodings = use_positional_encodings
|
88 |
+
self.model = DiffusionWrapper(unet_config, conditioning_key)
|
89 |
+
count_params(self.model, verbose=True)
|
90 |
+
self.use_ema = use_ema
|
91 |
+
if self.use_ema:
|
92 |
+
self.model_ema = LitEma(self.model)
|
93 |
+
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
94 |
+
|
95 |
+
self.use_scheduler = scheduler_config is not None
|
96 |
+
if self.use_scheduler:
|
97 |
+
self.scheduler_config = scheduler_config
|
98 |
+
|
99 |
+
self.v_posterior = v_posterior
|
100 |
+
self.original_elbo_weight = original_elbo_weight
|
101 |
+
self.l_simple_weight = l_simple_weight
|
102 |
+
|
103 |
+
if monitor is not None:
|
104 |
+
self.monitor = monitor
|
105 |
+
if ckpt_path is not None:
|
106 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
|
107 |
+
|
108 |
+
self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
|
109 |
+
linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
|
110 |
+
|
111 |
+
self.loss_type = loss_type
|
112 |
+
|
113 |
+
self.learn_logvar = learn_logvar
|
114 |
+
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
|
115 |
+
if self.learn_logvar:
|
116 |
+
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
|
117 |
+
|
118 |
+
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
119 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
120 |
+
if exists(given_betas):
|
121 |
+
betas = given_betas
|
122 |
+
else:
|
123 |
+
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
|
124 |
+
cosine_s=cosine_s)
|
125 |
+
alphas = 1. - betas
|
126 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
127 |
+
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
128 |
+
|
129 |
+
timesteps, = betas.shape
|
130 |
+
self.num_timesteps = int(timesteps)
|
131 |
+
self.linear_start = linear_start
|
132 |
+
self.linear_end = linear_end
|
133 |
+
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
|
134 |
+
|
135 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
136 |
+
|
137 |
+
self.register_buffer('betas', to_torch(betas))
|
138 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
139 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
140 |
+
|
141 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
142 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
143 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
144 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
145 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
146 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
147 |
+
|
148 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
149 |
+
posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
|
150 |
+
1. - alphas_cumprod) + self.v_posterior * betas
|
151 |
+
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
152 |
+
self.register_buffer('posterior_variance', to_torch(posterior_variance))
|
153 |
+
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
154 |
+
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
|
155 |
+
self.register_buffer('posterior_mean_coef1', to_torch(
|
156 |
+
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
|
157 |
+
self.register_buffer('posterior_mean_coef2', to_torch(
|
158 |
+
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
|
159 |
+
|
160 |
+
if self.parameterization == "eps":
|
161 |
+
lvlb_weights = self.betas ** 2 / (
|
162 |
+
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
|
163 |
+
elif self.parameterization == "x0":
|
164 |
+
lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
|
165 |
+
else:
|
166 |
+
raise NotImplementedError("mu not supported")
|
167 |
+
# TODO how to choose this term
|
168 |
+
lvlb_weights[0] = lvlb_weights[1]
|
169 |
+
self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
|
170 |
+
assert not torch.isnan(self.lvlb_weights).all()
|
171 |
+
|
172 |
+
@contextmanager
|
173 |
+
def ema_scope(self, context=None):
|
174 |
+
if self.use_ema:
|
175 |
+
self.model_ema.store(self.model.parameters())
|
176 |
+
self.model_ema.copy_to(self.model)
|
177 |
+
if context is not None:
|
178 |
+
print(f"{context}: Switched to EMA weights")
|
179 |
+
try:
|
180 |
+
yield None
|
181 |
+
finally:
|
182 |
+
if self.use_ema:
|
183 |
+
self.model_ema.restore(self.model.parameters())
|
184 |
+
if context is not None:
|
185 |
+
print(f"{context}: Restored training weights")
|
186 |
+
|
187 |
+
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
188 |
+
sd = torch.load(path, map_location="cpu")
|
189 |
+
if "state_dict" in list(sd.keys()):
|
190 |
+
sd = sd["state_dict"]
|
191 |
+
keys = list(sd.keys())
|
192 |
+
for k in keys:
|
193 |
+
for ik in ignore_keys:
|
194 |
+
if k.startswith(ik):
|
195 |
+
print("Deleting key {} from state_dict.".format(k))
|
196 |
+
del sd[k]
|
197 |
+
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
198 |
+
sd, strict=False)
|
199 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
200 |
+
if len(missing) > 0:
|
201 |
+
print(f"Missing Keys: {missing}")
|
202 |
+
if len(unexpected) > 0:
|
203 |
+
print(f"Unexpected Keys: {unexpected}")
|
204 |
+
|
205 |
+
def q_mean_variance(self, x_start, t):
|
206 |
+
"""
|
207 |
+
Get the distribution q(x_t | x_0).
|
208 |
+
:param x_start: the [N x C x ...] tensor of noiseless inputs.
|
209 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
210 |
+
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
|
211 |
+
"""
|
212 |
+
mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
|
213 |
+
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
|
214 |
+
log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
|
215 |
+
return mean, variance, log_variance
|
216 |
+
|
217 |
+
def predict_start_from_noise(self, x_t, t, noise):
|
218 |
+
return (
|
219 |
+
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
|
220 |
+
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
|
221 |
+
)
|
222 |
+
|
223 |
+
def q_posterior(self, x_start, x_t, t):
|
224 |
+
posterior_mean = (
|
225 |
+
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
|
226 |
+
extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
227 |
+
)
|
228 |
+
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
|
229 |
+
posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
|
230 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
231 |
+
|
232 |
+
def p_mean_variance(self, x, t, clip_denoised: bool):
|
233 |
+
model_out = self.model(x, t)
|
234 |
+
if self.parameterization == "eps":
|
235 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
236 |
+
elif self.parameterization == "x0":
|
237 |
+
x_recon = model_out
|
238 |
+
if clip_denoised:
|
239 |
+
x_recon.clamp_(-1., 1.)
|
240 |
+
|
241 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
242 |
+
return model_mean, posterior_variance, posterior_log_variance
|
243 |
+
|
244 |
+
@torch.no_grad()
|
245 |
+
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
|
246 |
+
b, *_, device = *x.shape, x.device
|
247 |
+
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
|
248 |
+
noise = noise_like(x.shape, device, repeat_noise)
|
249 |
+
# no noise when t == 0
|
250 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
251 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
252 |
+
|
253 |
+
@torch.no_grad()
|
254 |
+
def p_sample_loop(self, shape, return_intermediates=False):
|
255 |
+
device = self.betas.device
|
256 |
+
b = shape[0]
|
257 |
+
img = torch.randn(shape, device=device)
|
258 |
+
intermediates = [img]
|
259 |
+
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
|
260 |
+
img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
|
261 |
+
clip_denoised=self.clip_denoised)
|
262 |
+
if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
|
263 |
+
intermediates.append(img)
|
264 |
+
if return_intermediates:
|
265 |
+
return img, intermediates
|
266 |
+
return img
|
267 |
+
|
268 |
+
@torch.no_grad()
|
269 |
+
def sample(self, batch_size=16, return_intermediates=False):
|
270 |
+
image_size = self.image_size
|
271 |
+
channels = self.channels
|
272 |
+
return self.p_sample_loop((batch_size, channels, image_size, image_size),
|
273 |
+
return_intermediates=return_intermediates)
|
274 |
+
|
275 |
+
def q_sample(self, x_start, t, noise=None):
|
276 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
277 |
+
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
|
278 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
|
279 |
+
|
280 |
+
def get_loss(self, pred, target, mean=True):
|
281 |
+
if self.loss_type == 'l1':
|
282 |
+
loss = (target - pred).abs()
|
283 |
+
if mean:
|
284 |
+
loss = loss.mean()
|
285 |
+
elif self.loss_type == 'l2':
|
286 |
+
if mean:
|
287 |
+
loss = torch.nn.functional.mse_loss(target, pred)
|
288 |
+
else:
|
289 |
+
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
|
290 |
+
else:
|
291 |
+
raise NotImplementedError("unknown loss type '{loss_type}'")
|
292 |
+
|
293 |
+
return loss
|
294 |
+
|
295 |
+
def p_losses(self, x_start, t, noise=None):
|
296 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
297 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
298 |
+
model_out = self.model(x_noisy, t)
|
299 |
+
|
300 |
+
loss_dict = {}
|
301 |
+
if self.parameterization == "eps":
|
302 |
+
target = noise
|
303 |
+
elif self.parameterization == "x0":
|
304 |
+
target = x_start
|
305 |
+
else:
|
306 |
+
raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
|
307 |
+
|
308 |
+
loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
|
309 |
+
|
310 |
+
log_prefix = 'train' if self.training else 'val'
|
311 |
+
|
312 |
+
loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
|
313 |
+
loss_simple = loss.mean() * self.l_simple_weight
|
314 |
+
|
315 |
+
loss_vlb = (self.lvlb_weights[t] * loss).mean()
|
316 |
+
loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
|
317 |
+
|
318 |
+
loss = loss_simple + self.original_elbo_weight * loss_vlb
|
319 |
+
|
320 |
+
loss_dict.update({f'{log_prefix}/loss': loss})
|
321 |
+
|
322 |
+
return loss, loss_dict
|
323 |
+
|
324 |
+
def forward(self, x, *args, **kwargs):
|
325 |
+
# b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
|
326 |
+
# assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
|
327 |
+
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
328 |
+
return self.p_losses(x, t, *args, **kwargs)
|
329 |
+
|
330 |
+
def get_input(self, batch, k):
|
331 |
+
x = batch[k]
|
332 |
+
if self.channels > 0:# use 4d input
|
333 |
+
if len(x.shape) == 3:
|
334 |
+
x = x[..., None]
|
335 |
+
x = rearrange(x, 'b h w c -> b c h w')
|
336 |
+
x = x.to(memory_format=torch.contiguous_format).float()
|
337 |
+
return x
|
338 |
+
|
339 |
+
def shared_step(self, batch):
|
340 |
+
x = self.get_input(batch, self.first_stage_key)
|
341 |
+
loss, loss_dict = self(x)
|
342 |
+
return loss, loss_dict
|
343 |
+
|
344 |
+
def training_step(self, batch, batch_idx):
|
345 |
+
loss, loss_dict = self.shared_step(batch)
|
346 |
+
|
347 |
+
self.log_dict(loss_dict, prog_bar=True,
|
348 |
+
logger=True, on_step=True, on_epoch=True)
|
349 |
+
|
350 |
+
self.log('epoch', float(self.trainer.current_epoch))
|
351 |
+
self.log("global_step", self.global_step,
|
352 |
+
prog_bar=True, logger=True, on_step=True, on_epoch=False)
|
353 |
+
|
354 |
+
if self.use_scheduler:
|
355 |
+
lr = self.optimizers().param_groups[0]['lr']
|
356 |
+
self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
|
357 |
+
|
358 |
+
return loss
|
359 |
+
|
360 |
+
@torch.no_grad()
|
361 |
+
def validation_step(self, batch, batch_idx):
|
362 |
+
_, loss_dict_no_ema = self.shared_step(batch)
|
363 |
+
with self.ema_scope():
|
364 |
+
_, loss_dict_ema = self.shared_step(batch)
|
365 |
+
loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
|
366 |
+
self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True,sync_dist=True)
|
367 |
+
self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True,sync_dist=True)
|
368 |
+
|
369 |
+
def on_train_batch_end(self, *args, **kwargs):
|
370 |
+
if self.use_ema:
|
371 |
+
self.model_ema(self.model)
|
372 |
+
|
373 |
+
def _get_rows_from_list(self, samples):
|
374 |
+
n_imgs_per_row = len(samples)
|
375 |
+
denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
|
376 |
+
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
377 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
378 |
+
return denoise_grid
|
379 |
+
|
380 |
+
@torch.no_grad()
|
381 |
+
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
|
382 |
+
log = dict()
|
383 |
+
x = self.get_input(batch, self.first_stage_key)
|
384 |
+
N = min(x.shape[0], N)
|
385 |
+
n_row = min(x.shape[0], n_row)
|
386 |
+
x = x.to(self.device)[:N]
|
387 |
+
log["inputs"] = x
|
388 |
+
|
389 |
+
# get diffusion row
|
390 |
+
diffusion_row = list()
|
391 |
+
x_start = x[:n_row]
|
392 |
+
|
393 |
+
for t in range(self.num_timesteps):
|
394 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
395 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
396 |
+
t = t.to(self.device).long()
|
397 |
+
noise = torch.randn_like(x_start)
|
398 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
399 |
+
diffusion_row.append(x_noisy)
|
400 |
+
|
401 |
+
log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
|
402 |
+
|
403 |
+
if sample:
|
404 |
+
# get denoise row
|
405 |
+
with self.ema_scope("Plotting"):
|
406 |
+
samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
|
407 |
+
|
408 |
+
log["samples"] = samples
|
409 |
+
log["denoise_row"] = self._get_rows_from_list(denoise_row)
|
410 |
+
|
411 |
+
if return_keys:
|
412 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
413 |
+
return log
|
414 |
+
else:
|
415 |
+
return {key: log[key] for key in return_keys}
|
416 |
+
return log
|
417 |
+
|
418 |
+
def configure_optimizers(self):
|
419 |
+
lr = self.learning_rate
|
420 |
+
params = list(self.model.parameters())
|
421 |
+
if self.learn_logvar:
|
422 |
+
params = params + [self.logvar]
|
423 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
424 |
+
return opt
|
425 |
+
|
426 |
+
|
427 |
+
class LatentDiffusion(DDPM):
|
428 |
+
"""main class"""
|
429 |
+
def __init__(self,
|
430 |
+
first_stage_config,
|
431 |
+
cond_stage_config,
|
432 |
+
num_timesteps_cond=None,
|
433 |
+
cond_stage_key="image",# 'caption' for txt2image, 'masked_image' for inpainting
|
434 |
+
cond_stage_trainable=False,
|
435 |
+
concat_mode=True,# true for inpainting
|
436 |
+
cond_stage_forward=None,
|
437 |
+
conditioning_key=None, # 'crossattn' for txt2image, None for inpainting
|
438 |
+
scale_factor=1.0,
|
439 |
+
scale_by_std=False,
|
440 |
+
*args, **kwargs):
|
441 |
+
self.num_timesteps_cond = default(num_timesteps_cond, 1)
|
442 |
+
self.scale_by_std = scale_by_std
|
443 |
+
assert self.num_timesteps_cond <= kwargs['timesteps']
|
444 |
+
# for backwards compatibility after implementation of DiffusionWrapper
|
445 |
+
if conditioning_key is None:
|
446 |
+
conditioning_key = 'concat' if concat_mode else 'crossattn'
|
447 |
+
if cond_stage_config == '__is_unconditional__':
|
448 |
+
conditioning_key = None
|
449 |
+
ckpt_path = kwargs.pop("ckpt_path", None)
|
450 |
+
ignore_keys = kwargs.pop("ignore_keys", [])
|
451 |
+
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
|
452 |
+
self.concat_mode = concat_mode
|
453 |
+
self.cond_stage_trainable = cond_stage_trainable
|
454 |
+
self.cond_stage_key = cond_stage_key
|
455 |
+
try:
|
456 |
+
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
|
457 |
+
except:
|
458 |
+
self.num_downs = 0
|
459 |
+
if not scale_by_std:
|
460 |
+
self.scale_factor = scale_factor
|
461 |
+
else:
|
462 |
+
self.register_buffer('scale_factor', torch.tensor(scale_factor))
|
463 |
+
self.instantiate_first_stage(first_stage_config)
|
464 |
+
self.instantiate_cond_stage(cond_stage_config)
|
465 |
+
self.cond_stage_forward = cond_stage_forward
|
466 |
+
self.clip_denoised = False
|
467 |
+
self.bbox_tokenizer = None
|
468 |
+
|
469 |
+
self.restarted_from_ckpt = False
|
470 |
+
if ckpt_path is not None:
|
471 |
+
self.init_from_ckpt(ckpt_path, ignore_keys)
|
472 |
+
self.restarted_from_ckpt = True
|
473 |
+
|
474 |
+
def make_cond_schedule(self, ):
|
475 |
+
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
|
476 |
+
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
|
477 |
+
self.cond_ids[:self.num_timesteps_cond] = ids
|
478 |
+
|
479 |
+
@rank_zero_only
|
480 |
+
@torch.no_grad()
|
481 |
+
def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
|
482 |
+
# only for very first batch
|
483 |
+
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
|
484 |
+
assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
|
485 |
+
# set rescale weight to 1./std of encodings
|
486 |
+
print("### USING STD-RESCALING ###")
|
487 |
+
x = super().get_input(batch, self.first_stage_key)
|
488 |
+
x = x.to(self.device)
|
489 |
+
encoder_posterior = self.encode_first_stage(x)
|
490 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
491 |
+
del self.scale_factor
|
492 |
+
self.register_buffer('scale_factor', 1. / z.flatten().std())
|
493 |
+
print(f"setting self.scale_factor to {self.scale_factor}")
|
494 |
+
print("### USING STD-RESCALING ###")
|
495 |
+
|
496 |
+
def register_schedule(self,
|
497 |
+
given_betas=None, beta_schedule="linear", timesteps=1000,
|
498 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
499 |
+
super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
|
500 |
+
|
501 |
+
self.shorten_cond_schedule = self.num_timesteps_cond > 1
|
502 |
+
if self.shorten_cond_schedule:
|
503 |
+
self.make_cond_schedule()
|
504 |
+
|
505 |
+
def instantiate_first_stage(self, config):
|
506 |
+
model = instantiate_from_config(config)
|
507 |
+
self.first_stage_model = model.eval()
|
508 |
+
self.first_stage_model.train = disabled_train
|
509 |
+
for param in self.first_stage_model.parameters():
|
510 |
+
param.requires_grad = False
|
511 |
+
|
512 |
+
def instantiate_cond_stage(self, config):
|
513 |
+
if not self.cond_stage_trainable:
|
514 |
+
if config == "__is_first_stage__":# inpaint
|
515 |
+
print("Using first stage also as cond stage.")
|
516 |
+
self.cond_stage_model = self.first_stage_model
|
517 |
+
elif config == "__is_unconditional__":
|
518 |
+
print(f"Training {self.__class__.__name__} as an unconditional model.")
|
519 |
+
self.cond_stage_model = None
|
520 |
+
# self.be_unconditional = True
|
521 |
+
else:
|
522 |
+
model = instantiate_from_config(config)
|
523 |
+
self.cond_stage_model = model.eval()
|
524 |
+
self.cond_stage_model.train = disabled_train
|
525 |
+
for param in self.cond_stage_model.parameters():
|
526 |
+
param.requires_grad = False
|
527 |
+
else:
|
528 |
+
assert config != '__is_first_stage__'
|
529 |
+
assert config != '__is_unconditional__'
|
530 |
+
model = instantiate_from_config(config)
|
531 |
+
self.cond_stage_model = model
|
532 |
+
|
533 |
+
def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
|
534 |
+
denoise_row = []
|
535 |
+
for zd in tqdm(samples, desc=desc):
|
536 |
+
denoise_row.append(self.decode_first_stage(zd.to(self.device),
|
537 |
+
force_not_quantize=force_no_decoder_quantization))
|
538 |
+
n_imgs_per_row = len(denoise_row)
|
539 |
+
denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
|
540 |
+
denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
|
541 |
+
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
542 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
543 |
+
return denoise_grid
|
544 |
+
|
545 |
+
def get_first_stage_encoding(self, encoder_posterior):
|
546 |
+
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
|
547 |
+
z = encoder_posterior.sample()
|
548 |
+
elif isinstance(encoder_posterior, torch.Tensor):
|
549 |
+
z = encoder_posterior
|
550 |
+
else:
|
551 |
+
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
|
552 |
+
return self.scale_factor * z
|
553 |
+
|
554 |
+
def get_learned_conditioning(self, c):
|
555 |
+
if self.cond_stage_forward is None:
|
556 |
+
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
|
557 |
+
c = self.cond_stage_model.encode(c)
|
558 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
559 |
+
c = c.mode()
|
560 |
+
else:
|
561 |
+
c = self.cond_stage_model(c)
|
562 |
+
else:
|
563 |
+
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
|
564 |
+
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
|
565 |
+
return c
|
566 |
+
|
567 |
+
def meshgrid(self, h, w):
|
568 |
+
y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
|
569 |
+
x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
|
570 |
+
|
571 |
+
arr = torch.cat([y, x], dim=-1)
|
572 |
+
return arr
|
573 |
+
|
574 |
+
def delta_border(self, h, w):
|
575 |
+
"""
|
576 |
+
:param h: height
|
577 |
+
:param w: width
|
578 |
+
:return: normalized distance to image border,
|
579 |
+
wtith min distance = 0 at border and max dist = 0.5 at image center
|
580 |
+
"""
|
581 |
+
lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
|
582 |
+
arr = self.meshgrid(h, w) / lower_right_corner
|
583 |
+
dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
|
584 |
+
dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
|
585 |
+
edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
|
586 |
+
return edge_dist
|
587 |
+
|
588 |
+
def get_weighting(self, h, w, Ly, Lx, device):
|
589 |
+
weighting = self.delta_border(h, w)
|
590 |
+
weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
|
591 |
+
self.split_input_params["clip_max_weight"], )
|
592 |
+
weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
|
593 |
+
|
594 |
+
if self.split_input_params["tie_braker"]:
|
595 |
+
L_weighting = self.delta_border(Ly, Lx)
|
596 |
+
L_weighting = torch.clip(L_weighting,
|
597 |
+
self.split_input_params["clip_min_tie_weight"],
|
598 |
+
self.split_input_params["clip_max_tie_weight"])
|
599 |
+
|
600 |
+
L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
|
601 |
+
weighting = weighting * L_weighting
|
602 |
+
return weighting
|
603 |
+
|
604 |
+
def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
|
605 |
+
"""
|
606 |
+
:param x: img of size (bs, c, h, w)
|
607 |
+
:return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
|
608 |
+
"""
|
609 |
+
bs, nc, h, w = x.shape
|
610 |
+
|
611 |
+
# number of crops in image
|
612 |
+
Ly = (h - kernel_size[0]) // stride[0] + 1
|
613 |
+
Lx = (w - kernel_size[1]) // stride[1] + 1
|
614 |
+
|
615 |
+
if uf == 1 and df == 1:
|
616 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
617 |
+
unfold = torch.nn.Unfold(**fold_params)
|
618 |
+
|
619 |
+
fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
|
620 |
+
|
621 |
+
weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
|
622 |
+
normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
|
623 |
+
weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
|
624 |
+
|
625 |
+
elif uf > 1 and df == 1:
|
626 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
627 |
+
unfold = torch.nn.Unfold(**fold_params)
|
628 |
+
|
629 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
|
630 |
+
dilation=1, padding=0,
|
631 |
+
stride=(stride[0] * uf, stride[1] * uf))
|
632 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
|
633 |
+
|
634 |
+
weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
|
635 |
+
normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
|
636 |
+
weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
|
637 |
+
|
638 |
+
elif df > 1 and uf == 1:
|
639 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
640 |
+
unfold = torch.nn.Unfold(**fold_params)
|
641 |
+
|
642 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
|
643 |
+
dilation=1, padding=0,
|
644 |
+
stride=(stride[0] // df, stride[1] // df))
|
645 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
|
646 |
+
|
647 |
+
weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
|
648 |
+
normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
|
649 |
+
weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
|
650 |
+
|
651 |
+
else:
|
652 |
+
raise NotImplementedError
|
653 |
+
|
654 |
+
return fold, unfold, normalization, weighting
|
655 |
+
|
656 |
+
@torch.no_grad()
|
657 |
+
def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
|
658 |
+
cond_key=None, return_original_cond=False, bs=None):
|
659 |
+
x = super().get_input(batch, k)
|
660 |
+
if bs is not None:
|
661 |
+
x = x[:bs]
|
662 |
+
x = x.to(self.device)
|
663 |
+
encoder_posterior = self.encode_first_stage(x)
|
664 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
665 |
+
|
666 |
+
if self.model.conditioning_key is not None:
|
667 |
+
if cond_key is None:
|
668 |
+
cond_key = self.cond_stage_key
|
669 |
+
if cond_key != self.first_stage_key:# cond_key is not image. for inapint it's masked_img
|
670 |
+
if cond_key in ['caption', 'coordinates_bbox']:
|
671 |
+
xc = batch[cond_key]
|
672 |
+
elif cond_key == 'class_label':
|
673 |
+
xc = batch
|
674 |
+
else:
|
675 |
+
xc = super().get_input(batch, cond_key).to(self.device)
|
676 |
+
else:
|
677 |
+
xc = x
|
678 |
+
if not self.cond_stage_trainable or force_c_encode:
|
679 |
+
if isinstance(xc, dict) or isinstance(xc, list):
|
680 |
+
# import pudb; pudb.set_trace()
|
681 |
+
c = self.get_learned_conditioning(xc)
|
682 |
+
else:
|
683 |
+
c = self.get_learned_conditioning(xc.to(self.device))
|
684 |
+
else:
|
685 |
+
c = xc
|
686 |
+
if bs is not None:
|
687 |
+
c = c[:bs]
|
688 |
+
|
689 |
+
if self.use_positional_encodings:
|
690 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
691 |
+
ckey = __conditioning_keys__[self.model.conditioning_key]
|
692 |
+
c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
|
693 |
+
|
694 |
+
else:
|
695 |
+
c = None
|
696 |
+
xc = None
|
697 |
+
if self.use_positional_encodings:
|
698 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
699 |
+
c = {'pos_x': pos_x, 'pos_y': pos_y}
|
700 |
+
out = [z, c]
|
701 |
+
if return_first_stage_outputs:
|
702 |
+
xrec = self.decode_first_stage(z)
|
703 |
+
out.extend([x, xrec])
|
704 |
+
if return_original_cond:
|
705 |
+
out.append(xc)
|
706 |
+
return out
|
707 |
+
|
708 |
+
@torch.no_grad()
|
709 |
+
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
710 |
+
if predict_cids:
|
711 |
+
if z.dim() == 4:
|
712 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
713 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
714 |
+
z = rearrange(z, 'b h w c -> b c h w').contiguous()
|
715 |
+
|
716 |
+
z = 1. / self.scale_factor * z
|
717 |
+
|
718 |
+
if hasattr(self, "split_input_params"):
|
719 |
+
if self.split_input_params["patch_distributed_vq"]:
|
720 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
721 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
722 |
+
uf = self.split_input_params["vqf"]
|
723 |
+
bs, nc, h, w = z.shape
|
724 |
+
if ks[0] > h or ks[1] > w:
|
725 |
+
ks = (min(ks[0], h), min(ks[1], w))
|
726 |
+
print("reducing Kernel")
|
727 |
+
|
728 |
+
if stride[0] > h or stride[1] > w:
|
729 |
+
stride = (min(stride[0], h), min(stride[1], w))
|
730 |
+
print("reducing stride")
|
731 |
+
|
732 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
|
733 |
+
|
734 |
+
z = unfold(z) # (bn, nc * prod(**ks), L)
|
735 |
+
# 1. Reshape to img shape
|
736 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
737 |
+
|
738 |
+
# 2. apply model loop over last dim
|
739 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
740 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
|
741 |
+
force_not_quantize=predict_cids or force_not_quantize)
|
742 |
+
for i in range(z.shape[-1])]
|
743 |
+
else:
|
744 |
+
|
745 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
|
746 |
+
for i in range(z.shape[-1])]
|
747 |
+
|
748 |
+
o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
|
749 |
+
o = o * weighting
|
750 |
+
# Reverse 1. reshape to img shape
|
751 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
752 |
+
# stitch crops together
|
753 |
+
decoded = fold(o)
|
754 |
+
decoded = decoded / normalization # norm is shape (1, 1, h, w)
|
755 |
+
return decoded
|
756 |
+
else:
|
757 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
758 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
759 |
+
else:
|
760 |
+
return self.first_stage_model.decode(z)
|
761 |
+
|
762 |
+
else:
|
763 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
764 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
765 |
+
else:
|
766 |
+
return self.first_stage_model.decode(z)
|
767 |
+
|
768 |
+
# same as above but without decorator
|
769 |
+
def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
770 |
+
if predict_cids:
|
771 |
+
if z.dim() == 4:
|
772 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
773 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
774 |
+
z = rearrange(z, 'b h w c -> b c h w').contiguous()
|
775 |
+
|
776 |
+
z = 1. / self.scale_factor * z
|
777 |
+
|
778 |
+
if hasattr(self, "split_input_params"):
|
779 |
+
if self.split_input_params["patch_distributed_vq"]:
|
780 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
781 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
782 |
+
uf = self.split_input_params["vqf"]
|
783 |
+
bs, nc, h, w = z.shape
|
784 |
+
if ks[0] > h or ks[1] > w:
|
785 |
+
ks = (min(ks[0], h), min(ks[1], w))
|
786 |
+
print("reducing Kernel")
|
787 |
+
|
788 |
+
if stride[0] > h or stride[1] > w:
|
789 |
+
stride = (min(stride[0], h), min(stride[1], w))
|
790 |
+
print("reducing stride")
|
791 |
+
|
792 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
|
793 |
+
|
794 |
+
z = unfold(z) # (bn, nc * prod(**ks), L)
|
795 |
+
# 1. Reshape to img shape
|
796 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
797 |
+
|
798 |
+
# 2. apply model loop over last dim
|
799 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
800 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
|
801 |
+
force_not_quantize=predict_cids or force_not_quantize)
|
802 |
+
for i in range(z.shape[-1])]
|
803 |
+
else:
|
804 |
+
|
805 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
|
806 |
+
for i in range(z.shape[-1])]
|
807 |
+
|
808 |
+
o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
|
809 |
+
o = o * weighting
|
810 |
+
# Reverse 1. reshape to img shape
|
811 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
812 |
+
# stitch crops together
|
813 |
+
decoded = fold(o)
|
814 |
+
decoded = decoded / normalization # norm is shape (1, 1, h, w)
|
815 |
+
return decoded
|
816 |
+
else:
|
817 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
818 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
819 |
+
else:
|
820 |
+
return self.first_stage_model.decode(z)
|
821 |
+
|
822 |
+
else:
|
823 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
824 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
825 |
+
else:
|
826 |
+
return self.first_stage_model.decode(z)
|
827 |
+
|
828 |
+
@torch.no_grad()
|
829 |
+
def encode_first_stage(self, x):
|
830 |
+
if hasattr(self, "split_input_params"):
|
831 |
+
if self.split_input_params["patch_distributed_vq"]:
|
832 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
833 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
834 |
+
df = self.split_input_params["vqf"]
|
835 |
+
self.split_input_params['original_image_size'] = x.shape[-2:]
|
836 |
+
bs, nc, h, w = x.shape
|
837 |
+
if ks[0] > h or ks[1] > w:
|
838 |
+
ks = (min(ks[0], h), min(ks[1], w))
|
839 |
+
print("reducing Kernel")
|
840 |
+
|
841 |
+
if stride[0] > h or stride[1] > w:
|
842 |
+
stride = (min(stride[0], h), min(stride[1], w))
|
843 |
+
print("reducing stride")
|
844 |
+
|
845 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)
|
846 |
+
z = unfold(x) # (bn, nc * prod(**ks), L)
|
847 |
+
# Reshape to img shape
|
848 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
849 |
+
|
850 |
+
output_list = [self.first_stage_model.encode(z[:, :, :, :, i])
|
851 |
+
for i in range(z.shape[-1])]
|
852 |
+
|
853 |
+
o = torch.stack(output_list, axis=-1)
|
854 |
+
o = o * weighting
|
855 |
+
|
856 |
+
# Reverse reshape to img shape
|
857 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
858 |
+
# stitch crops together
|
859 |
+
decoded = fold(o)
|
860 |
+
decoded = decoded / normalization
|
861 |
+
return decoded
|
862 |
+
|
863 |
+
else:
|
864 |
+
return self.first_stage_model.encode(x)
|
865 |
+
else:
|
866 |
+
return self.first_stage_model.encode(x)
|
867 |
+
|
868 |
+
def shared_step(self, batch, **kwargs):
|
869 |
+
x, c = self.get_input(batch, self.first_stage_key)
|
870 |
+
loss = self(x, c)
|
871 |
+
return loss
|
872 |
+
|
873 |
+
def forward(self, x, c, *args, **kwargs):
|
874 |
+
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
875 |
+
if self.model.conditioning_key is not None:
|
876 |
+
assert c is not None
|
877 |
+
if self.cond_stage_trainable:# true when use text
|
878 |
+
c = self.get_learned_conditioning(c) # c: string list -> [B, T, Context_dim]
|
879 |
+
if self.shorten_cond_schedule: # TODO: drop this option
|
880 |
+
tc = self.cond_ids[t].to(self.device)
|
881 |
+
c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
|
882 |
+
return self.p_losses(x, c, t, *args, **kwargs)
|
883 |
+
|
884 |
+
def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset
|
885 |
+
def rescale_bbox(bbox):
|
886 |
+
x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
|
887 |
+
y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
|
888 |
+
w = min(bbox[2] / crop_coordinates[2], 1 - x0)
|
889 |
+
h = min(bbox[3] / crop_coordinates[3], 1 - y0)
|
890 |
+
return x0, y0, w, h
|
891 |
+
|
892 |
+
return [rescale_bbox(b) for b in bboxes]
|
893 |
+
|
894 |
+
def apply_model(self, x_noisy, t, cond, return_ids=False):
|
895 |
+
|
896 |
+
if isinstance(cond, dict):
|
897 |
+
# hybrid case, cond is exptected to be a dict
|
898 |
+
pass
|
899 |
+
else:
|
900 |
+
if not isinstance(cond, list):
|
901 |
+
cond = [cond]
|
902 |
+
key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
|
903 |
+
cond = {key: cond}
|
904 |
+
|
905 |
+
if hasattr(self, "split_input_params"):
|
906 |
+
assert len(cond) == 1 # todo can only deal with one conditioning atm
|
907 |
+
assert not return_ids
|
908 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
909 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
910 |
+
|
911 |
+
h, w = x_noisy.shape[-2:]
|
912 |
+
|
913 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride)
|
914 |
+
|
915 |
+
z = unfold(x_noisy) # (bn, nc * prod(**ks), L)
|
916 |
+
# Reshape to img shape
|
917 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
918 |
+
z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
|
919 |
+
|
920 |
+
if self.cond_stage_key in ["image", "LR_image", "segmentation",
|
921 |
+
'bbox_img'] and self.model.conditioning_key: # todo check for completeness
|
922 |
+
c_key = next(iter(cond.keys())) # get key
|
923 |
+
c = next(iter(cond.values())) # get value
|
924 |
+
assert (len(c) == 1) # todo extend to list with more than one elem
|
925 |
+
c = c[0] # get element
|
926 |
+
|
927 |
+
c = unfold(c)
|
928 |
+
c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
929 |
+
|
930 |
+
cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
|
931 |
+
|
932 |
+
elif self.cond_stage_key == 'coordinates_bbox':
|
933 |
+
assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
|
934 |
+
|
935 |
+
# assuming padding of unfold is always 0 and its dilation is always 1
|
936 |
+
n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
|
937 |
+
full_img_h, full_img_w = self.split_input_params['original_image_size']
|
938 |
+
# as we are operating on latents, we need the factor from the original image size to the
|
939 |
+
# spatial latent size to properly rescale the crops for regenerating the bbox annotations
|
940 |
+
num_downs = self.first_stage_model.encoder.num_resolutions - 1
|
941 |
+
rescale_latent = 2 ** (num_downs)
|
942 |
+
|
943 |
+
# get top left postions of patches as conforming for the bbbox tokenizer, therefore we
|
944 |
+
# need to rescale the tl patch coordinates to be in between (0,1)
|
945 |
+
tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
|
946 |
+
rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
|
947 |
+
for patch_nr in range(z.shape[-1])]
|
948 |
+
|
949 |
+
# patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
|
950 |
+
patch_limits = [(x_tl, y_tl,
|
951 |
+
rescale_latent * ks[0] / full_img_w,
|
952 |
+
rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates]
|
953 |
+
# patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
|
954 |
+
|
955 |
+
# tokenize crop coordinates for the bounding boxes of the respective patches
|
956 |
+
patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device)
|
957 |
+
for bbox in patch_limits] # list of length l with tensors of shape (1, 2)
|
958 |
+
print(patch_limits_tknzd[0].shape)
|
959 |
+
# cut tknzd crop position from conditioning
|
960 |
+
assert isinstance(cond, dict), 'cond must be dict to be fed into model'
|
961 |
+
cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
|
962 |
+
print(cut_cond.shape)
|
963 |
+
|
964 |
+
adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd])
|
965 |
+
adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
|
966 |
+
print(adapted_cond.shape)
|
967 |
+
adapted_cond = self.get_learned_conditioning(adapted_cond)
|
968 |
+
print(adapted_cond.shape)
|
969 |
+
adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1])
|
970 |
+
print(adapted_cond.shape)
|
971 |
+
|
972 |
+
cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
|
973 |
+
|
974 |
+
else:
|
975 |
+
cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient
|
976 |
+
|
977 |
+
# apply model by loop over crops
|
978 |
+
output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])]
|
979 |
+
assert not isinstance(output_list[0],
|
980 |
+
tuple) # todo cant deal with multiple model outputs check this never happens
|
981 |
+
|
982 |
+
o = torch.stack(output_list, axis=-1)
|
983 |
+
o = o * weighting
|
984 |
+
# Reverse reshape to img shape
|
985 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
986 |
+
# stitch crops together
|
987 |
+
x_recon = fold(o) / normalization
|
988 |
+
|
989 |
+
else:
|
990 |
+
x_recon = self.model(x_noisy, t, **cond)
|
991 |
+
|
992 |
+
if isinstance(x_recon, tuple) and not return_ids:
|
993 |
+
return x_recon[0]
|
994 |
+
else:
|
995 |
+
return x_recon
|
996 |
+
|
997 |
+
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
998 |
+
return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
|
999 |
+
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
1000 |
+
|
1001 |
+
def _prior_bpd(self, x_start):
|
1002 |
+
"""
|
1003 |
+
Get the prior KL term for the variational lower-bound, measured in
|
1004 |
+
bits-per-dim.
|
1005 |
+
This term can't be optimized, as it only depends on the encoder.
|
1006 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
1007 |
+
:return: a batch of [N] KL values (in bits), one per batch element.
|
1008 |
+
"""
|
1009 |
+
batch_size = x_start.shape[0]
|
1010 |
+
t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
|
1011 |
+
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
|
1012 |
+
kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
|
1013 |
+
return mean_flat(kl_prior) / np.log(2.0)
|
1014 |
+
|
1015 |
+
def p_losses(self, x_start, cond, t, noise=None):
|
1016 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
1017 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
1018 |
+
model_output = self.apply_model(x_noisy, t, cond)
|
1019 |
+
|
1020 |
+
loss_dict = {}
|
1021 |
+
prefix = 'train' if self.training else 'val'
|
1022 |
+
|
1023 |
+
if self.parameterization == "x0":
|
1024 |
+
target = x_start
|
1025 |
+
elif self.parameterization == "eps":
|
1026 |
+
target = noise
|
1027 |
+
else:
|
1028 |
+
raise NotImplementedError()
|
1029 |
+
|
1030 |
+
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
|
1031 |
+
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
|
1032 |
+
|
1033 |
+
logvar_t = self.logvar[t].to(self.device)
|
1034 |
+
loss = loss_simple / torch.exp(logvar_t) + logvar_t
|
1035 |
+
# loss = loss_simple / torch.exp(self.logvar) + self.logvar
|
1036 |
+
if self.learn_logvar:
|
1037 |
+
loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
|
1038 |
+
loss_dict.update({'logvar': self.logvar.data.mean()})
|
1039 |
+
|
1040 |
+
loss = self.l_simple_weight * loss.mean()
|
1041 |
+
|
1042 |
+
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
|
1043 |
+
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
|
1044 |
+
loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
|
1045 |
+
loss += (self.original_elbo_weight * loss_vlb)
|
1046 |
+
loss_dict.update({f'{prefix}/loss': loss})
|
1047 |
+
|
1048 |
+
return loss, loss_dict
|
1049 |
+
|
1050 |
+
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
|
1051 |
+
return_x0=False, score_corrector=None, corrector_kwargs=None):
|
1052 |
+
t_in = t
|
1053 |
+
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
|
1054 |
+
|
1055 |
+
if score_corrector is not None:
|
1056 |
+
assert self.parameterization == "eps"
|
1057 |
+
model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
|
1058 |
+
|
1059 |
+
if return_codebook_ids:
|
1060 |
+
model_out, logits = model_out
|
1061 |
+
|
1062 |
+
if self.parameterization == "eps":
|
1063 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
1064 |
+
elif self.parameterization == "x0":
|
1065 |
+
x_recon = model_out
|
1066 |
+
else:
|
1067 |
+
raise NotImplementedError()
|
1068 |
+
|
1069 |
+
if clip_denoised:
|
1070 |
+
x_recon.clamp_(-1., 1.)
|
1071 |
+
if quantize_denoised:
|
1072 |
+
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
|
1073 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
1074 |
+
if return_codebook_ids:
|
1075 |
+
return model_mean, posterior_variance, posterior_log_variance, logits
|
1076 |
+
elif return_x0:
|
1077 |
+
return model_mean, posterior_variance, posterior_log_variance, x_recon
|
1078 |
+
else:
|
1079 |
+
return model_mean, posterior_variance, posterior_log_variance
|
1080 |
+
|
1081 |
+
@torch.no_grad()
|
1082 |
+
def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
|
1083 |
+
return_codebook_ids=False, quantize_denoised=False, return_x0=False,
|
1084 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
|
1085 |
+
b, *_, device = *x.shape, x.device
|
1086 |
+
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
|
1087 |
+
return_codebook_ids=return_codebook_ids,
|
1088 |
+
quantize_denoised=quantize_denoised,
|
1089 |
+
return_x0=return_x0,
|
1090 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
1091 |
+
if return_codebook_ids:
|
1092 |
+
raise DeprecationWarning("Support dropped.")
|
1093 |
+
model_mean, _, model_log_variance, logits = outputs
|
1094 |
+
elif return_x0:
|
1095 |
+
model_mean, _, model_log_variance, x0 = outputs
|
1096 |
+
else:
|
1097 |
+
model_mean, _, model_log_variance = outputs
|
1098 |
+
|
1099 |
+
noise = noise_like(x.shape, device, repeat_noise) * temperature
|
1100 |
+
if noise_dropout > 0.:
|
1101 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
1102 |
+
# no noise when t == 0
|
1103 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
1104 |
+
|
1105 |
+
if return_codebook_ids:
|
1106 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
|
1107 |
+
if return_x0:
|
1108 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
|
1109 |
+
else:
|
1110 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
1111 |
+
|
1112 |
+
@torch.no_grad()
|
1113 |
+
def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
|
1114 |
+
img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
|
1115 |
+
score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
|
1116 |
+
log_every_t=None):
|
1117 |
+
if not log_every_t:
|
1118 |
+
log_every_t = self.log_every_t # 100
|
1119 |
+
timesteps = self.num_timesteps
|
1120 |
+
if batch_size is not None:
|
1121 |
+
b = batch_size if batch_size is not None else shape[0]
|
1122 |
+
shape = [batch_size] + list(shape)
|
1123 |
+
else:
|
1124 |
+
b = batch_size = shape[0]
|
1125 |
+
if x_T is None:
|
1126 |
+
img = torch.randn(shape, device=self.device)
|
1127 |
+
else:
|
1128 |
+
img = x_T
|
1129 |
+
intermediates = []
|
1130 |
+
if cond is not None:
|
1131 |
+
if isinstance(cond, dict):
|
1132 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
1133 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
1134 |
+
else:
|
1135 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
1136 |
+
|
1137 |
+
if start_T is not None:
|
1138 |
+
timesteps = min(timesteps, start_T)
|
1139 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
|
1140 |
+
total=timesteps) if verbose else reversed(
|
1141 |
+
range(0, timesteps))
|
1142 |
+
if type(temperature) == float:
|
1143 |
+
temperature = [temperature] * timesteps
|
1144 |
+
|
1145 |
+
for i in iterator:
|
1146 |
+
ts = torch.full((b,), i, device=self.device, dtype=torch.long)
|
1147 |
+
if self.shorten_cond_schedule:
|
1148 |
+
assert self.model.conditioning_key != 'hybrid'
|
1149 |
+
tc = self.cond_ids[ts].to(cond.device)
|
1150 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
1151 |
+
|
1152 |
+
img, x0_partial = self.p_sample(img, cond, ts,
|
1153 |
+
clip_denoised=self.clip_denoised,
|
1154 |
+
quantize_denoised=quantize_denoised, return_x0=True,
|
1155 |
+
temperature=temperature[i], noise_dropout=noise_dropout,
|
1156 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
1157 |
+
if mask is not None:
|
1158 |
+
assert x0 is not None
|
1159 |
+
img_orig = self.q_sample(x0, ts)
|
1160 |
+
img = img_orig * mask + (1. - mask) * img
|
1161 |
+
|
1162 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
1163 |
+
intermediates.append(x0_partial)
|
1164 |
+
if callback: callback(i)
|
1165 |
+
if img_callback: img_callback(img, i)
|
1166 |
+
return img, intermediates
|
1167 |
+
|
1168 |
+
@torch.no_grad()
|
1169 |
+
def p_sample_loop(self, cond, shape, return_intermediates=False,
|
1170 |
+
x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
|
1171 |
+
mask=None, x0=None, img_callback=None, start_T=None,
|
1172 |
+
log_every_t=None):
|
1173 |
+
|
1174 |
+
if not log_every_t:
|
1175 |
+
log_every_t = self.log_every_t
|
1176 |
+
device = self.betas.device
|
1177 |
+
b = shape[0]
|
1178 |
+
if x_T is None:
|
1179 |
+
img = torch.randn(shape, device=device)
|
1180 |
+
else:
|
1181 |
+
img = x_T
|
1182 |
+
|
1183 |
+
intermediates = [img]
|
1184 |
+
if timesteps is None:
|
1185 |
+
timesteps = self.num_timesteps
|
1186 |
+
|
1187 |
+
if start_T is not None:
|
1188 |
+
timesteps = min(timesteps, start_T)
|
1189 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
|
1190 |
+
range(0, timesteps))
|
1191 |
+
|
1192 |
+
if mask is not None:
|
1193 |
+
assert x0 is not None
|
1194 |
+
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
|
1195 |
+
|
1196 |
+
for i in iterator:
|
1197 |
+
ts = torch.full((b,), i, device=device, dtype=torch.long)
|
1198 |
+
if self.shorten_cond_schedule:
|
1199 |
+
assert self.model.conditioning_key != 'hybrid'
|
1200 |
+
tc = self.cond_ids[ts].to(cond.device)
|
1201 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
1202 |
+
|
1203 |
+
img = self.p_sample(img, cond, ts,
|
1204 |
+
clip_denoised=self.clip_denoised,
|
1205 |
+
quantize_denoised=quantize_denoised)
|
1206 |
+
if mask is not None:
|
1207 |
+
img_orig = self.q_sample(x0, ts)
|
1208 |
+
img = img_orig * mask + (1. - mask) * img
|
1209 |
+
|
1210 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
1211 |
+
intermediates.append(img)
|
1212 |
+
if callback: callback(i)
|
1213 |
+
if img_callback: img_callback(img, i)
|
1214 |
+
|
1215 |
+
if return_intermediates:
|
1216 |
+
return img, intermediates
|
1217 |
+
return img
|
1218 |
+
|
1219 |
+
@torch.no_grad()
|
1220 |
+
def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
|
1221 |
+
verbose=True, timesteps=None, quantize_denoised=False,
|
1222 |
+
mask=None, x0=None, shape=None,**kwargs):
|
1223 |
+
if shape is None:
|
1224 |
+
shape = (batch_size, self.channels, self.image_size, self.image_size)
|
1225 |
+
if cond is not None:
|
1226 |
+
if isinstance(cond, dict):
|
1227 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
1228 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
1229 |
+
else:
|
1230 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
1231 |
+
return self.p_sample_loop(cond,
|
1232 |
+
shape,
|
1233 |
+
return_intermediates=return_intermediates, x_T=x_T,
|
1234 |
+
verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
|
1235 |
+
mask=mask, x0=x0)
|
1236 |
+
|
1237 |
+
@torch.no_grad()
|
1238 |
+
def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs):
|
1239 |
+
|
1240 |
+
if ddim:
|
1241 |
+
ddim_sampler = DDIMSampler(self)
|
1242 |
+
shape = (self.channels, self.image_size, self.image_size)
|
1243 |
+
samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size,
|
1244 |
+
shape,cond,verbose=False,**kwargs)
|
1245 |
+
|
1246 |
+
else:
|
1247 |
+
samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
|
1248 |
+
return_intermediates=True,**kwargs)
|
1249 |
+
|
1250 |
+
return samples, intermediates
|
1251 |
+
|
1252 |
+
|
1253 |
+
@torch.no_grad()
|
1254 |
+
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
1255 |
+
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
1256 |
+
plot_diffusion_rows=True, **kwargs):
|
1257 |
+
|
1258 |
+
use_ddim = ddim_steps is not None
|
1259 |
+
|
1260 |
+
log = dict()
|
1261 |
+
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
|
1262 |
+
return_first_stage_outputs=True,
|
1263 |
+
force_c_encode=True,
|
1264 |
+
return_original_cond=True,
|
1265 |
+
bs=N)
|
1266 |
+
N = min(x.shape[0], N)
|
1267 |
+
n_row = min(x.shape[0], n_row)
|
1268 |
+
log["inputs"] = x
|
1269 |
+
log["reconstruction"] = xrec
|
1270 |
+
if self.model.conditioning_key is not None:
|
1271 |
+
if hasattr(self.cond_stage_model, "decode"):
|
1272 |
+
xc = self.cond_stage_model.decode(c)
|
1273 |
+
log["conditioning"] = xc
|
1274 |
+
elif self.cond_stage_key in ["caption"]:
|
1275 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"])
|
1276 |
+
log["conditioning"] = xc
|
1277 |
+
elif self.cond_stage_key == 'class_label':
|
1278 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
|
1279 |
+
log['conditioning'] = xc
|
1280 |
+
elif isimage(xc):
|
1281 |
+
log["conditioning"] = xc
|
1282 |
+
if ismap(xc):
|
1283 |
+
log["original_conditioning"] = self.to_rgb(xc)
|
1284 |
+
|
1285 |
+
if plot_diffusion_rows:
|
1286 |
+
# get diffusion row
|
1287 |
+
diffusion_row = list()
|
1288 |
+
z_start = z[:n_row]
|
1289 |
+
for t in range(self.num_timesteps):
|
1290 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
1291 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
1292 |
+
t = t.to(self.device).long()
|
1293 |
+
noise = torch.randn_like(z_start)
|
1294 |
+
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
1295 |
+
diffusion_row.append(self.decode_first_stage(z_noisy))
|
1296 |
+
|
1297 |
+
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
1298 |
+
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
1299 |
+
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
1300 |
+
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
1301 |
+
log["diffusion_row"] = diffusion_grid
|
1302 |
+
|
1303 |
+
if sample:
|
1304 |
+
# get denoise row
|
1305 |
+
with self.ema_scope("Plotting"):
|
1306 |
+
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
|
1307 |
+
ddim_steps=ddim_steps,eta=ddim_eta)
|
1308 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
1309 |
+
x_samples = self.decode_first_stage(samples)
|
1310 |
+
log["samples"] = x_samples
|
1311 |
+
if plot_denoise_rows:
|
1312 |
+
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
1313 |
+
log["denoise_row"] = denoise_grid
|
1314 |
+
|
1315 |
+
if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
|
1316 |
+
self.first_stage_model, IdentityFirstStage):
|
1317 |
+
# also display when quantizing x0 while sampling
|
1318 |
+
with self.ema_scope("Plotting Quantized Denoised"):
|
1319 |
+
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
|
1320 |
+
ddim_steps=ddim_steps,eta=ddim_eta,
|
1321 |
+
quantize_denoised=True)
|
1322 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
|
1323 |
+
# quantize_denoised=True)
|
1324 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1325 |
+
log["samples_x0_quantized"] = x_samples
|
1326 |
+
|
1327 |
+
if inpaint:
|
1328 |
+
# make a simple center square
|
1329 |
+
b, h, w = z.shape[0], z.shape[2], z.shape[3]
|
1330 |
+
mask = torch.ones(N, h, w).to(self.device)
|
1331 |
+
# zeros will be filled in
|
1332 |
+
mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
|
1333 |
+
mask = mask[:, None, ...]
|
1334 |
+
with self.ema_scope("Plotting Inpaint"):
|
1335 |
+
|
1336 |
+
samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,
|
1337 |
+
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
1338 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1339 |
+
log["samples_inpainting"] = x_samples
|
1340 |
+
log["mask"] = mask
|
1341 |
+
|
1342 |
+
# outpaint
|
1343 |
+
with self.ema_scope("Plotting Outpaint"):
|
1344 |
+
samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,
|
1345 |
+
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
1346 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1347 |
+
log["samples_outpainting"] = x_samples
|
1348 |
+
|
1349 |
+
if plot_progressive_rows:
|
1350 |
+
with self.ema_scope("Plotting Progressives"):
|
1351 |
+
img, progressives = self.progressive_denoising(c,
|
1352 |
+
shape=(self.channels, self.image_size, self.image_size),
|
1353 |
+
batch_size=N)
|
1354 |
+
prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
|
1355 |
+
log["progressive_row"] = prog_row
|
1356 |
+
|
1357 |
+
if return_keys:
|
1358 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
1359 |
+
return log
|
1360 |
+
else:
|
1361 |
+
return {key: log[key] for key in return_keys}
|
1362 |
+
return log
|
1363 |
+
|
1364 |
+
def configure_optimizers(self):
|
1365 |
+
lr = self.learning_rate
|
1366 |
+
params = list(self.model.parameters())
|
1367 |
+
if self.cond_stage_trainable:
|
1368 |
+
print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
|
1369 |
+
params = params + list(self.cond_stage_model.parameters())
|
1370 |
+
if self.learn_logvar:
|
1371 |
+
print('Diffusion model optimizing logvar')
|
1372 |
+
params.append(self.logvar)
|
1373 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
1374 |
+
if self.use_scheduler:
|
1375 |
+
assert 'target' in self.scheduler_config
|
1376 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
1377 |
+
|
1378 |
+
print("Setting up LambdaLR scheduler...")
|
1379 |
+
scheduler = [
|
1380 |
+
{
|
1381 |
+
'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
|
1382 |
+
'interval': 'step',
|
1383 |
+
'frequency': 1
|
1384 |
+
}]
|
1385 |
+
return [opt], scheduler
|
1386 |
+
return opt
|
1387 |
+
|
1388 |
+
@torch.no_grad()
|
1389 |
+
def to_rgb(self, x):
|
1390 |
+
x = x.float()
|
1391 |
+
if not hasattr(self, "colorize"):
|
1392 |
+
self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
|
1393 |
+
x = nn.functional.conv2d(x, weight=self.colorize)
|
1394 |
+
x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
|
1395 |
+
return x
|
1396 |
+
|
1397 |
+
|
1398 |
+
|
1399 |
+
class DiffusionWrapper(pl.LightningModule):
|
1400 |
+
def __init__(self, diff_model_config, conditioning_key):
|
1401 |
+
super().__init__()
|
1402 |
+
self.diffusion_model = instantiate_from_config(diff_model_config)
|
1403 |
+
self.conditioning_key = conditioning_key # 'crossattn' for txt2image, concat for inpainting
|
1404 |
+
assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm', 'film', 'hybrid_inpaint']
|
1405 |
+
|
1406 |
+
def forward(self, x, t, c_concat: list = None, c_crossattn: list = None,c_film: list = None):
|
1407 |
+
x = x.contiguous()
|
1408 |
+
t = t.contiguous()
|
1409 |
+
"""param x: tensor with shape:[B,C,mel_len,T]"""
|
1410 |
+
if self.conditioning_key is None:
|
1411 |
+
out = self.diffusion_model(x, t)
|
1412 |
+
elif self.conditioning_key == 'concat':
|
1413 |
+
xc = torch.cat([x] + c_concat, dim=1)# channel dim,x shape (b,3,64,64) c_concat shape(b,4,64,64)
|
1414 |
+
out = self.diffusion_model(xc, t)
|
1415 |
+
elif self.conditioning_key == 'crossattn':
|
1416 |
+
if isinstance(c_crossattn,list):
|
1417 |
+
cc = torch.cat(c_crossattn, 1)# [b,seq_len,dim]
|
1418 |
+
else:
|
1419 |
+
cc = c_crossattn
|
1420 |
+
out = self.diffusion_model(x, t, context=cc)
|
1421 |
+
elif self.conditioning_key == 'hybrid':# not implemented in the LatentDiffusion
|
1422 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
1423 |
+
cc = torch.cat(c_crossattn, 1)
|
1424 |
+
out = self.diffusion_model(xc, t, context=cc)
|
1425 |
+
elif self.conditioning_key == 'hybrid_inpaint': # special
|
1426 |
+
cc = c_crossattn
|
1427 |
+
out = self.diffusion_model(x, t, context=cc)
|
1428 |
+
elif self.conditioning_key == "film": # The condition is assumed to be a global token, which wil pass through a linear layer and added with the time embedding for the FILM
|
1429 |
+
cc = c_film[0].squeeze(1).contiguous() # only has one token, shape (b,context_dim)
|
1430 |
+
out = self.diffusion_model(x, t, y=cc)
|
1431 |
+
elif self.conditioning_key == 'adm':
|
1432 |
+
cc = c_crossattn[0]
|
1433 |
+
out = self.diffusion_model(x, t, y=cc)
|
1434 |
+
else:
|
1435 |
+
raise NotImplementedError()
|
1436 |
+
|
1437 |
+
return out
|
1438 |
+
|
1439 |
+
|
1440 |
+
class Layout2ImgDiffusion(LatentDiffusion):
|
1441 |
+
# TODO: move all layout-specific hacks to this class
|
1442 |
+
def __init__(self, cond_stage_key, *args, **kwargs):
|
1443 |
+
assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"'
|
1444 |
+
super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs)
|
1445 |
+
|
1446 |
+
def log_images(self, batch, N=8, *args, **kwargs):
|
1447 |
+
logs = super().log_images(batch=batch, N=N, *args, **kwargs)
|
1448 |
+
|
1449 |
+
key = 'train' if self.training else 'validation'
|
1450 |
+
dset = self.trainer.datamodule.datasets[key]
|
1451 |
+
mapper = dset.conditional_builders[self.cond_stage_key]
|
1452 |
+
|
1453 |
+
bbox_imgs = []
|
1454 |
+
map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno))
|
1455 |
+
for tknzd_bbox in batch[self.cond_stage_key][:N]:
|
1456 |
+
bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256))
|
1457 |
+
bbox_imgs.append(bboximg)
|
1458 |
+
|
1459 |
+
cond_img = torch.stack(bbox_imgs, dim=0)
|
1460 |
+
logs['bbox_image'] = cond_img
|
1461 |
+
return logs
|
ldm/models/diffusion/ddpm_audio.py
ADDED
@@ -0,0 +1,865 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pytorch_memlab import LineProfiler,profile
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import numpy as np
|
6 |
+
import pytorch_lightning as pl
|
7 |
+
from torch.optim.lr_scheduler import LambdaLR
|
8 |
+
from einops import rearrange, repeat
|
9 |
+
from contextlib import contextmanager
|
10 |
+
from functools import partial
|
11 |
+
from tqdm import tqdm
|
12 |
+
from torchvision.utils import make_grid
|
13 |
+
try:
|
14 |
+
from pytorch_lightning.utilities.distributed import rank_zero_only
|
15 |
+
except:
|
16 |
+
from pytorch_lightning.utilities import rank_zero_only # torch2
|
17 |
+
|
18 |
+
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
|
19 |
+
from ldm.modules.ema import LitEma
|
20 |
+
from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
|
21 |
+
from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
|
22 |
+
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
|
23 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
24 |
+
from ldm.models.diffusion.ddpm import DDPM, disabled_train
|
25 |
+
from omegaconf import ListConfig
|
26 |
+
|
27 |
+
__conditioning_keys__ = {'concat': 'c_concat',
|
28 |
+
'crossattn': 'c_crossattn',
|
29 |
+
'adm': 'y'}
|
30 |
+
|
31 |
+
|
32 |
+
class LatentDiffusion_audio(DDPM):
|
33 |
+
"""main class"""
|
34 |
+
def __init__(self,
|
35 |
+
first_stage_config,
|
36 |
+
cond_stage_config,
|
37 |
+
num_timesteps_cond=None,
|
38 |
+
mel_dim=80,
|
39 |
+
mel_length=848,
|
40 |
+
cond_stage_key="image",
|
41 |
+
cond_stage_trainable=False,
|
42 |
+
concat_mode=True,
|
43 |
+
cond_stage_forward=None,
|
44 |
+
conditioning_key=None,
|
45 |
+
scale_factor=1.0,
|
46 |
+
scale_by_std=False,
|
47 |
+
*args, **kwargs):
|
48 |
+
self.num_timesteps_cond = default(num_timesteps_cond, 1)
|
49 |
+
self.scale_by_std = scale_by_std
|
50 |
+
assert self.num_timesteps_cond <= kwargs['timesteps']
|
51 |
+
# for backwards compatibility after implementation of DiffusionWrapper
|
52 |
+
if conditioning_key is None:
|
53 |
+
conditioning_key = 'concat' if concat_mode else 'crossattn'
|
54 |
+
if cond_stage_config == '__is_unconditional__':
|
55 |
+
conditioning_key = None
|
56 |
+
ckpt_path = kwargs.pop("ckpt_path", None)
|
57 |
+
ignore_keys = kwargs.pop("ignore_keys", [])
|
58 |
+
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
|
59 |
+
self.concat_mode = concat_mode
|
60 |
+
self.mel_dim = mel_dim
|
61 |
+
self.mel_length = mel_length
|
62 |
+
self.cond_stage_trainable = cond_stage_trainable
|
63 |
+
self.cond_stage_key = cond_stage_key
|
64 |
+
try:
|
65 |
+
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
|
66 |
+
except:
|
67 |
+
self.num_downs = 0
|
68 |
+
if not scale_by_std:
|
69 |
+
self.scale_factor = scale_factor
|
70 |
+
else:
|
71 |
+
self.register_buffer('scale_factor', torch.tensor(scale_factor))
|
72 |
+
self.instantiate_first_stage(first_stage_config)
|
73 |
+
self.instantiate_cond_stage(cond_stage_config)
|
74 |
+
self.cond_stage_forward = cond_stage_forward
|
75 |
+
self.clip_denoised = False
|
76 |
+
self.bbox_tokenizer = None
|
77 |
+
|
78 |
+
self.restarted_from_ckpt = False
|
79 |
+
if ckpt_path is not None:
|
80 |
+
self.init_from_ckpt(ckpt_path, ignore_keys)
|
81 |
+
self.restarted_from_ckpt = True
|
82 |
+
|
83 |
+
def make_cond_schedule(self, ):
|
84 |
+
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
|
85 |
+
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
|
86 |
+
self.cond_ids[:self.num_timesteps_cond] = ids
|
87 |
+
|
88 |
+
@rank_zero_only
|
89 |
+
@torch.no_grad()
|
90 |
+
def on_train_batch_start(self, batch, batch_idx):
|
91 |
+
# only for very first batch
|
92 |
+
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
|
93 |
+
assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
|
94 |
+
# set rescale weight to 1./std of encodings
|
95 |
+
print("### USING STD-RESCALING ###")
|
96 |
+
x = super().get_input(batch, self.first_stage_key)
|
97 |
+
x = x.to(self.device)
|
98 |
+
encoder_posterior = self.encode_first_stage(x)
|
99 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()# get latent
|
100 |
+
del self.scale_factor
|
101 |
+
self.register_buffer('scale_factor', 1. / z.flatten().std())# 1/latent.std, get_first_stage_encoding returns self.scale_factor * latent
|
102 |
+
print(f"setting self.scale_factor to {self.scale_factor}")
|
103 |
+
print("### USING STD-RESCALING ###")
|
104 |
+
|
105 |
+
# def on_train_epoch_start(self):
|
106 |
+
# print("!!!!!!!!!!!!!!!!!!!!!!!!!!on_train_epoch_strat",self.trainer.train_dataloader.batch_sampler,hasattr(self.trainer.train_dataloader.batch_sampler,'set_epoch'))
|
107 |
+
# if hasattr(self.trainer.train_dataloader.batch_sampler,'set_epoch'):
|
108 |
+
# self.trainer.train_dataloader.batch_sampler.set_epoch(self.current_epoch)
|
109 |
+
# return super().on_train_epoch_start()
|
110 |
+
|
111 |
+
|
112 |
+
def register_schedule(self,
|
113 |
+
given_betas=None, beta_schedule="linear", timesteps=1000,
|
114 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
115 |
+
super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
|
116 |
+
|
117 |
+
self.shorten_cond_schedule = self.num_timesteps_cond > 1
|
118 |
+
if self.shorten_cond_schedule:
|
119 |
+
self.make_cond_schedule()
|
120 |
+
|
121 |
+
def instantiate_first_stage(self, config):
|
122 |
+
model = instantiate_from_config(config)
|
123 |
+
self.first_stage_model = model.eval()
|
124 |
+
self.first_stage_model.train = disabled_train
|
125 |
+
for param in self.first_stage_model.parameters():
|
126 |
+
param.requires_grad = False
|
127 |
+
|
128 |
+
def instantiate_cond_stage(self, config):
|
129 |
+
if not self.cond_stage_trainable:
|
130 |
+
if config == "__is_first_stage__":
|
131 |
+
print("Using first stage also as cond stage.")
|
132 |
+
self.cond_stage_model = self.first_stage_model
|
133 |
+
elif config == "__is_unconditional__":
|
134 |
+
print(f"Training {self.__class__.__name__} as an unconditional model.")
|
135 |
+
self.cond_stage_model = None
|
136 |
+
else:
|
137 |
+
model = instantiate_from_config(config)
|
138 |
+
self.cond_stage_model = model.eval()
|
139 |
+
self.cond_stage_model.train = disabled_train
|
140 |
+
for param in self.cond_stage_model.parameters():
|
141 |
+
param.requires_grad = False
|
142 |
+
else:
|
143 |
+
assert config != '__is_first_stage__'
|
144 |
+
assert config != '__is_unconditional__'
|
145 |
+
model = instantiate_from_config(config)
|
146 |
+
self.cond_stage_model = model
|
147 |
+
|
148 |
+
def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
|
149 |
+
denoise_row = []
|
150 |
+
for zd in tqdm(samples, desc=desc):
|
151 |
+
denoise_row.append(self.decode_first_stage(zd.to(self.device),
|
152 |
+
force_not_quantize=force_no_decoder_quantization))
|
153 |
+
n_imgs_per_row = len(denoise_row)
|
154 |
+
if len(denoise_row[0].shape) == 3:
|
155 |
+
denoise_row = [x.unsqueeze(1) for x in denoise_row]
|
156 |
+
denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
|
157 |
+
denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
|
158 |
+
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
159 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
160 |
+
return denoise_grid
|
161 |
+
|
162 |
+
def get_first_stage_encoding(self, encoder_posterior):
|
163 |
+
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
|
164 |
+
z = encoder_posterior.sample()
|
165 |
+
elif isinstance(encoder_posterior, torch.Tensor):
|
166 |
+
z = encoder_posterior
|
167 |
+
else:
|
168 |
+
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
|
169 |
+
return self.scale_factor * z
|
170 |
+
|
171 |
+
#@profile
|
172 |
+
def get_learned_conditioning(self, c):
|
173 |
+
if self.cond_stage_forward is None:
|
174 |
+
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
|
175 |
+
c = self.cond_stage_model.encode(c)
|
176 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
177 |
+
c = c.mode()
|
178 |
+
else:
|
179 |
+
c = self.cond_stage_model(c)
|
180 |
+
else:
|
181 |
+
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
|
182 |
+
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
|
183 |
+
return c
|
184 |
+
|
185 |
+
|
186 |
+
@torch.no_grad()
|
187 |
+
def get_unconditional_conditioning(self, batch_size, null_label=None):
|
188 |
+
if null_label is not None:
|
189 |
+
xc = null_label
|
190 |
+
if isinstance(xc, ListConfig):
|
191 |
+
xc = list(xc)
|
192 |
+
if isinstance(xc, dict) or isinstance(xc, list):
|
193 |
+
c = self.get_learned_conditioning(xc)
|
194 |
+
else:
|
195 |
+
if hasattr(xc, "to"):
|
196 |
+
xc = xc.to(self.device)
|
197 |
+
c = self.get_learned_conditioning(xc)
|
198 |
+
else:
|
199 |
+
if self.cond_stage_key in ["class_label", "cls"]:
|
200 |
+
xc = self.cond_stage_model.get_unconditional_conditioning(batch_size, device=self.device)
|
201 |
+
return self.get_learned_conditioning(xc)
|
202 |
+
else:
|
203 |
+
raise NotImplementedError("todo")
|
204 |
+
if isinstance(c, list): # in case the encoder gives us a list
|
205 |
+
for i in range(len(c)):
|
206 |
+
c[i] = repeat(c[i], '1 ... -> b ...', b=batch_size).to(self.device)
|
207 |
+
else:
|
208 |
+
c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device)
|
209 |
+
return c
|
210 |
+
|
211 |
+
def meshgrid(self, h, w):
|
212 |
+
y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
|
213 |
+
x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
|
214 |
+
|
215 |
+
arr = torch.cat([y, x], dim=-1)
|
216 |
+
return arr
|
217 |
+
|
218 |
+
def delta_border(self, h, w):
|
219 |
+
"""
|
220 |
+
:param h: height
|
221 |
+
:param w: width
|
222 |
+
:return: normalized distance to image border,
|
223 |
+
wtith min distance = 0 at border and max dist = 0.5 at image center
|
224 |
+
"""
|
225 |
+
lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
|
226 |
+
arr = self.meshgrid(h, w) / lower_right_corner
|
227 |
+
dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
|
228 |
+
dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
|
229 |
+
edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
|
230 |
+
return edge_dist
|
231 |
+
|
232 |
+
def get_weighting(self, h, w, Ly, Lx, device):
|
233 |
+
weighting = self.delta_border(h, w)
|
234 |
+
weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
|
235 |
+
self.split_input_params["clip_max_weight"], )
|
236 |
+
weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
|
237 |
+
|
238 |
+
if self.split_input_params["tie_braker"]:
|
239 |
+
L_weighting = self.delta_border(Ly, Lx)
|
240 |
+
L_weighting = torch.clip(L_weighting,
|
241 |
+
self.split_input_params["clip_min_tie_weight"],
|
242 |
+
self.split_input_params["clip_max_tie_weight"])
|
243 |
+
|
244 |
+
L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
|
245 |
+
weighting = weighting * L_weighting
|
246 |
+
return weighting
|
247 |
+
|
248 |
+
def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
|
249 |
+
"""
|
250 |
+
:param x: img of size (bs, c, h, w)
|
251 |
+
:return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
|
252 |
+
"""
|
253 |
+
bs, nc, h, w = x.shape
|
254 |
+
|
255 |
+
# number of crops in image
|
256 |
+
Ly = (h - kernel_size[0]) // stride[0] + 1
|
257 |
+
Lx = (w - kernel_size[1]) // stride[1] + 1
|
258 |
+
|
259 |
+
if uf == 1 and df == 1:
|
260 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
261 |
+
unfold = torch.nn.Unfold(**fold_params)
|
262 |
+
|
263 |
+
fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
|
264 |
+
|
265 |
+
weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
|
266 |
+
normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
|
267 |
+
weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
|
268 |
+
|
269 |
+
elif uf > 1 and df == 1:
|
270 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
271 |
+
unfold = torch.nn.Unfold(**fold_params)
|
272 |
+
|
273 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
|
274 |
+
dilation=1, padding=0,
|
275 |
+
stride=(stride[0] * uf, stride[1] * uf))
|
276 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
|
277 |
+
|
278 |
+
weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
|
279 |
+
normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
|
280 |
+
weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
|
281 |
+
|
282 |
+
elif df > 1 and uf == 1:
|
283 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
284 |
+
unfold = torch.nn.Unfold(**fold_params)
|
285 |
+
|
286 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
|
287 |
+
dilation=1, padding=0,
|
288 |
+
stride=(stride[0] // df, stride[1] // df))
|
289 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
|
290 |
+
|
291 |
+
weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
|
292 |
+
normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
|
293 |
+
weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
|
294 |
+
|
295 |
+
else:
|
296 |
+
raise NotImplementedError
|
297 |
+
|
298 |
+
return fold, unfold, normalization, weighting
|
299 |
+
|
300 |
+
@torch.no_grad()
|
301 |
+
def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
|
302 |
+
cond_key=None, return_original_cond=False, bs=None):
|
303 |
+
x = super().get_input(batch, k)
|
304 |
+
if bs is not None:
|
305 |
+
x = x[:bs]
|
306 |
+
x = x.to(self.device)
|
307 |
+
encoder_posterior = self.encode_first_stage(x)
|
308 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
309 |
+
|
310 |
+
if self.model.conditioning_key is not None:
|
311 |
+
if cond_key is None:
|
312 |
+
cond_key = self.cond_stage_key
|
313 |
+
if cond_key != self.first_stage_key:
|
314 |
+
if cond_key in ['caption', 'coordinates_bbox', 'hybrid_feat']:
|
315 |
+
xc = batch[cond_key]
|
316 |
+
elif cond_key == 'class_label':
|
317 |
+
xc = batch
|
318 |
+
else:
|
319 |
+
xc = super().get_input(batch, cond_key).to(self.device)
|
320 |
+
else:
|
321 |
+
xc = x
|
322 |
+
if not self.cond_stage_trainable or force_c_encode: # False
|
323 |
+
if isinstance(xc, dict) or isinstance(xc, list):
|
324 |
+
# import pudb; pudb.set_trace()
|
325 |
+
c = self.get_learned_conditioning(xc)
|
326 |
+
else:
|
327 |
+
c = self.get_learned_conditioning(xc.to(self.device))
|
328 |
+
else:
|
329 |
+
c = xc
|
330 |
+
if bs is not None:
|
331 |
+
c = c[:bs]
|
332 |
+
# Testing #
|
333 |
+
if cond_key == 'masked_image':
|
334 |
+
mask = super().get_input(batch, "mask")
|
335 |
+
cc = torch.nn.functional.interpolate(mask, size=c.shape[-2:]) # [B, 1, 10, 106]
|
336 |
+
c = torch.cat((c, cc), dim=1) # [B, 5, 10, 106]
|
337 |
+
# Testing #
|
338 |
+
if self.use_positional_encodings:
|
339 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
340 |
+
ckey = __conditioning_keys__[self.model.conditioning_key]
|
341 |
+
c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
|
342 |
+
|
343 |
+
else:
|
344 |
+
c = None
|
345 |
+
xc = None
|
346 |
+
if self.use_positional_encodings:
|
347 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
348 |
+
c = {'pos_x': pos_x, 'pos_y': pos_y}
|
349 |
+
out = [z, c]
|
350 |
+
if return_first_stage_outputs:
|
351 |
+
xrec = self.decode_first_stage(z)
|
352 |
+
out.extend([x, xrec])
|
353 |
+
if return_original_cond:
|
354 |
+
out.append(xc)
|
355 |
+
return out
|
356 |
+
|
357 |
+
@torch.no_grad()
|
358 |
+
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
359 |
+
if predict_cids:
|
360 |
+
if z.dim() == 4:
|
361 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
362 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
363 |
+
z = rearrange(z, 'b h w c -> b c h w').contiguous()
|
364 |
+
|
365 |
+
z = 1. / self.scale_factor * z
|
366 |
+
|
367 |
+
|
368 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
369 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
370 |
+
else:
|
371 |
+
return self.first_stage_model.decode(z)
|
372 |
+
|
373 |
+
# same as above but without decorator
|
374 |
+
def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
375 |
+
if predict_cids:
|
376 |
+
if z.dim() == 4:
|
377 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
378 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
379 |
+
z = rearrange(z, 'b h w c -> b c h w').contiguous()
|
380 |
+
|
381 |
+
z = 1. / self.scale_factor * z
|
382 |
+
|
383 |
+
|
384 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
385 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
386 |
+
else:
|
387 |
+
return self.first_stage_model.decode(z)
|
388 |
+
|
389 |
+
@torch.no_grad()
|
390 |
+
def encode_first_stage(self, x):
|
391 |
+
return self.first_stage_model.encode(x)
|
392 |
+
|
393 |
+
def shared_step(self, batch, **kwargs):
|
394 |
+
x, c = self.get_input(batch, self.first_stage_key)
|
395 |
+
loss = self(x, c)
|
396 |
+
return loss
|
397 |
+
|
398 |
+
def test_step(self,batch,batch_idx):
|
399 |
+
cond = batch[self.cond_stage_key] # * self.test_repeat
|
400 |
+
cond = self.get_learned_conditioning(cond) # c: string -> [B, T, Context_dim]
|
401 |
+
batch_size = len(cond)
|
402 |
+
enc_emb = self.sample(cond,batch_size,timesteps=self.num_timesteps)# shape = [batch_size,self.channels,self.mel_dim,self.mel_length]
|
403 |
+
xrec = self.decode_first_stage(enc_emb)
|
404 |
+
# reconstructions = (xrec + 1)/2 # to mel scale
|
405 |
+
# test_ckpt_path = os.path.basename(self.trainer.tested_ckpt_path)
|
406 |
+
# savedir = os.path.join(self.trainer.log_dir,f'output_imgs_{test_ckpt_path}','fake_class')
|
407 |
+
# if not os.path.exists(savedir):
|
408 |
+
# os.makedirs(savedir)
|
409 |
+
|
410 |
+
# file_names = batch['f_name']
|
411 |
+
# nfiles = len(file_names)
|
412 |
+
# reconstructions = reconstructions.cpu().numpy().squeeze(1) # squuze channel dim
|
413 |
+
# for k in range(reconstructions.shape[0]):
|
414 |
+
# b,repeat = k % nfiles, k // nfiles
|
415 |
+
# vname_num_split_index = file_names[b].rfind('_')# file_names[b]:video_name+'_'+num
|
416 |
+
# v_n,num = file_names[b][:vname_num_split_index],file_names[b][vname_num_split_index+1:]
|
417 |
+
# save_img_path = os.path.join(savedir,f'{v_n}_sample_{num}_{repeat}.npy')# the num_th caption, the repeat_th repitition
|
418 |
+
# np.save(save_img_path,reconstructions[b])
|
419 |
+
return None
|
420 |
+
|
421 |
+
def forward(self, x, c, *args, **kwargs):
|
422 |
+
'''
|
423 |
+
video to audio:
|
424 |
+
x (latent): [B, 256 (time), 20] c (video feat): [B, 32 (time), 512]
|
425 |
+
'''
|
426 |
+
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() # [B]
|
427 |
+
if self.model.conditioning_key is not None:
|
428 |
+
assert c is not None
|
429 |
+
if self.cond_stage_trainable:
|
430 |
+
c = self.get_learned_conditioning(c) # c: string -> [B, T, Context_dim]
|
431 |
+
if self.shorten_cond_schedule: # TODO: drop this option
|
432 |
+
tc = self.cond_ids[t].to(self.device)
|
433 |
+
c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
|
434 |
+
return self.p_losses(x, c, t, *args, **kwargs)
|
435 |
+
|
436 |
+
|
437 |
+
def apply_model(self, x_noisy, t, cond, return_ids=False):
|
438 |
+
|
439 |
+
if isinstance(cond, dict):
|
440 |
+
# hybrid case, cond is exptected to be a dict
|
441 |
+
key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
|
442 |
+
cond = {key: cond}
|
443 |
+
else:
|
444 |
+
if not isinstance(cond, list):
|
445 |
+
cond = [cond]
|
446 |
+
if self.model.conditioning_key == "concat":
|
447 |
+
key = "c_concat"
|
448 |
+
elif self.model.conditioning_key == "crossattn":
|
449 |
+
key = "c_crossattn"
|
450 |
+
else:
|
451 |
+
key = "c_film"
|
452 |
+
cond = {key: cond}
|
453 |
+
|
454 |
+
|
455 |
+
x_recon = self.model(x_noisy, t, **cond)
|
456 |
+
|
457 |
+
if isinstance(x_recon, tuple) and not return_ids:
|
458 |
+
return x_recon[0]
|
459 |
+
else:
|
460 |
+
return x_recon
|
461 |
+
|
462 |
+
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
463 |
+
return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
|
464 |
+
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
465 |
+
|
466 |
+
def _prior_bpd(self, x_start):
|
467 |
+
"""
|
468 |
+
Get the prior KL term for the variational lower-bound, measured in
|
469 |
+
bits-per-dim.
|
470 |
+
This term can't be optimized, as it only depends on the encoder.
|
471 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
472 |
+
:return: a batch of [N] KL values (in bits), one per batch element.
|
473 |
+
"""
|
474 |
+
batch_size = x_start.shape[0]
|
475 |
+
t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
|
476 |
+
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
|
477 |
+
kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
|
478 |
+
return mean_flat(kl_prior) / np.log(2.0)
|
479 |
+
|
480 |
+
def p_losses(self, x_start, cond, t, noise=None):
|
481 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
482 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
483 |
+
model_output = self.apply_model(x_noisy, t, cond)
|
484 |
+
|
485 |
+
loss_dict = {}
|
486 |
+
prefix = 'train' if self.training else 'val'
|
487 |
+
|
488 |
+
if self.parameterization == "x0":
|
489 |
+
target = x_start
|
490 |
+
elif self.parameterization == "eps":
|
491 |
+
target = noise
|
492 |
+
else:
|
493 |
+
raise NotImplementedError()
|
494 |
+
|
495 |
+
mean_dims = list(range(1,len(target.shape)))
|
496 |
+
loss_simple = self.get_loss(model_output, target, mean=False).mean(dim=mean_dims)
|
497 |
+
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
|
498 |
+
|
499 |
+
logvar_t = self.logvar[t.to(self.logvar.device)].to(self.device)
|
500 |
+
loss = loss_simple / torch.exp(logvar_t) + logvar_t
|
501 |
+
# loss = loss_simple / torch.exp(self.logvar) + self.logvar
|
502 |
+
if self.learn_logvar:
|
503 |
+
loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
|
504 |
+
loss_dict.update({'logvar': self.logvar.data.mean()})
|
505 |
+
|
506 |
+
loss = self.l_simple_weight * loss.mean()
|
507 |
+
|
508 |
+
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=mean_dims)
|
509 |
+
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
|
510 |
+
loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
|
511 |
+
loss += (self.original_elbo_weight * loss_vlb)
|
512 |
+
loss_dict.update({f'{prefix}/loss': loss})
|
513 |
+
|
514 |
+
return loss, loss_dict
|
515 |
+
|
516 |
+
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
|
517 |
+
return_x0=False, score_corrector=None, corrector_kwargs=None):
|
518 |
+
t_in = t
|
519 |
+
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
|
520 |
+
|
521 |
+
if score_corrector is not None:
|
522 |
+
assert self.parameterization == "eps"
|
523 |
+
model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
|
524 |
+
|
525 |
+
if return_codebook_ids:
|
526 |
+
model_out, logits = model_out
|
527 |
+
|
528 |
+
if self.parameterization == "eps":
|
529 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
530 |
+
elif self.parameterization == "x0":
|
531 |
+
x_recon = model_out
|
532 |
+
else:
|
533 |
+
raise NotImplementedError()
|
534 |
+
|
535 |
+
if clip_denoised:
|
536 |
+
x_recon.clamp_(-1., 1.)
|
537 |
+
if quantize_denoised:
|
538 |
+
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
|
539 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
540 |
+
if return_codebook_ids:
|
541 |
+
return model_mean, posterior_variance, posterior_log_variance, logits
|
542 |
+
elif return_x0:
|
543 |
+
return model_mean, posterior_variance, posterior_log_variance, x_recon
|
544 |
+
else:
|
545 |
+
return model_mean, posterior_variance, posterior_log_variance
|
546 |
+
|
547 |
+
@torch.no_grad()
|
548 |
+
def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
|
549 |
+
return_codebook_ids=False, quantize_denoised=False, return_x0=False,
|
550 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
|
551 |
+
b, *_, device = *x.shape, x.device
|
552 |
+
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
|
553 |
+
return_codebook_ids=return_codebook_ids,
|
554 |
+
quantize_denoised=quantize_denoised,
|
555 |
+
return_x0=return_x0,
|
556 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
557 |
+
if return_codebook_ids:
|
558 |
+
raise DeprecationWarning("Support dropped.")
|
559 |
+
model_mean, _, model_log_variance, logits = outputs
|
560 |
+
elif return_x0:
|
561 |
+
model_mean, _, model_log_variance, x0 = outputs
|
562 |
+
else:
|
563 |
+
model_mean, _, model_log_variance = outputs
|
564 |
+
|
565 |
+
noise = noise_like(x.shape, device, repeat_noise) * temperature
|
566 |
+
if noise_dropout > 0.:
|
567 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
568 |
+
# no noise when t == 0
|
569 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
570 |
+
|
571 |
+
if return_codebook_ids:
|
572 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
|
573 |
+
if return_x0:
|
574 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
|
575 |
+
else:
|
576 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
577 |
+
|
578 |
+
@torch.no_grad()
|
579 |
+
def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
|
580 |
+
img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
|
581 |
+
score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
|
582 |
+
log_every_t=None):
|
583 |
+
if not log_every_t:
|
584 |
+
log_every_t = self.log_every_t
|
585 |
+
timesteps = self.num_timesteps
|
586 |
+
if batch_size is not None:
|
587 |
+
b = batch_size if batch_size is not None else shape[0]
|
588 |
+
shape = [batch_size] + list(shape)
|
589 |
+
else:
|
590 |
+
b = batch_size = shape[0]
|
591 |
+
if x_T is None:
|
592 |
+
img = torch.randn(shape, device=self.device)
|
593 |
+
else:
|
594 |
+
img = x_T
|
595 |
+
intermediates = []
|
596 |
+
if cond is not None:
|
597 |
+
if isinstance(cond, dict):
|
598 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
599 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
600 |
+
else:
|
601 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
602 |
+
|
603 |
+
if start_T is not None:
|
604 |
+
timesteps = min(timesteps, start_T)
|
605 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
|
606 |
+
total=timesteps) if verbose else reversed(
|
607 |
+
range(0, timesteps))
|
608 |
+
if type(temperature) == float:
|
609 |
+
temperature = [temperature] * timesteps
|
610 |
+
|
611 |
+
for i in iterator:
|
612 |
+
ts = torch.full((b,), i, device=self.device, dtype=torch.long)
|
613 |
+
if self.shorten_cond_schedule:
|
614 |
+
assert self.model.conditioning_key != 'hybrid'
|
615 |
+
tc = self.cond_ids[ts].to(cond.device)
|
616 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
617 |
+
|
618 |
+
|
619 |
+
img, x0_partial = self.p_sample(img, cond, ts,
|
620 |
+
clip_denoised=self.clip_denoised,
|
621 |
+
quantize_denoised=quantize_denoised, return_x0=True,
|
622 |
+
temperature=temperature[i], noise_dropout=noise_dropout,
|
623 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
624 |
+
if mask is not None:
|
625 |
+
assert x0 is not None
|
626 |
+
img_orig = self.q_sample(x0, ts)
|
627 |
+
img = img_orig * mask + (1. - mask) * img
|
628 |
+
|
629 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
630 |
+
intermediates.append(x0_partial)
|
631 |
+
if callback: callback(i)
|
632 |
+
if img_callback: img_callback(img, i)
|
633 |
+
return img, intermediates
|
634 |
+
|
635 |
+
@torch.no_grad()
|
636 |
+
def p_sample_loop(self, cond, shape, return_intermediates=False,
|
637 |
+
x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
|
638 |
+
mask=None, x0=None, img_callback=None, start_T=None,
|
639 |
+
log_every_t=None):
|
640 |
+
|
641 |
+
if not log_every_t:
|
642 |
+
log_every_t = self.log_every_t
|
643 |
+
device = self.betas.device
|
644 |
+
b = shape[0]
|
645 |
+
if x_T is None:
|
646 |
+
img = torch.randn(shape, device=device)
|
647 |
+
else:
|
648 |
+
img = x_T
|
649 |
+
|
650 |
+
intermediates = [img]
|
651 |
+
if timesteps is None:
|
652 |
+
timesteps = self.num_timesteps
|
653 |
+
|
654 |
+
if start_T is not None:
|
655 |
+
timesteps = min(timesteps, start_T)
|
656 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
|
657 |
+
range(0, timesteps))
|
658 |
+
|
659 |
+
if mask is not None:
|
660 |
+
assert x0 is not None
|
661 |
+
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
|
662 |
+
|
663 |
+
for i in iterator:
|
664 |
+
ts = torch.full((b,), i, device=device, dtype=torch.long) # num
|
665 |
+
if self.shorten_cond_schedule: # False
|
666 |
+
assert self.model.conditioning_key != 'hybrid'
|
667 |
+
tc = self.cond_ids[ts].to(cond.device)
|
668 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
669 |
+
|
670 |
+
img = self.p_sample(img, cond, ts,
|
671 |
+
clip_denoised=self.clip_denoised, # False
|
672 |
+
quantize_denoised=quantize_denoised) # False
|
673 |
+
if mask is not None: # False
|
674 |
+
img_orig = self.q_sample(x0, ts)
|
675 |
+
img = img_orig * mask + (1. - mask) * img
|
676 |
+
|
677 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
678 |
+
intermediates.append(img)
|
679 |
+
if callback: callback(i)
|
680 |
+
if img_callback: img_callback(img, i)
|
681 |
+
|
682 |
+
if return_intermediates:
|
683 |
+
return img, intermediates
|
684 |
+
return img
|
685 |
+
|
686 |
+
@torch.no_grad()
|
687 |
+
def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
|
688 |
+
verbose=True, timesteps=None, quantize_denoised=False,
|
689 |
+
mask=None, x0=None, shape=None,**kwargs):
|
690 |
+
if shape is None:
|
691 |
+
if self.channels > 0:
|
692 |
+
shape = (batch_size, self.channels, self.mel_dim, self.mel_length)
|
693 |
+
else:
|
694 |
+
shape = (batch_size, self.mel_dim, self.mel_length)
|
695 |
+
if cond is not None:
|
696 |
+
if isinstance(cond, dict):
|
697 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
698 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
699 |
+
else:
|
700 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
701 |
+
return self.p_sample_loop(cond,
|
702 |
+
shape,
|
703 |
+
return_intermediates=return_intermediates, x_T=x_T,
|
704 |
+
verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
|
705 |
+
mask=mask, x0=x0)
|
706 |
+
|
707 |
+
@torch.no_grad()
|
708 |
+
def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs):
|
709 |
+
|
710 |
+
if ddim:
|
711 |
+
ddim_sampler = DDIMSampler(self)
|
712 |
+
shape = (self.channels, self.mel_dim, self.mel_length) if self.channels > 0 else (self.mel_dim, self.mel_length)
|
713 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps,batch_size,
|
714 |
+
shape,cond,verbose=False,**kwargs)
|
715 |
+
|
716 |
+
else:
|
717 |
+
samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
|
718 |
+
return_intermediates=True,**kwargs)
|
719 |
+
|
720 |
+
return samples, intermediates
|
721 |
+
|
722 |
+
|
723 |
+
@torch.no_grad()
|
724 |
+
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
725 |
+
quantize_denoised=True, inpaint=False, plot_denoise_rows=False, plot_progressive_rows=True,
|
726 |
+
plot_diffusion_rows=True, **kwargs):
|
727 |
+
|
728 |
+
use_ddim = ddim_steps is not None
|
729 |
+
|
730 |
+
log = dict()
|
731 |
+
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
|
732 |
+
return_first_stage_outputs=True,
|
733 |
+
force_c_encode=True,
|
734 |
+
return_original_cond=True,
|
735 |
+
bs=N) # z is latent,c is condition embedding, xc is condition(caption) list
|
736 |
+
N = min(x.shape[0], N)
|
737 |
+
n_row = min(x.shape[0], n_row)
|
738 |
+
log["inputs"] = x if len(x.shape)==4 else x.unsqueeze(1)
|
739 |
+
log["reconstruction"] = xrec if len(xrec.shape)==4 else xrec.unsqueeze(1)
|
740 |
+
if self.model.conditioning_key is not None:
|
741 |
+
if hasattr(self.cond_stage_model, "decode") and self.cond_stage_key != "masked_image":
|
742 |
+
xc = self.cond_stage_model.decode(c)
|
743 |
+
log["conditioning"] = xc
|
744 |
+
elif self.cond_stage_key == "masked_image":
|
745 |
+
log["mask"] = c[:, -1, :, :][:, None, :, :]
|
746 |
+
xc = self.cond_stage_model.decode(c[:, :self.cond_stage_model.embed_dim, :, :])
|
747 |
+
log["conditioning"] = xc
|
748 |
+
elif self.cond_stage_key in ["caption"]:
|
749 |
+
pass
|
750 |
+
# xc = log_txt_as_img((256, 256), batch["caption"])
|
751 |
+
# log["conditioning"] = xc
|
752 |
+
elif self.cond_stage_key == 'class_label':
|
753 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
|
754 |
+
log['conditioning'] = xc
|
755 |
+
elif isimage(xc):
|
756 |
+
log["conditioning"] = xc
|
757 |
+
|
758 |
+
if plot_diffusion_rows:
|
759 |
+
# get diffusion row
|
760 |
+
diffusion_row = list()
|
761 |
+
z_start = z[:n_row]
|
762 |
+
for t in range(self.num_timesteps):
|
763 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
764 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
765 |
+
t = t.to(self.device).long()
|
766 |
+
noise = torch.randn_like(z_start)
|
767 |
+
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
768 |
+
diffusion_row.append(self.decode_first_stage(z_noisy))
|
769 |
+
if len(diffusion_row[0].shape) == 3:
|
770 |
+
diffusion_row = [x.unsqueeze(1) for x in diffusion_row]
|
771 |
+
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
772 |
+
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
773 |
+
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
774 |
+
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
775 |
+
log["diffusion_row"] = diffusion_grid
|
776 |
+
|
777 |
+
if sample:
|
778 |
+
# get denoise row
|
779 |
+
with self.ema_scope("Plotting"):
|
780 |
+
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
|
781 |
+
ddim_steps=ddim_steps,eta=ddim_eta)
|
782 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
783 |
+
x_samples = self.decode_first_stage(samples)
|
784 |
+
log["samples"] = x_samples if len(x_samples.shape)==4 else x_samples.unsqueeze(1)
|
785 |
+
if plot_denoise_rows:
|
786 |
+
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
787 |
+
log["denoise_row"] = denoise_grid
|
788 |
+
|
789 |
+
if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
|
790 |
+
self.first_stage_model, IdentityFirstStage):
|
791 |
+
# also display when quantizing x0 while sampling
|
792 |
+
with self.ema_scope("Plotting Quantized Denoised"):
|
793 |
+
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
|
794 |
+
ddim_steps=ddim_steps,eta=ddim_eta,
|
795 |
+
quantize_denoised=True)
|
796 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
|
797 |
+
# quantize_denoised=True)
|
798 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
799 |
+
log["samples_x0_quantized"] = x_samples if len(x_samples.shape)==4 else x_samples.unsqueeze(1)
|
800 |
+
|
801 |
+
if inpaint:
|
802 |
+
# make a simple center square
|
803 |
+
b, h, w = z.shape[0], z.shape[2], z.shape[3]
|
804 |
+
mask = torch.ones(N, h, w).to(self.device)
|
805 |
+
# zeros will be filled in
|
806 |
+
mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
|
807 |
+
mask = mask[:, None, ...]
|
808 |
+
with self.ema_scope("Plotting Inpaint"):
|
809 |
+
|
810 |
+
samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,
|
811 |
+
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
812 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
813 |
+
log["samples_inpainting"] = x_samples
|
814 |
+
log["mask_inpainting"] = mask
|
815 |
+
|
816 |
+
# outpaint
|
817 |
+
mask = 1 - mask
|
818 |
+
with self.ema_scope("Plotting Outpaint"):
|
819 |
+
samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,
|
820 |
+
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
821 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
822 |
+
log["samples_outpainting"] = x_samples
|
823 |
+
log["mask_outpainting"] = mask
|
824 |
+
|
825 |
+
if plot_progressive_rows:
|
826 |
+
with self.ema_scope("Plotting Progressives"):
|
827 |
+
shape = (self.channels, self.mel_dim, self.mel_length) if self.channels > 0 else (self.mel_dim, self.mel_length)
|
828 |
+
img, progressives = self.progressive_denoising(c,
|
829 |
+
shape=shape,
|
830 |
+
batch_size=N)
|
831 |
+
prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
|
832 |
+
log["progressive_row"] = prog_row
|
833 |
+
|
834 |
+
if return_keys:
|
835 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
836 |
+
return log
|
837 |
+
else:
|
838 |
+
return {key: log[key] for key in return_keys}
|
839 |
+
return log
|
840 |
+
|
841 |
+
def configure_optimizers(self):
|
842 |
+
lr = self.learning_rate
|
843 |
+
params = list(self.model.parameters())
|
844 |
+
if self.cond_stage_trainable:
|
845 |
+
print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
|
846 |
+
params = params + list(self.cond_stage_model.parameters())
|
847 |
+
if self.learn_logvar:
|
848 |
+
print('Diffusion model optimizing logvar')
|
849 |
+
params.append(self.logvar)
|
850 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
851 |
+
if self.use_scheduler:
|
852 |
+
assert 'target' in self.scheduler_config
|
853 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
854 |
+
|
855 |
+
print("Setting up LambdaLR scheduler...")
|
856 |
+
scheduler = [
|
857 |
+
{
|
858 |
+
'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
|
859 |
+
'interval': 'step',
|
860 |
+
'frequency': 1
|
861 |
+
}]
|
862 |
+
return [opt], scheduler
|
863 |
+
return opt
|
864 |
+
|
865 |
+
|
ldm/models/diffusion/plms.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""SAMPLING ONLY."""
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from tqdm import tqdm
|
6 |
+
from functools import partial
|
7 |
+
|
8 |
+
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
|
9 |
+
|
10 |
+
|
11 |
+
class PLMSSampler(object):
|
12 |
+
def __init__(self, model, schedule="linear", **kwargs):
|
13 |
+
super().__init__()
|
14 |
+
self.model = model
|
15 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
16 |
+
self.schedule = schedule
|
17 |
+
|
18 |
+
def register_buffer(self, name, attr):
|
19 |
+
if type(attr) == torch.Tensor:
|
20 |
+
if attr.device != torch.device("cuda"):
|
21 |
+
attr = attr.to(torch.device("cuda"))
|
22 |
+
setattr(self, name, attr)
|
23 |
+
|
24 |
+
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
25 |
+
if ddim_eta != 0:
|
26 |
+
raise ValueError('ddim_eta must be 0 for PLMS')
|
27 |
+
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
28 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
29 |
+
alphas_cumprod = self.model.alphas_cumprod
|
30 |
+
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
31 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
32 |
+
|
33 |
+
self.register_buffer('betas', to_torch(self.model.betas))
|
34 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
35 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
36 |
+
|
37 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
38 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
39 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
40 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
41 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
42 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
43 |
+
|
44 |
+
# ddim sampling parameters
|
45 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
46 |
+
ddim_timesteps=self.ddim_timesteps,
|
47 |
+
eta=ddim_eta,verbose=verbose)
|
48 |
+
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
49 |
+
self.register_buffer('ddim_alphas', ddim_alphas)
|
50 |
+
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
51 |
+
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
52 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
53 |
+
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
54 |
+
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
55 |
+
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
56 |
+
|
57 |
+
@torch.no_grad()
|
58 |
+
def sample(self,
|
59 |
+
S,
|
60 |
+
batch_size,
|
61 |
+
shape,
|
62 |
+
conditioning=None,
|
63 |
+
callback=None,
|
64 |
+
normals_sequence=None,
|
65 |
+
img_callback=None,
|
66 |
+
quantize_x0=False,
|
67 |
+
eta=0.,
|
68 |
+
mask=None,
|
69 |
+
x0=None,
|
70 |
+
temperature=1.,
|
71 |
+
noise_dropout=0.,
|
72 |
+
score_corrector=None,
|
73 |
+
corrector_kwargs=None,
|
74 |
+
verbose=True,
|
75 |
+
x_T=None,
|
76 |
+
log_every_t=100,
|
77 |
+
unconditional_guidance_scale=1.,
|
78 |
+
unconditional_conditioning=None,
|
79 |
+
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
80 |
+
**kwargs
|
81 |
+
):
|
82 |
+
if conditioning is not None:
|
83 |
+
if isinstance(conditioning, dict):
|
84 |
+
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
85 |
+
if cbs != batch_size:
|
86 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
87 |
+
else:
|
88 |
+
if conditioning.shape[0] != batch_size:
|
89 |
+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
90 |
+
|
91 |
+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
92 |
+
# sampling
|
93 |
+
C, H, W = shape
|
94 |
+
size = (batch_size, C, H, W)
|
95 |
+
print(f'Data shape for PLMS sampling is {size}')
|
96 |
+
|
97 |
+
samples, intermediates = self.plms_sampling(conditioning, size,
|
98 |
+
callback=callback,
|
99 |
+
img_callback=img_callback,
|
100 |
+
quantize_denoised=quantize_x0,
|
101 |
+
mask=mask, x0=x0,
|
102 |
+
ddim_use_original_steps=False,
|
103 |
+
noise_dropout=noise_dropout,
|
104 |
+
temperature=temperature,
|
105 |
+
score_corrector=score_corrector,
|
106 |
+
corrector_kwargs=corrector_kwargs,
|
107 |
+
x_T=x_T,
|
108 |
+
log_every_t=log_every_t,
|
109 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
110 |
+
unconditional_conditioning=unconditional_conditioning,
|
111 |
+
)
|
112 |
+
return samples, intermediates
|
113 |
+
|
114 |
+
@torch.no_grad()
|
115 |
+
def plms_sampling(self, cond, shape,
|
116 |
+
x_T=None, ddim_use_original_steps=False,
|
117 |
+
callback=None, timesteps=None, quantize_denoised=False,
|
118 |
+
mask=None, x0=None, img_callback=None, log_every_t=100,
|
119 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
120 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None,):
|
121 |
+
device = self.model.betas.device
|
122 |
+
b = shape[0]
|
123 |
+
if x_T is None:
|
124 |
+
img = torch.randn(shape, device=device)
|
125 |
+
else:
|
126 |
+
img = x_T
|
127 |
+
|
128 |
+
if timesteps is None:
|
129 |
+
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
130 |
+
elif timesteps is not None and not ddim_use_original_steps:
|
131 |
+
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
132 |
+
timesteps = self.ddim_timesteps[:subset_end]
|
133 |
+
|
134 |
+
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
135 |
+
time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
|
136 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
137 |
+
print(f"Running PLMS Sampling with {total_steps} timesteps")
|
138 |
+
|
139 |
+
iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
|
140 |
+
old_eps = []
|
141 |
+
|
142 |
+
for i, step in enumerate(iterator):
|
143 |
+
index = total_steps - i - 1
|
144 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
145 |
+
ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
|
146 |
+
|
147 |
+
if mask is not None:
|
148 |
+
assert x0 is not None
|
149 |
+
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
150 |
+
img = img_orig * mask + (1. - mask) * img
|
151 |
+
|
152 |
+
outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
153 |
+
quantize_denoised=quantize_denoised, temperature=temperature,
|
154 |
+
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
155 |
+
corrector_kwargs=corrector_kwargs,
|
156 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
157 |
+
unconditional_conditioning=unconditional_conditioning,
|
158 |
+
old_eps=old_eps, t_next=ts_next)
|
159 |
+
img, pred_x0, e_t = outs
|
160 |
+
old_eps.append(e_t)
|
161 |
+
if len(old_eps) >= 4:
|
162 |
+
old_eps.pop(0)
|
163 |
+
if callback: callback(i)
|
164 |
+
if img_callback: img_callback(pred_x0, i)
|
165 |
+
|
166 |
+
if index % log_every_t == 0 or index == total_steps - 1:
|
167 |
+
intermediates['x_inter'].append(img)
|
168 |
+
intermediates['pred_x0'].append(pred_x0)
|
169 |
+
|
170 |
+
return img, intermediates
|
171 |
+
|
172 |
+
@torch.no_grad()
|
173 |
+
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
174 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
175 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None):
|
176 |
+
b, *_, device = *x.shape, x.device
|
177 |
+
|
178 |
+
def get_model_output(x, t):
|
179 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
180 |
+
e_t = self.model.apply_model(x, t, c)
|
181 |
+
else:
|
182 |
+
x_in = torch.cat([x] * 2)
|
183 |
+
t_in = torch.cat([t] * 2)
|
184 |
+
c_in = torch.cat([unconditional_conditioning, c])
|
185 |
+
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
186 |
+
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
187 |
+
|
188 |
+
if score_corrector is not None:
|
189 |
+
assert self.model.parameterization == "eps"
|
190 |
+
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
191 |
+
|
192 |
+
return e_t
|
193 |
+
|
194 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
195 |
+
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
196 |
+
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
197 |
+
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
198 |
+
|
199 |
+
def get_x_prev_and_pred_x0(e_t, index):
|
200 |
+
# select parameters corresponding to the currently considered timestep
|
201 |
+
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
202 |
+
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
203 |
+
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
204 |
+
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
205 |
+
|
206 |
+
# current prediction for x_0
|
207 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
208 |
+
if quantize_denoised:
|
209 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
210 |
+
# direction pointing to x_t
|
211 |
+
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
212 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
213 |
+
if noise_dropout > 0.:
|
214 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
215 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
216 |
+
return x_prev, pred_x0
|
217 |
+
|
218 |
+
e_t = get_model_output(x, t)
|
219 |
+
if len(old_eps) == 0:
|
220 |
+
# Pseudo Improved Euler (2nd order)
|
221 |
+
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
|
222 |
+
e_t_next = get_model_output(x_prev, t_next)
|
223 |
+
e_t_prime = (e_t + e_t_next) / 2
|
224 |
+
elif len(old_eps) == 1:
|
225 |
+
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
|
226 |
+
e_t_prime = (3 * e_t - old_eps[-1]) / 2
|
227 |
+
elif len(old_eps) == 2:
|
228 |
+
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
|
229 |
+
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
|
230 |
+
elif len(old_eps) >= 3:
|
231 |
+
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
|
232 |
+
e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
|
233 |
+
|
234 |
+
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
|
235 |
+
|
236 |
+
return x_prev, pred_x0, e_t
|
ldm/models/diffusion/transport/__init__.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .transport import Transport, ModelType, WeightType, PathType, SNRType, Sampler
|
2 |
+
|
3 |
+
|
4 |
+
def create_transport(
|
5 |
+
path_type='Linear',
|
6 |
+
prediction="velocity",
|
7 |
+
loss_weight=None,
|
8 |
+
train_eps=None,
|
9 |
+
sample_eps=None,
|
10 |
+
snr_type="uniform"
|
11 |
+
):
|
12 |
+
"""function for creating Transport object
|
13 |
+
**Note**: model prediction defaults to velocity
|
14 |
+
Args:
|
15 |
+
- path_type: type of path to use; default to linear
|
16 |
+
- learn_score: set model prediction to score
|
17 |
+
- learn_noise: set model prediction to noise
|
18 |
+
- velocity_weighted: weight loss by velocity weight
|
19 |
+
- likelihood_weighted: weight loss by likelihood weight
|
20 |
+
- train_eps: small epsilon for avoiding instability during training
|
21 |
+
- sample_eps: small epsilon for avoiding instability during sampling
|
22 |
+
"""
|
23 |
+
|
24 |
+
if prediction == "noise":
|
25 |
+
model_type = ModelType.NOISE
|
26 |
+
elif prediction == "score":
|
27 |
+
model_type = ModelType.SCORE
|
28 |
+
else:
|
29 |
+
model_type = ModelType.VELOCITY
|
30 |
+
|
31 |
+
if loss_weight == "velocity":
|
32 |
+
loss_type = WeightType.VELOCITY
|
33 |
+
elif loss_weight == "likelihood":
|
34 |
+
loss_type = WeightType.LIKELIHOOD
|
35 |
+
else:
|
36 |
+
loss_type = WeightType.NONE
|
37 |
+
|
38 |
+
if snr_type == "lognorm":
|
39 |
+
snr_type = SNRType.LOGNORM
|
40 |
+
elif snr_type == "uniform":
|
41 |
+
snr_type = SNRType.UNIFORM
|
42 |
+
else:
|
43 |
+
raise ValueError(f"Invalid snr type {snr_type}")
|
44 |
+
|
45 |
+
path_choice = {
|
46 |
+
"Linear": PathType.LINEAR,
|
47 |
+
"GVP": PathType.GVP,
|
48 |
+
"VP": PathType.VP,
|
49 |
+
}
|
50 |
+
|
51 |
+
path_type = path_choice[path_type]
|
52 |
+
|
53 |
+
if (path_type in [PathType.VP]):
|
54 |
+
train_eps = 1e-5 if train_eps is None else train_eps
|
55 |
+
sample_eps = 1e-3 if train_eps is None else sample_eps
|
56 |
+
elif (path_type in [PathType.GVP, PathType.LINEAR] and model_type != ModelType.VELOCITY):
|
57 |
+
train_eps = 1e-3 if train_eps is None else train_eps
|
58 |
+
sample_eps = 1e-3 if train_eps is None else sample_eps
|
59 |
+
else: # velocity & [GVP, LINEAR] is stable everywhere
|
60 |
+
train_eps = 0
|
61 |
+
sample_eps = 0
|
62 |
+
|
63 |
+
# create flow state
|
64 |
+
state = Transport(
|
65 |
+
model_type=model_type,
|
66 |
+
path_type=path_type,
|
67 |
+
loss_type=loss_type,
|
68 |
+
train_eps=train_eps,
|
69 |
+
sample_eps=sample_eps,
|
70 |
+
snr_type=snr_type
|
71 |
+
)
|
72 |
+
|
73 |
+
return state
|