Spaces:
Running
on
A10G
Running
on
A10G
update
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- app.py +144 -282
- configs/text_to_audio/bigvgan_args.yaml +63 -0
- configs/text_to_audio/clap_args.yaml +26 -0
- configs/text_to_audio/txt2audio_args.yaml +78 -0
- ldm/lr_scheduler.py +98 -0
- ldm/models/autoencoder.py +474 -0
- ldm/models/autoencoder_multi.py +201 -0
- ldm/models/diffusion/__init__.py +0 -0
- ldm/models/diffusion/classifier.py +267 -0
- ldm/models/diffusion/ddim.py +262 -0
- ldm/models/diffusion/ddpm.py +1444 -0
- ldm/models/diffusion/ddpm_audio.py +1262 -0
- ldm/models/diffusion/ddpm_audio_inpaint.py +1081 -0
- ldm/models/diffusion/plms.py +236 -0
- ldm/modules/attention.py +261 -0
- ldm/modules/diffusionmodules/__init__.py +0 -0
- ldm/modules/diffusionmodules/custom_openaimodel.py +368 -0
- ldm/modules/diffusionmodules/model.py +835 -0
- ldm/modules/diffusionmodules/openaimodel.py +963 -0
- ldm/modules/diffusionmodules/util.py +267 -0
- ldm/modules/discriminator/model.py +295 -0
- ldm/modules/discriminator/multi_window_disc.py +196 -0
- ldm/modules/distributions/__init__.py +0 -0
- ldm/modules/distributions/distributions.py +92 -0
- ldm/modules/ema.py +76 -0
- ldm/modules/encoders/CLAP/CLAPWrapper.py +257 -0
- ldm/modules/encoders/CLAP/__init__.py +3 -0
- ldm/modules/encoders/CLAP/audio.py +179 -0
- ldm/modules/encoders/CLAP/clap.py +89 -0
- ldm/modules/encoders/CLAP/config.yml +26 -0
- ldm/modules/encoders/CLAP/utils.py +26 -0
- ldm/modules/encoders/__init__.py +0 -0
- ldm/modules/encoders/modules.py +314 -0
- ldm/modules/encoders/open_clap/__init__.py +8 -0
- ldm/modules/encoders/open_clap/bert.py +32 -0
- ldm/modules/encoders/open_clap/bpe_simple_vocab_16e6.txt.gz +3 -0
- ldm/modules/encoders/open_clap/factory.py +257 -0
- ldm/modules/encoders/open_clap/feature_fusion.py +193 -0
- ldm/modules/encoders/open_clap/htsat.py +1022 -0
- ldm/modules/encoders/open_clap/linear_probe.py +63 -0
- ldm/modules/encoders/open_clap/loss.py +307 -0
- ldm/modules/encoders/open_clap/model.py +913 -0
- ldm/modules/encoders/open_clap/model_configs/HTSAT-base.json +23 -0
- ldm/modules/encoders/open_clap/model_configs/HTSAT-large.json +23 -0
- ldm/modules/encoders/open_clap/model_configs/HTSAT-tiny-win-1536.json +23 -0
- ldm/modules/encoders/open_clap/model_configs/HTSAT-tiny.json +23 -0
- ldm/modules/encoders/open_clap/model_configs/PANN-10.json +23 -0
- ldm/modules/encoders/open_clap/model_configs/PANN-14-fmax-18k.json +23 -0
- ldm/modules/encoders/open_clap/model_configs/PANN-14-fmax-8k-20s.json +23 -0
- ldm/modules/encoders/open_clap/model_configs/PANN-14-tiny-transformer.json +23 -0
app.py
CHANGED
@@ -1,285 +1,147 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
from langchain.chains.conversation.memory import ConversationBufferMemory
|
4 |
-
from langchain.llms.openai import OpenAI
|
5 |
-
from audio_foundation_models import *
|
6 |
import gradio as gr
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
image_filename = res['intermediate_steps'][0][1]
|
97 |
-
response = res['output'] + f"![](/file={image_filename})*{image_filename}*"
|
98 |
-
state = state + [(text, response)]
|
99 |
-
print(f"\nProcessed run_text, Input text: {text}\nCurrent state: {state}\n"
|
100 |
-
f"Current Memory: {self.agent.memory.buffer}")
|
101 |
-
return state, state, gr.Audio.update(visible=False), gr.Image.update(visible=False), gr.Button.update(visible=False)
|
102 |
-
elif tool == "Generate Text From The Audio" or tool == "Transcribe speech" or tool == "Target Sound Detection":
|
103 |
-
print("======>Current memory:\n %s" % self.agent.memory)
|
104 |
-
response = re.sub('(image/\S*png)', lambda m: f'![](/file={m.group(0)})*{m.group(0)}*', res['output'])
|
105 |
-
image_filename = res['intermediate_steps'][0][1]
|
106 |
-
#response = res['output'] + f"![](/file={image_filename})*{image_filename}*"
|
107 |
-
state = state + [(text, response)]
|
108 |
-
print("Outputs:", state)
|
109 |
-
return state, state, gr.Audio.update(visible=False), gr.Image.update(visible=False), gr.Button.update(visible=False)
|
110 |
-
elif tool == "Audio Inpainting":
|
111 |
-
audio_filename = res['intermediate_steps'][0][0].tool_input
|
112 |
-
image_filename = res['intermediate_steps'][0][1]
|
113 |
-
print("======>Current memory:\n %s" % self.agent.memory)
|
114 |
-
print(res)
|
115 |
-
response = res['output']
|
116 |
-
state = state + [(text, response)]
|
117 |
-
print("Outputs:", state)
|
118 |
-
return state, state, gr.Audio.update(value=audio_filename,visible=True), gr.Image.update(value=image_filename,visible=True), gr.Button.update(visible=True)
|
119 |
-
print("======>Current memory:\n %s" % self.agent.memory)
|
120 |
-
response = re.sub('(image/\S*png)', lambda m: f'![](/file={m.group(0)})*{m.group(0)}*', res['output'])
|
121 |
-
audio_filename = res['intermediate_steps'][0][1]
|
122 |
-
state = state + [(text, response)]
|
123 |
-
print("Outputs:", state)
|
124 |
-
return state, state, gr.Audio.update(value=audio_filename,visible=True), gr.Image.update(visible=False), gr.Button.update(visible=False)
|
125 |
-
|
126 |
-
def run_image_or_audio(self, file, state, txt):
|
127 |
-
file_type = file.name[-3:]
|
128 |
-
if file_type == "wav":
|
129 |
-
print("===============Running run_audio =============")
|
130 |
-
print("Inputs:", file, state)
|
131 |
-
print("======>Previous memory:\n %s" % self.agent.memory)
|
132 |
-
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
|
133 |
-
audio_load = whisper.load_audio(file.name)
|
134 |
-
soundfile.write(audio_filename, audio_load, samplerate = 16000)
|
135 |
-
description = self.models['A2T'].inference(audio_filename)
|
136 |
-
Human_prompt = "\nHuman: provide an audio named {}. The description is: {}. This information helps you to understand this audio, but you should use tools to finish following tasks, " \
|
137 |
-
"rather than directly imagine from my description. If you understand, say \"Received\". \n".format(audio_filename, description)
|
138 |
-
AI_prompt = "Received. "
|
139 |
-
self.agent.memory.buffer = self.agent.memory.buffer + Human_prompt + 'AI: ' + AI_prompt
|
140 |
-
# AI_prompt = "Received. "
|
141 |
-
# self.agent.memory.buffer = self.agent.memory.buffer + 'AI: ' + AI_prompt
|
142 |
-
print("======>Current memory:\n %s" % self.agent.memory)
|
143 |
-
#state = state + [(f"<audio src=audio_filename controls=controls></audio>*{audio_filename}*", AI_prompt)]
|
144 |
-
state = state + [(f"*{audio_filename}*", AI_prompt)]
|
145 |
-
print("Outputs:", state)
|
146 |
-
return state, state, txt + ' ' + audio_filename + ' ', gr.Audio.update(value=audio_filename,visible=True)
|
147 |
-
else:
|
148 |
-
# print("===============Running run_image =============")
|
149 |
-
# print("Inputs:", file, state)
|
150 |
-
# print("======>Previous memory:\n %s" % self.agent.memory)
|
151 |
-
image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
|
152 |
-
print("======>Auto Resize Image...")
|
153 |
-
img = Image.open(file.name)
|
154 |
-
width, height = img.size
|
155 |
-
ratio = min(512 / width, 512 / height)
|
156 |
-
width_new, height_new = (round(width * ratio), round(height * ratio))
|
157 |
-
width_new = int(np.round(width_new / 64.0)) * 64
|
158 |
-
height_new = int(np.round(height_new / 64.0)) * 64
|
159 |
-
img = img.resize((width_new, height_new))
|
160 |
-
img = img.convert('RGB')
|
161 |
-
img.save(image_filename, "PNG")
|
162 |
-
print(f"Resize image form {width}x{height} to {width_new}x{height_new}")
|
163 |
-
description = self.models['ImageCaptioning'].inference(image_filename)
|
164 |
-
Human_prompt = "\nHuman: provide an audio named {}. The description is: {}. This information helps you to understand this audio, but you should use tools to finish following tasks, " \
|
165 |
-
"rather than directly imagine from my description. If you understand, say \"Received\". \n".format(image_filename, description)
|
166 |
-
AI_prompt = "Received. "
|
167 |
-
self.agent.memory.buffer = self.agent.memory.buffer + Human_prompt + 'AI: ' + AI_prompt
|
168 |
-
print("======>Current memory:\n %s" % self.agent.memory)
|
169 |
-
state = state + [(f"![](/file={image_filename})*{image_filename}*", AI_prompt)]
|
170 |
-
print(f"\nProcessed run_image, Input image: {image_filename}\nCurrent state: {state}\n"
|
171 |
-
f"Current Memory: {self.agent.memory.buffer}")
|
172 |
-
return state, state, txt + f'{txt} {image_filename} ', gr.Audio.update(visible=False)
|
173 |
-
|
174 |
-
def inpainting(self, state, audio_filename, image_filename):
|
175 |
-
print("===============Running inpainting =============")
|
176 |
-
print("Inputs:", state)
|
177 |
-
print("======>Previous memory:\n %s" % self.agent.memory)
|
178 |
-
# inpaint = Inpaint(device="cpu")
|
179 |
-
new_image_filename, new_audio_filename = self.models['Inpaint'].predict(audio_filename, image_filename)
|
180 |
-
AI_prompt = "Here are the predict audio and the mel spectrum." + f"*{new_audio_filename}*" + f"![](/file={new_image_filename})*{new_image_filename}*"
|
181 |
-
self.agent.memory.buffer = self.agent.memory.buffer + 'AI: ' + AI_prompt
|
182 |
-
print("======>Current memory:\n %s" % self.agent.memory)
|
183 |
-
state = state + [(f"Audio Inpainting", AI_prompt)]
|
184 |
-
print("Outputs:", state)
|
185 |
-
return state, state, gr.Image.update(visible=False), gr.Audio.update(value=new_audio_filename, visible=True), gr.Button.update(visible=False)
|
186 |
-
def clear_audio(self):
|
187 |
-
return gr.Audio.update(value=None, visible=False)
|
188 |
-
def clear_image(self):
|
189 |
-
return gr.Image.update(value=None, visible=False)
|
190 |
-
def clear_button(self):
|
191 |
-
return gr.Button.update(visible=False)
|
192 |
-
def init_agent(self, openai_api_key):
|
193 |
-
os.system('nvidia-smi')
|
194 |
-
self.llm = OpenAI(temperature=0, openai_api_key=openai_api_key)
|
195 |
-
self.agent = initialize_agent(
|
196 |
-
self.tools,
|
197 |
-
self.llm,
|
198 |
-
agent="conversational-react-description",
|
199 |
-
verbose=True,
|
200 |
-
memory=self.memory,
|
201 |
-
return_intermediate_steps=True,
|
202 |
-
agent_kwargs={'prefix': AUDIO_CHATGPT_PREFIX, 'format_instructions': AUDIO_CHATGPT_FORMAT_INSTRUCTIONS, 'suffix': AUDIO_CHATGPT_SUFFIX}, )
|
203 |
-
return gr.update(visible = True)
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
if __name__ == '__main__':
|
208 |
-
bot = ConversationBot({#'ImageCaptioning': 'cuda:0',
|
209 |
-
'T2A': 'cuda:0',
|
210 |
-
#'I2A': 'cuda:0'
|
211 |
-
#'TTS_OOD':'cuda:0'
|
212 |
-
'TTS': 'cuda:0',
|
213 |
-
#'T2S': 'cuda:0'
|
214 |
-
'ASR': 'cuda:0',
|
215 |
-
'A2T': 'cuda:0',
|
216 |
-
#'Inpaint': 'cuda:0',
|
217 |
-
#'SoundDetection': 'cuda:0'
|
218 |
-
'Binaural': 'cuda:0'
|
219 |
-
#'SoundExtraction': 'cuda:0'
|
220 |
-
#'TargetSoundDetection': 'cuda:0',
|
221 |
-
#'Speech_Enh_SC': 'cuda:0'
|
222 |
-
#'Speech_SS': 'cuda:0'
|
223 |
-
})
|
224 |
-
with gr.Blocks(css="#chatbot {overflow:auto; height:500px;}") as demo:
|
225 |
-
gr.Markdown(_DESCRIPTION)
|
226 |
-
|
227 |
-
with gr.Row():
|
228 |
-
openai_api_key_textbox = gr.Textbox(
|
229 |
-
placeholder="Paste your OpenAI API key here to start Audio ChatGPT(sk-...) and press Enter ↵️",
|
230 |
-
show_label=False,
|
231 |
-
lines=1,
|
232 |
-
type="password",
|
233 |
-
)
|
234 |
-
|
235 |
-
chatbot = gr.Chatbot(elem_id="chatbot", label="Audio ChatGPT")
|
236 |
-
state = gr.State([])
|
237 |
-
with gr.Row(visible = False) as input_raws:
|
238 |
-
with gr.Column(scale=0.7):
|
239 |
-
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter, or upload an image").style(container=False)
|
240 |
-
with gr.Column(scale=0.1, min_width=0):
|
241 |
-
run = gr.Button("🏃♂️Run")
|
242 |
-
with gr.Column(scale=0.1, min_width=0):
|
243 |
-
clear = gr.Button("🔄Clear️")
|
244 |
-
with gr.Column(scale=0.1, min_width=0):
|
245 |
-
btn = gr.UploadButton("🖼️/🎙️ Upload", file_types=["image","audio"])
|
246 |
-
with gr.Row():
|
247 |
-
with gr.Column():
|
248 |
-
outaudio = gr.Audio(visible=False)
|
249 |
-
with gr.Row():
|
250 |
-
with gr.Column():
|
251 |
-
show_mel = gr.Image(type="filepath",tool='sketch',visible=False)
|
252 |
-
with gr.Row():
|
253 |
-
with gr.Column():
|
254 |
-
run_button = gr.Button("Predict Masked Place",visible=False)
|
255 |
-
gr.Examples(
|
256 |
-
examples=["Generate a speech with text 'here we go'",
|
257 |
-
"Transcribe this speech",
|
258 |
-
"Transfer the mono speech to a binaural one",
|
259 |
-
"Generate an audio of a dog barking",
|
260 |
-
"Generate an audio of this uploaded image",
|
261 |
-
"Give me the description of this audio",
|
262 |
-
"I want to inpaint it",
|
263 |
-
"What events does this audio include?",
|
264 |
-
"When did the thunder happen in this audio?",
|
265 |
-
"Extract the thunder event from this audio",
|
266 |
-
"Generate a piece of singing voice. Text sequence is 小酒窝长睫毛AP是你最美的记号. Note sequence is C#4/Db4 | F#4/Gb4 | G#4/Ab4 | A#4/Bb4 F#4/Gb4 | F#4/Gb4 C#4/Db4 | C#4/Db4 | rest | C#4/Db4 | A#4/Bb4 | G#4/Ab4 | A#4/Bb4 | G#4/Ab4 | F4 | C#4/Db4. Note duration sequence is 0.407140 | 0.376190 | 0.242180 | 0.509550 0.183420 | 0.315400 0.235020 | 0.361660 | 0.223070 | 0.377270 | 0.340550 | 0.299620 | 0.344510 | 0.283770 | 0.323390 | 0.360340.",
|
267 |
-
],
|
268 |
-
inputs=txt
|
269 |
)
|
270 |
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
|
|
|
|
|
|
3 |
import gradio as gr
|
4 |
+
from PIL import Image
|
5 |
+
from omegaconf import OmegaConf
|
6 |
+
from pathlib import Path
|
7 |
+
from vocoder.bigvgan.models import VocoderBigVGAN
|
8 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
9 |
+
from ldm.util import instantiate_from_config
|
10 |
+
from wav_evaluation.models.CLAPWrapper import CLAPWrapper
|
11 |
+
|
12 |
+
SAMPLE_RATE = 16000
|
13 |
+
|
14 |
+
torch.set_grad_enabled(False)
|
15 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
16 |
+
|
17 |
+
def dur_to_size(duration):
|
18 |
+
latent_width = int(duration * 7.8)
|
19 |
+
if latent_width % 4 != 0:
|
20 |
+
latent_width = (latent_width // 4 + 1) * 4
|
21 |
+
return latent_width
|
22 |
+
|
23 |
+
def initialize_model(config, ckpt):
|
24 |
+
config = OmegaConf.load(config)
|
25 |
+
model = instantiate_from_config(config.model)
|
26 |
+
model.load_state_dict(torch.load(ckpt,map_location='cpu')["state_dict"], strict=False)
|
27 |
+
|
28 |
+
model = model.to(device)
|
29 |
+
model.cond_stage_model.to(model.device)
|
30 |
+
model.cond_stage_model.device = model.device
|
31 |
+
print(model.device,device,model.cond_stage_model.device)
|
32 |
+
sampler = DDIMSampler(model)
|
33 |
+
|
34 |
+
return sampler
|
35 |
+
|
36 |
+
sampler = initialize_model('configs/text_to_audio/txt2audio_args.yaml', 'useful_ckpts/maa1_caps.ckpt')
|
37 |
+
vocoder = VocoderBigVGAN('vocoder/logs/bigvnat',device=device)
|
38 |
+
clap_model = CLAPWrapper('useful_ckpts/CLAP/CLAP_weights_2022.pth','useful_ckpts/CLAP/config.yml',use_cuda=torch.cuda.is_available())
|
39 |
+
|
40 |
+
def select_best_audio(prompt,wav_list):
|
41 |
+
text_embeddings = clap_model.get_text_embeddings([prompt])
|
42 |
+
score_list = []
|
43 |
+
for data in wav_list:
|
44 |
+
sr,wav = data
|
45 |
+
audio_embeddings = clap_model.get_audio_embeddings([(torch.FloatTensor(wav),sr)], resample=True)
|
46 |
+
score = clap_model.compute_similarity(audio_embeddings, text_embeddings,use_logit_scale=False).squeeze().cpu().numpy()
|
47 |
+
score_list.append(score)
|
48 |
+
max_index = np.array(score_list).argmax()
|
49 |
+
print(score_list,max_index)
|
50 |
+
return wav_list[max_index]
|
51 |
+
|
52 |
+
def txt2audio(sampler,vocoder,prompt, seed, scale, ddim_steps, n_samples=1, W=624, H=80):
|
53 |
+
prng = np.random.RandomState(seed)
|
54 |
+
start_code = prng.randn(n_samples, sampler.model.first_stage_model.embed_dim, H // 8, W // 8)
|
55 |
+
start_code = torch.from_numpy(start_code).to(device=device, dtype=torch.float32)
|
56 |
+
|
57 |
+
uc = None
|
58 |
+
if scale != 1.0:
|
59 |
+
uc = sampler.model.get_learned_conditioning(n_samples * [""])
|
60 |
+
c = sampler.model.get_learned_conditioning(n_samples * [prompt])# shape:[1,77,1280],即还没有变成句子embedding,仍是每个单词的embedding
|
61 |
+
shape = [sampler.model.first_stage_model.embed_dim, H//8, W//8] # (z_dim, 80//2^x, 848//2^x)
|
62 |
+
samples_ddim, _ = sampler.sample(S=ddim_steps,
|
63 |
+
conditioning=c,
|
64 |
+
batch_size=n_samples,
|
65 |
+
shape=shape,
|
66 |
+
verbose=False,
|
67 |
+
unconditional_guidance_scale=scale,
|
68 |
+
unconditional_conditioning=uc,
|
69 |
+
x_T=start_code)
|
70 |
+
|
71 |
+
x_samples_ddim = sampler.model.decode_first_stage(samples_ddim)
|
72 |
+
|
73 |
+
wav_list = []
|
74 |
+
for idx,spec in enumerate(x_samples_ddim):
|
75 |
+
wav = vocoder.vocode(spec)
|
76 |
+
wav_list.append((SAMPLE_RATE,wav))
|
77 |
+
best_wav = select_best_audio(prompt,wav_list)
|
78 |
+
return best_wav
|
79 |
+
|
80 |
+
|
81 |
+
def predict(prompt, ddim_steps, num_samples, scale, seed):
|
82 |
+
melbins,mel_len = 80,624
|
83 |
+
with torch.no_grad():
|
84 |
+
result = txt2audio(
|
85 |
+
sampler=sampler,
|
86 |
+
vocoder=vocoder,
|
87 |
+
prompt=prompt,
|
88 |
+
seed=seed,
|
89 |
+
scale=scale,
|
90 |
+
ddim_steps=ddim_steps,
|
91 |
+
n_samples=num_samples,
|
92 |
+
H=melbins, W=mel_len
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
)
|
94 |
|
95 |
+
return result
|
96 |
+
|
97 |
+
|
98 |
+
with gr.Blocks() as demo:
|
99 |
+
with gr.Row():
|
100 |
+
gr.Markdown("## Make-An-Audio: Text-to-Audio Generation")
|
101 |
+
|
102 |
+
with gr.Row():
|
103 |
+
with gr.Column():
|
104 |
+
prompt = gr.Textbox(label="Prompt: Input your text here. ")
|
105 |
+
run_button = gr.Button(label="Run")
|
106 |
+
|
107 |
+
|
108 |
+
with gr.Accordion("Advanced options", open=False):
|
109 |
+
num_samples = gr.Slider(
|
110 |
+
label="Select from audios num.This number control the number of candidates \
|
111 |
+
(e.g., generate three audios and choose the best to show you). A Larger value usually lead to \
|
112 |
+
better quality with heavier computation", minimum=1, maximum=10, value=3, step=1)
|
113 |
+
# num_samples = 1
|
114 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1,
|
115 |
+
maximum=150, value=100, step=1)
|
116 |
+
scale = gr.Slider(
|
117 |
+
label="Guidance Scale:(Large => more relevant to text but the quality may drop)", minimum=0.1, maximum=4.0, value=1.5, step=0.1
|
118 |
+
)
|
119 |
+
seed = gr.Slider(
|
120 |
+
label="Seed:Change this value (any integer number) will lead to a different generation result.",
|
121 |
+
minimum=0,
|
122 |
+
maximum=2147483647,
|
123 |
+
step=1,
|
124 |
+
value=44,
|
125 |
+
)
|
126 |
+
|
127 |
+
with gr.Column():
|
128 |
+
# audio_list = []
|
129 |
+
# for i in range(int(num_samples)):
|
130 |
+
# audio_list.append(gr.outputs.Audio())
|
131 |
+
outaudio = gr.Audio()
|
132 |
+
|
133 |
+
|
134 |
+
run_button.click(fn=predict, inputs=[
|
135 |
+
prompt,ddim_steps, num_samples, scale, seed], outputs=[outaudio])# inputs的参数只能传gr.xxx
|
136 |
+
with gr.Row():
|
137 |
+
with gr.Column():
|
138 |
+
gr.Examples(
|
139 |
+
examples = [['a dog barking and a bird chirping',100,3,2,55],['fireworks pop and explode',100,3,2,55],
|
140 |
+
['piano and violin plays',100,3,2,55],['wind thunder and rain falling',100,3,2,55],['music made by drum kit',100,3,2,55]],
|
141 |
+
inputs = [prompt,ddim_steps, num_samples, scale, seed],
|
142 |
+
outputs = [outaudio]
|
143 |
+
)
|
144 |
+
with gr.Column():
|
145 |
+
pass
|
146 |
+
|
147 |
+
demo.launch()
|
configs/text_to_audio/bigvgan_args.yaml
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
resblock: '1'
|
2 |
+
num_gpus: 0
|
3 |
+
batch_size: 64
|
4 |
+
num_mels: 80
|
5 |
+
learning_rate: 0.0001
|
6 |
+
adam_b1: 0.8
|
7 |
+
adam_b2: 0.99
|
8 |
+
lr_decay: 0.999
|
9 |
+
seed: 1234
|
10 |
+
upsample_rates:
|
11 |
+
- 4
|
12 |
+
- 4
|
13 |
+
- 2
|
14 |
+
- 2
|
15 |
+
- 2
|
16 |
+
- 2
|
17 |
+
upsample_kernel_sizes:
|
18 |
+
- 8
|
19 |
+
- 8
|
20 |
+
- 4
|
21 |
+
- 4
|
22 |
+
- 4
|
23 |
+
- 4
|
24 |
+
upsample_initial_channel: 1536
|
25 |
+
resblock_kernel_sizes:
|
26 |
+
- 3
|
27 |
+
- 7
|
28 |
+
- 11
|
29 |
+
resblock_dilation_sizes:
|
30 |
+
- - 1
|
31 |
+
- 3
|
32 |
+
- 5
|
33 |
+
- - 1
|
34 |
+
- 3
|
35 |
+
- 5
|
36 |
+
- - 1
|
37 |
+
- 3
|
38 |
+
- 5
|
39 |
+
activation: snakebeta
|
40 |
+
snake_logscale: true
|
41 |
+
resolutions:
|
42 |
+
- - 1024
|
43 |
+
- 120
|
44 |
+
- 600
|
45 |
+
- - 2048
|
46 |
+
- 240
|
47 |
+
- 1200
|
48 |
+
- - 512
|
49 |
+
- 50
|
50 |
+
- 240
|
51 |
+
mpd_reshapes:
|
52 |
+
- 2
|
53 |
+
- 3
|
54 |
+
- 5
|
55 |
+
- 7
|
56 |
+
- 11
|
57 |
+
use_spectral_norm: false
|
58 |
+
discriminator_channel_mult: 1
|
59 |
+
num_workers: 4
|
60 |
+
dist_config:
|
61 |
+
dist_backend: nccl
|
62 |
+
dist_url: tcp://localhost:54341
|
63 |
+
world_size: 1
|
configs/text_to_audio/clap_args.yaml
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# TEXT ENCODER CONFIG
|
2 |
+
text_model: 'bert-base-uncased'
|
3 |
+
text_len: 100
|
4 |
+
transformer_embed_dim: 768
|
5 |
+
freeze_text_encoder_weights: True
|
6 |
+
|
7 |
+
# AUDIO ENCODER CONFIG
|
8 |
+
audioenc_name: 'Cnn14'
|
9 |
+
out_emb: 2048
|
10 |
+
sampling_rate: 44100
|
11 |
+
duration: 9
|
12 |
+
fmin: 50
|
13 |
+
fmax: 14000
|
14 |
+
n_fft: 1028
|
15 |
+
hop_size: 320
|
16 |
+
mel_bins: 64
|
17 |
+
window_size: 1024
|
18 |
+
|
19 |
+
# PROJECTION SPACE CONFIG
|
20 |
+
d_proj: 1024
|
21 |
+
temperature: 0.003
|
22 |
+
|
23 |
+
# TRAINING AND EVALUATION CONFIG
|
24 |
+
num_classes: 527
|
25 |
+
batch_size: 1024
|
26 |
+
demo: False
|
configs/text_to_audio/txt2audio_args.yaml
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 1.0e-05
|
3 |
+
target: ldm.models.diffusion.ddpm_audio.LatentDiffusion_audio
|
4 |
+
params:
|
5 |
+
linear_start: 0.00085
|
6 |
+
linear_end: 0.0120
|
7 |
+
num_timesteps_cond: 1
|
8 |
+
log_every_t: 200
|
9 |
+
timesteps: 1000
|
10 |
+
first_stage_key: image
|
11 |
+
cond_stage_key: caption
|
12 |
+
image_size: 32 # unused
|
13 |
+
mel_dim: 10 # 80 // 2^3
|
14 |
+
mel_length: 78 # 624 // 2^3
|
15 |
+
channels: 4
|
16 |
+
cond_stage_trainable: false
|
17 |
+
conditioning_key: crossattn
|
18 |
+
monitor: val/loss_simple_ema
|
19 |
+
scale_by_std: True
|
20 |
+
use_ema: False
|
21 |
+
|
22 |
+
scheduler_config: # 10000 warmup steps
|
23 |
+
target: ldm.lr_scheduler.LambdaLinearScheduler
|
24 |
+
params:
|
25 |
+
warm_up_steps: [10000]
|
26 |
+
cycle_lengths: [10000000000000]
|
27 |
+
f_start: [1.e-6]
|
28 |
+
f_max: [1.]
|
29 |
+
f_min: [ 1.]
|
30 |
+
|
31 |
+
unet_config:
|
32 |
+
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
33 |
+
params:
|
34 |
+
image_size: 32 # ununsed
|
35 |
+
in_channels: 4
|
36 |
+
out_channels: 4
|
37 |
+
model_channels: 320
|
38 |
+
attention_resolutions:
|
39 |
+
- 1
|
40 |
+
- 2
|
41 |
+
num_res_blocks: 2
|
42 |
+
channel_mult: # num_down = len(ch_mult)-1
|
43 |
+
- 1
|
44 |
+
- 2
|
45 |
+
num_heads: 8
|
46 |
+
use_spatial_transformer: true
|
47 |
+
transformer_depth: 1
|
48 |
+
context_dim: 1024
|
49 |
+
use_checkpoint: true
|
50 |
+
legacy: False
|
51 |
+
|
52 |
+
first_stage_config:
|
53 |
+
target: ldm.models.autoencoder.AutoencoderKL
|
54 |
+
params:
|
55 |
+
embed_dim: 4
|
56 |
+
monitor: val/rec_loss
|
57 |
+
ckpt_path:
|
58 |
+
ddconfig:
|
59 |
+
double_z: true
|
60 |
+
z_channels: 4
|
61 |
+
resolution: 624
|
62 |
+
in_channels: 1
|
63 |
+
out_ch: 1
|
64 |
+
ch: 128
|
65 |
+
ch_mult: [ 1, 2, 2, 4 ] # num_down = len(ch_mult)-1
|
66 |
+
num_res_blocks: 2
|
67 |
+
attn_resolutions: [78, 156]
|
68 |
+
dropout: 0.0
|
69 |
+
lossconfig:
|
70 |
+
target: torch.nn.Identity
|
71 |
+
|
72 |
+
cond_stage_config:
|
73 |
+
target: ldm.modules.encoders.modules.FrozenCLAPEmbedder
|
74 |
+
params:
|
75 |
+
weights_path: useful_ckpts/CLAP/CLAP_weights_2022.pth
|
76 |
+
|
77 |
+
ckpt_path: useful_ckpts/maa1_caps.ckpt
|
78 |
+
|
ldm/lr_scheduler.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
|
4 |
+
class LambdaWarmUpCosineScheduler:
|
5 |
+
"""
|
6 |
+
note: use with a base_lr of 1.0
|
7 |
+
"""
|
8 |
+
def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0):
|
9 |
+
self.lr_warm_up_steps = warm_up_steps
|
10 |
+
self.lr_start = lr_start
|
11 |
+
self.lr_min = lr_min
|
12 |
+
self.lr_max = lr_max
|
13 |
+
self.lr_max_decay_steps = max_decay_steps
|
14 |
+
self.last_lr = 0.
|
15 |
+
self.verbosity_interval = verbosity_interval
|
16 |
+
|
17 |
+
def schedule(self, n, **kwargs):
|
18 |
+
if self.verbosity_interval > 0:
|
19 |
+
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
|
20 |
+
if n < self.lr_warm_up_steps:
|
21 |
+
lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start
|
22 |
+
self.last_lr = lr
|
23 |
+
return lr
|
24 |
+
else:
|
25 |
+
t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps)
|
26 |
+
t = min(t, 1.0)
|
27 |
+
lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
|
28 |
+
1 + np.cos(t * np.pi))
|
29 |
+
self.last_lr = lr
|
30 |
+
return lr
|
31 |
+
|
32 |
+
def __call__(self, n, **kwargs):
|
33 |
+
return self.schedule(n,**kwargs)
|
34 |
+
|
35 |
+
|
36 |
+
class LambdaWarmUpCosineScheduler2:
|
37 |
+
"""
|
38 |
+
supports repeated iterations, configurable via lists
|
39 |
+
note: use with a base_lr of 1.0.
|
40 |
+
"""
|
41 |
+
def __init__(self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0):
|
42 |
+
assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths)
|
43 |
+
self.lr_warm_up_steps = warm_up_steps
|
44 |
+
self.f_start = f_start
|
45 |
+
self.f_min = f_min
|
46 |
+
self.f_max = f_max
|
47 |
+
self.cycle_lengths = cycle_lengths
|
48 |
+
self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
|
49 |
+
self.last_f = 0.
|
50 |
+
self.verbosity_interval = verbosity_interval
|
51 |
+
|
52 |
+
def find_in_interval(self, n):
|
53 |
+
interval = 0
|
54 |
+
for cl in self.cum_cycles[1:]:
|
55 |
+
if n <= cl:
|
56 |
+
return interval
|
57 |
+
interval += 1
|
58 |
+
|
59 |
+
def schedule(self, n, **kwargs):
|
60 |
+
cycle = self.find_in_interval(n)
|
61 |
+
n = n - self.cum_cycles[cycle]
|
62 |
+
if self.verbosity_interval > 0:
|
63 |
+
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
|
64 |
+
f"current cycle {cycle}")
|
65 |
+
if n < self.lr_warm_up_steps[cycle]:
|
66 |
+
f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
|
67 |
+
self.last_f = f
|
68 |
+
return f
|
69 |
+
else:
|
70 |
+
t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle])
|
71 |
+
t = min(t, 1.0)
|
72 |
+
f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
|
73 |
+
1 + np.cos(t * np.pi))
|
74 |
+
self.last_f = f
|
75 |
+
return f
|
76 |
+
|
77 |
+
def __call__(self, n, **kwargs):
|
78 |
+
return self.schedule(n, **kwargs)
|
79 |
+
|
80 |
+
|
81 |
+
class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):
|
82 |
+
|
83 |
+
def schedule(self, n, **kwargs):
|
84 |
+
cycle = self.find_in_interval(n)
|
85 |
+
n = n - self.cum_cycles[cycle]
|
86 |
+
if self.verbosity_interval > 0:
|
87 |
+
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
|
88 |
+
f"current cycle {cycle}")
|
89 |
+
|
90 |
+
if n < self.lr_warm_up_steps[cycle]:
|
91 |
+
f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
|
92 |
+
self.last_f = f
|
93 |
+
return f
|
94 |
+
else:
|
95 |
+
f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle])
|
96 |
+
self.last_f = f
|
97 |
+
return f
|
98 |
+
|
ldm/models/autoencoder.py
ADDED
@@ -0,0 +1,474 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import pytorch_lightning as pl
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from contextlib import contextmanager
|
6 |
+
from packaging import version
|
7 |
+
import numpy as np
|
8 |
+
from ldm.modules.diffusionmodules.model import Encoder, Decoder
|
9 |
+
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
10 |
+
from torch.optim.lr_scheduler import LambdaLR
|
11 |
+
from ldm.util import instantiate_from_config
|
12 |
+
# from icecream import ic
|
13 |
+
|
14 |
+
class VQModel(pl.LightningModule):
|
15 |
+
def __init__(self,
|
16 |
+
ddconfig,
|
17 |
+
lossconfig,
|
18 |
+
n_embed,
|
19 |
+
embed_dim,
|
20 |
+
ckpt_path=None,
|
21 |
+
ignore_keys=[],
|
22 |
+
image_key="image",
|
23 |
+
colorize_nlabels=None,
|
24 |
+
monitor=None,
|
25 |
+
batch_resize_range=None,
|
26 |
+
scheduler_config=None,
|
27 |
+
lr_g_factor=1.0,
|
28 |
+
remap=None,
|
29 |
+
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
30 |
+
use_ema=False
|
31 |
+
):
|
32 |
+
super().__init__()
|
33 |
+
self.embed_dim = embed_dim
|
34 |
+
self.n_embed = n_embed
|
35 |
+
self.image_key = image_key
|
36 |
+
self.encoder = Encoder(**ddconfig)
|
37 |
+
self.decoder = Decoder(**ddconfig)
|
38 |
+
self.loss = instantiate_from_config(lossconfig)
|
39 |
+
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
|
40 |
+
remap=remap,
|
41 |
+
sane_index_shape=sane_index_shape)
|
42 |
+
self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
|
43 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
44 |
+
if colorize_nlabels is not None:
|
45 |
+
assert type(colorize_nlabels)==int
|
46 |
+
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
47 |
+
if monitor is not None:
|
48 |
+
self.monitor = monitor
|
49 |
+
self.batch_resize_range = batch_resize_range
|
50 |
+
if self.batch_resize_range is not None:
|
51 |
+
print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
|
52 |
+
|
53 |
+
self.use_ema = use_ema
|
54 |
+
if self.use_ema:
|
55 |
+
self.model_ema = LitEma(self)
|
56 |
+
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
57 |
+
|
58 |
+
if ckpt_path is not None:
|
59 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
60 |
+
self.scheduler_config = scheduler_config
|
61 |
+
self.lr_g_factor = lr_g_factor
|
62 |
+
|
63 |
+
@contextmanager
|
64 |
+
def ema_scope(self, context=None):
|
65 |
+
if self.use_ema:
|
66 |
+
self.model_ema.store(self.parameters())
|
67 |
+
self.model_ema.copy_to(self)
|
68 |
+
if context is not None:
|
69 |
+
print(f"{context}: Switched to EMA weights")
|
70 |
+
try:
|
71 |
+
yield None
|
72 |
+
finally:
|
73 |
+
if self.use_ema:
|
74 |
+
self.model_ema.restore(self.parameters())
|
75 |
+
if context is not None:
|
76 |
+
print(f"{context}: Restored training weights")
|
77 |
+
|
78 |
+
def init_from_ckpt(self, path, ignore_keys=list()):
|
79 |
+
sd = torch.load(path, map_location="cpu")["state_dict"]
|
80 |
+
keys = list(sd.keys())
|
81 |
+
for k in keys:
|
82 |
+
for ik in ignore_keys:
|
83 |
+
if k.startswith(ik):
|
84 |
+
print("Deleting key {} from state_dict.".format(k))
|
85 |
+
del sd[k]
|
86 |
+
missing, unexpected = self.load_state_dict(sd, strict=False)
|
87 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
88 |
+
if len(missing) > 0:
|
89 |
+
print(f"Missing Keys: {missing}")
|
90 |
+
print(f"Unexpected Keys: {unexpected}")
|
91 |
+
|
92 |
+
def on_train_batch_end(self, *args, **kwargs):
|
93 |
+
if self.use_ema:
|
94 |
+
self.model_ema(self)
|
95 |
+
|
96 |
+
def encode(self, x):
|
97 |
+
h = self.encoder(x)
|
98 |
+
h = self.quant_conv(h)
|
99 |
+
quant, emb_loss, info = self.quantize(h)
|
100 |
+
return quant, emb_loss, info
|
101 |
+
|
102 |
+
def encode_to_prequant(self, x):
|
103 |
+
h = self.encoder(x)
|
104 |
+
h = self.quant_conv(h)
|
105 |
+
return h
|
106 |
+
|
107 |
+
def decode(self, quant):
|
108 |
+
quant = self.post_quant_conv(quant)
|
109 |
+
dec = self.decoder(quant)
|
110 |
+
return dec
|
111 |
+
|
112 |
+
def decode_code(self, code_b):
|
113 |
+
quant_b = self.quantize.embed_code(code_b)
|
114 |
+
dec = self.decode(quant_b)
|
115 |
+
return dec
|
116 |
+
|
117 |
+
def forward(self, input, return_pred_indices=False):
|
118 |
+
quant, diff, (_,_,ind) = self.encode(input)
|
119 |
+
dec = self.decode(quant)
|
120 |
+
if return_pred_indices:
|
121 |
+
return dec, diff, ind
|
122 |
+
return dec, diff
|
123 |
+
|
124 |
+
def get_input(self, batch, k):
|
125 |
+
x = batch[k]
|
126 |
+
if len(x.shape) == 3:
|
127 |
+
x = x[..., None]
|
128 |
+
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
129 |
+
if self.batch_resize_range is not None:
|
130 |
+
lower_size = self.batch_resize_range[0]
|
131 |
+
upper_size = self.batch_resize_range[1]
|
132 |
+
if self.global_step <= 4:
|
133 |
+
# do the first few batches with max size to avoid later oom
|
134 |
+
new_resize = upper_size
|
135 |
+
else:
|
136 |
+
new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
|
137 |
+
if new_resize != x.shape[2]:
|
138 |
+
x = F.interpolate(x, size=new_resize, mode="bicubic")
|
139 |
+
x = x.detach()
|
140 |
+
return x
|
141 |
+
|
142 |
+
def training_step(self, batch, batch_idx, optimizer_idx):
|
143 |
+
# https://github.com/pytorch/pytorch/issues/37142
|
144 |
+
# try not to fool the heuristics
|
145 |
+
x = self.get_input(batch, self.image_key)
|
146 |
+
xrec, qloss, ind = self(x, return_pred_indices=True)
|
147 |
+
|
148 |
+
if optimizer_idx == 0:
|
149 |
+
# autoencode
|
150 |
+
aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
151 |
+
last_layer=self.get_last_layer(), split="train",
|
152 |
+
predicted_indices=ind)
|
153 |
+
|
154 |
+
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
155 |
+
return aeloss
|
156 |
+
|
157 |
+
if optimizer_idx == 1:
|
158 |
+
# discriminator
|
159 |
+
discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
160 |
+
last_layer=self.get_last_layer(), split="train")
|
161 |
+
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
162 |
+
return discloss
|
163 |
+
|
164 |
+
def validation_step(self, batch, batch_idx):
|
165 |
+
log_dict = self._validation_step(batch, batch_idx)
|
166 |
+
with self.ema_scope():
|
167 |
+
log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
|
168 |
+
return log_dict
|
169 |
+
|
170 |
+
def _validation_step(self, batch, batch_idx, suffix=""):
|
171 |
+
x = self.get_input(batch, self.image_key)
|
172 |
+
xrec, qloss, ind = self(x, return_pred_indices=True)
|
173 |
+
aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
|
174 |
+
self.global_step,
|
175 |
+
last_layer=self.get_last_layer(),
|
176 |
+
split="val"+suffix,
|
177 |
+
predicted_indices=ind
|
178 |
+
)
|
179 |
+
|
180 |
+
discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
|
181 |
+
self.global_step,
|
182 |
+
last_layer=self.get_last_layer(),
|
183 |
+
split="val"+suffix,
|
184 |
+
predicted_indices=ind
|
185 |
+
)
|
186 |
+
rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
|
187 |
+
self.log(f"val{suffix}/rec_loss", rec_loss,
|
188 |
+
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
189 |
+
self.log(f"val{suffix}/aeloss", aeloss,
|
190 |
+
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
191 |
+
if version.parse(pl.__version__) >= version.parse('1.4.0'):
|
192 |
+
del log_dict_ae[f"val{suffix}/rec_loss"]
|
193 |
+
self.log_dict(log_dict_ae)
|
194 |
+
self.log_dict(log_dict_disc)
|
195 |
+
return self.log_dict
|
196 |
+
|
197 |
+
def test_step(self, batch, batch_idx):
|
198 |
+
x = self.get_input(batch, self.image_key)
|
199 |
+
xrec, qloss, ind = self(x, return_pred_indices=True)
|
200 |
+
reconstructions = (xrec + 1)/2 # to mel scale
|
201 |
+
test_ckpt_path = os.path.basename(self.trainer.tested_ckpt_path)
|
202 |
+
savedir = os.path.join(self.trainer.log_dir,f'output_imgs_{test_ckpt_path}','fake_class')
|
203 |
+
if not os.path.exists(savedir):
|
204 |
+
os.makedirs(savedir)
|
205 |
+
|
206 |
+
file_names = batch['f_name']
|
207 |
+
# print(f"reconstructions.shape:{reconstructions.shape}",file_names)
|
208 |
+
reconstructions = reconstructions.cpu().numpy().squeeze(1) # squuze channel dim
|
209 |
+
for b in range(reconstructions.shape[0]):
|
210 |
+
vname_num_split_index = file_names[b].rfind('_')# file_names[b]:video_name+'_'+num
|
211 |
+
v_n,num = file_names[b][:vname_num_split_index],file_names[b][vname_num_split_index+1:]
|
212 |
+
save_img_path = os.path.join(savedir,f'{v_n}_sample_{num}.npy')
|
213 |
+
np.save(save_img_path,reconstructions[b])
|
214 |
+
|
215 |
+
return None
|
216 |
+
|
217 |
+
def configure_optimizers(self):
|
218 |
+
lr_d = self.learning_rate
|
219 |
+
lr_g = self.lr_g_factor*self.learning_rate
|
220 |
+
print("lr_d", lr_d)
|
221 |
+
print("lr_g", lr_g)
|
222 |
+
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
223 |
+
list(self.decoder.parameters())+
|
224 |
+
list(self.quantize.parameters())+
|
225 |
+
list(self.quant_conv.parameters())+
|
226 |
+
list(self.post_quant_conv.parameters()),
|
227 |
+
lr=lr_g, betas=(0.5, 0.9))
|
228 |
+
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
229 |
+
lr=lr_d, betas=(0.5, 0.9))
|
230 |
+
|
231 |
+
if self.scheduler_config is not None:
|
232 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
233 |
+
|
234 |
+
print("Setting up LambdaLR scheduler...")
|
235 |
+
scheduler = [
|
236 |
+
{
|
237 |
+
'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
|
238 |
+
'interval': 'step',
|
239 |
+
'frequency': 1
|
240 |
+
},
|
241 |
+
{
|
242 |
+
'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
|
243 |
+
'interval': 'step',
|
244 |
+
'frequency': 1
|
245 |
+
},
|
246 |
+
]
|
247 |
+
return [opt_ae, opt_disc], scheduler
|
248 |
+
return [opt_ae, opt_disc], []
|
249 |
+
|
250 |
+
def get_last_layer(self):
|
251 |
+
return self.decoder.conv_out.weight
|
252 |
+
|
253 |
+
def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
|
254 |
+
log = dict()
|
255 |
+
x = self.get_input(batch, self.image_key)
|
256 |
+
x = x.to(self.device)
|
257 |
+
if only_inputs:
|
258 |
+
log["inputs"] = x
|
259 |
+
return log
|
260 |
+
xrec, _ = self(x)
|
261 |
+
if x.shape[1] > 3:
|
262 |
+
# colorize with random projection
|
263 |
+
assert xrec.shape[1] > 3
|
264 |
+
x = self.to_rgb(x)
|
265 |
+
xrec = self.to_rgb(xrec)
|
266 |
+
log["inputs"] = x
|
267 |
+
log["reconstructions"] = xrec
|
268 |
+
if plot_ema:
|
269 |
+
with self.ema_scope():
|
270 |
+
xrec_ema, _ = self(x)
|
271 |
+
if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
|
272 |
+
log["reconstructions_ema"] = xrec_ema
|
273 |
+
return log
|
274 |
+
|
275 |
+
def to_rgb(self, x):
|
276 |
+
assert self.image_key == "segmentation"
|
277 |
+
if not hasattr(self, "colorize"):
|
278 |
+
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
279 |
+
x = F.conv2d(x, weight=self.colorize)
|
280 |
+
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
281 |
+
return x
|
282 |
+
|
283 |
+
|
284 |
+
class VQModelInterface(VQModel):
|
285 |
+
def __init__(self, embed_dim, *args, **kwargs):
|
286 |
+
super().__init__(embed_dim=embed_dim, *args, **kwargs)
|
287 |
+
self.embed_dim = embed_dim
|
288 |
+
|
289 |
+
def encode(self, x):# VQModel的quantize写在encoder里,VQModelInterface则将其写在decoder里
|
290 |
+
h = self.encoder(x)
|
291 |
+
h = self.quant_conv(h)
|
292 |
+
return h
|
293 |
+
|
294 |
+
def decode(self, h, force_not_quantize=False):
|
295 |
+
# also go through quantization layer
|
296 |
+
if not force_not_quantize:
|
297 |
+
quant, emb_loss, info = self.quantize(h)
|
298 |
+
else:
|
299 |
+
quant = h
|
300 |
+
quant = self.post_quant_conv(quant)
|
301 |
+
dec = self.decoder(quant)
|
302 |
+
return dec
|
303 |
+
|
304 |
+
|
305 |
+
class AutoencoderKL(pl.LightningModule):
|
306 |
+
def __init__(self,
|
307 |
+
ddconfig,
|
308 |
+
lossconfig,
|
309 |
+
embed_dim,
|
310 |
+
ckpt_path=None,
|
311 |
+
ignore_keys=[],
|
312 |
+
image_key="image",
|
313 |
+
colorize_nlabels=None,
|
314 |
+
monitor=None,
|
315 |
+
):
|
316 |
+
super().__init__()
|
317 |
+
self.image_key = image_key
|
318 |
+
self.encoder = Encoder(**ddconfig)
|
319 |
+
self.decoder = Decoder(**ddconfig)
|
320 |
+
self.loss = instantiate_from_config(lossconfig)
|
321 |
+
assert ddconfig["double_z"]
|
322 |
+
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
|
323 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
324 |
+
self.embed_dim = embed_dim
|
325 |
+
if colorize_nlabels is not None:
|
326 |
+
assert type(colorize_nlabels)==int
|
327 |
+
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
328 |
+
if monitor is not None:
|
329 |
+
self.monitor = monitor
|
330 |
+
if ckpt_path is not None:
|
331 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
332 |
+
# self.automatic_optimization = False # hjw for debug
|
333 |
+
|
334 |
+
def init_from_ckpt(self, path, ignore_keys=list()):
|
335 |
+
sd = torch.load(path, map_location="cpu")["state_dict"]
|
336 |
+
keys = list(sd.keys())
|
337 |
+
for k in keys:
|
338 |
+
for ik in ignore_keys:
|
339 |
+
if k.startswith(ik):
|
340 |
+
print("Deleting key {} from state_dict.".format(k))
|
341 |
+
del sd[k]
|
342 |
+
self.load_state_dict(sd, strict=False)
|
343 |
+
print(f"Restored from {path}")
|
344 |
+
|
345 |
+
def encode(self, x):
|
346 |
+
h = self.encoder(x)
|
347 |
+
moments = self.quant_conv(h)
|
348 |
+
posterior = DiagonalGaussianDistribution(moments)
|
349 |
+
return posterior
|
350 |
+
|
351 |
+
def decode(self, z):
|
352 |
+
z = self.post_quant_conv(z)
|
353 |
+
dec = self.decoder(z)
|
354 |
+
return dec
|
355 |
+
|
356 |
+
def forward(self, input, sample_posterior=True):
|
357 |
+
posterior = self.encode(input)
|
358 |
+
if sample_posterior:
|
359 |
+
z = posterior.sample()
|
360 |
+
else:
|
361 |
+
z = posterior.mode()
|
362 |
+
dec = self.decode(z)
|
363 |
+
return dec, posterior
|
364 |
+
|
365 |
+
def get_input(self, batch, k):
|
366 |
+
x = batch[k]
|
367 |
+
if len(x.shape) == 3:
|
368 |
+
x = x[..., None]
|
369 |
+
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
370 |
+
return x
|
371 |
+
|
372 |
+
def training_step(self, batch, batch_idx, optimizer_idx):
|
373 |
+
inputs = self.get_input(batch, self.image_key)
|
374 |
+
reconstructions, posterior = self(inputs)
|
375 |
+
|
376 |
+
if optimizer_idx == 0:
|
377 |
+
# train encoder+decoder+logvar
|
378 |
+
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
379 |
+
last_layer=self.get_last_layer(), split="train")
|
380 |
+
self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
381 |
+
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
382 |
+
return aeloss
|
383 |
+
|
384 |
+
if optimizer_idx == 1:
|
385 |
+
# train the discriminator
|
386 |
+
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
387 |
+
last_layer=self.get_last_layer(), split="train")
|
388 |
+
|
389 |
+
self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
390 |
+
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
391 |
+
return discloss
|
392 |
+
|
393 |
+
def validation_step(self, batch, batch_idx):
|
394 |
+
# self.log_images(batch,only_inputs=False,save_dir='mel_result_ae13_26/fake_class')
|
395 |
+
return self.log_dict
|
396 |
+
|
397 |
+
def test_step(self, batch, batch_idx):
|
398 |
+
test_ckpt_path = os.path.basename(self.trainer.tested_ckpt_path)
|
399 |
+
savedir = os.path.join(self.trainer.log_dir,f'output_imgs_{test_ckpt_path}','fake_class')
|
400 |
+
os.makedirs(savedir,exist_ok=True)
|
401 |
+
inputs = self.get_input(batch, self.image_key)# inputs shape:(b,c,mel_len,T) or (b,c,h,w)
|
402 |
+
# ic(inputs.shape)
|
403 |
+
# inputs = inputs[...,:624]
|
404 |
+
# ic(inputs.shape)
|
405 |
+
xrec, posterior = self(inputs)# reconstructions:(b,c,mel_len,T) or (b,c,h,w)
|
406 |
+
file_names = batch['f_name']
|
407 |
+
# print(f"reconstructions.shape:{reconstructions.shape}",file_names)
|
408 |
+
for b in range(len(file_names)):
|
409 |
+
rcon = (xrec[b].squeeze().detach().cpu().numpy() + 1) / 2 # to mel scale,squeeze channel dim
|
410 |
+
vname_num_split_index = file_names[b].rfind('_')# file_names[b]:video_name+'_'+num
|
411 |
+
v_n,num = file_names[b][:vname_num_split_index],file_names[b][vname_num_split_index+1:]
|
412 |
+
save_img_path = os.path.join(savedir,f'{v_n}_sample_{num}.npy')
|
413 |
+
np.save(save_img_path,rcon)
|
414 |
+
|
415 |
+
return None
|
416 |
+
|
417 |
+
def configure_optimizers(self):
|
418 |
+
lr = self.learning_rate
|
419 |
+
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
420 |
+
list(self.decoder.parameters())+
|
421 |
+
list(self.quant_conv.parameters())+
|
422 |
+
list(self.post_quant_conv.parameters()),
|
423 |
+
lr=lr, betas=(0.5, 0.9))
|
424 |
+
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
425 |
+
lr=lr, betas=(0.5, 0.9))
|
426 |
+
return [opt_ae, opt_disc], []
|
427 |
+
|
428 |
+
def get_last_layer(self):
|
429 |
+
return self.decoder.conv_out.weight
|
430 |
+
|
431 |
+
@torch.no_grad()
|
432 |
+
def log_images(self, batch, only_inputs=False,save_dir = 'mel_result_ae13_26_debug/fake_class', **kwargs): # 在main.py的on_validation_batch_end中调用
|
433 |
+
log = dict()
|
434 |
+
x = self.get_input(batch, self.image_key)
|
435 |
+
x = x.to(self.device)
|
436 |
+
if not only_inputs:
|
437 |
+
xrec, posterior = self(x)
|
438 |
+
if x.shape[1] > 3:
|
439 |
+
# colorize with random projection
|
440 |
+
assert xrec.shape[1] > 3
|
441 |
+
x = self.to_rgb(x)
|
442 |
+
xrec = self.to_rgb(xrec)
|
443 |
+
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
|
444 |
+
log["reconstructions"] = xrec
|
445 |
+
log["inputs"] = x
|
446 |
+
return log
|
447 |
+
|
448 |
+
def to_rgb(self, x):
|
449 |
+
assert self.image_key == "segmentation"
|
450 |
+
if not hasattr(self, "colorize"):
|
451 |
+
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
452 |
+
x = F.conv2d(x, weight=self.colorize)
|
453 |
+
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
454 |
+
return x
|
455 |
+
|
456 |
+
|
457 |
+
class IdentityFirstStage(torch.nn.Module):
|
458 |
+
def __init__(self, *args, vq_interface=False, **kwargs):
|
459 |
+
self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
|
460 |
+
super().__init__()
|
461 |
+
|
462 |
+
def encode(self, x, *args, **kwargs):
|
463 |
+
return x
|
464 |
+
|
465 |
+
def decode(self, x, *args, **kwargs):
|
466 |
+
return x
|
467 |
+
|
468 |
+
def quantize(self, x, *args, **kwargs):
|
469 |
+
if self.vq_interface:
|
470 |
+
return x, None, [None, None, None]
|
471 |
+
return x
|
472 |
+
|
473 |
+
def forward(self, x, *args, **kwargs):
|
474 |
+
return x
|
ldm/models/autoencoder_multi.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
与autoencoder.py的区别在于,autoencoder.py计算loss时只有一个discriminator,而此处又多了个multiwindowDiscriminator,所以优化器
|
3 |
+
优化的参数改为:
|
4 |
+
opt_disc = torch.optim.Adam(list(self.loss.discriminator.parameters()) + list(self.loss.discriminator_multi.parameters()),
|
5 |
+
lr=lr, betas=(0.5, 0.9))
|
6 |
+
"""
|
7 |
+
|
8 |
+
import os
|
9 |
+
import torch
|
10 |
+
import pytorch_lightning as pl
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from contextlib import contextmanager
|
13 |
+
|
14 |
+
from packaging import version
|
15 |
+
import numpy as np
|
16 |
+
from ldm.modules.diffusionmodules.model import Encoder, Decoder
|
17 |
+
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
18 |
+
from torch.optim.lr_scheduler import LambdaLR
|
19 |
+
from ldm.util import instantiate_from_config
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
class AutoencoderKL(pl.LightningModule):
|
24 |
+
def __init__(self,
|
25 |
+
ddconfig,
|
26 |
+
lossconfig,
|
27 |
+
embed_dim,
|
28 |
+
ckpt_path=None,
|
29 |
+
ignore_keys=[],
|
30 |
+
image_key="image",
|
31 |
+
colorize_nlabels=None,
|
32 |
+
monitor=None,
|
33 |
+
):
|
34 |
+
super().__init__()
|
35 |
+
self.image_key = image_key
|
36 |
+
self.encoder = Encoder(**ddconfig)
|
37 |
+
self.decoder = Decoder(**ddconfig)
|
38 |
+
self.loss = instantiate_from_config(lossconfig)
|
39 |
+
assert ddconfig["double_z"]
|
40 |
+
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
|
41 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
42 |
+
self.embed_dim = embed_dim
|
43 |
+
if colorize_nlabels is not None:
|
44 |
+
assert type(colorize_nlabels)==int
|
45 |
+
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
46 |
+
if monitor is not None:
|
47 |
+
self.monitor = monitor
|
48 |
+
if ckpt_path is not None:
|
49 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
50 |
+
|
51 |
+
def init_from_ckpt(self, path, ignore_keys=list()):
|
52 |
+
sd = torch.load(path, map_location="cpu")["state_dict"]
|
53 |
+
keys = list(sd.keys())
|
54 |
+
for k in keys:
|
55 |
+
for ik in ignore_keys:
|
56 |
+
if k.startswith(ik):
|
57 |
+
print("Deleting key {} from state_dict.".format(k))
|
58 |
+
del sd[k]
|
59 |
+
self.load_state_dict(sd, strict=False)
|
60 |
+
print(f"Restored from {path}")
|
61 |
+
|
62 |
+
def encode(self, x):
|
63 |
+
h = self.encoder(x)
|
64 |
+
moments = self.quant_conv(h)
|
65 |
+
posterior = DiagonalGaussianDistribution(moments)
|
66 |
+
return posterior
|
67 |
+
|
68 |
+
def decode(self, z):
|
69 |
+
z = self.post_quant_conv(z)
|
70 |
+
dec = self.decoder(z)
|
71 |
+
return dec
|
72 |
+
|
73 |
+
def forward(self, input, sample_posterior=True):
|
74 |
+
posterior = self.encode(input)
|
75 |
+
if sample_posterior:
|
76 |
+
z = posterior.sample()
|
77 |
+
else:
|
78 |
+
z = posterior.mode()
|
79 |
+
dec = self.decode(z)
|
80 |
+
return dec, posterior
|
81 |
+
|
82 |
+
def get_input(self, batch, k):
|
83 |
+
x = batch[k]
|
84 |
+
if len(x.shape) == 3:
|
85 |
+
x = x[..., None]
|
86 |
+
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
87 |
+
return x
|
88 |
+
|
89 |
+
def training_step(self, batch, batch_idx, optimizer_idx):
|
90 |
+
inputs = self.get_input(batch, self.image_key)
|
91 |
+
reconstructions, posterior = self(inputs)
|
92 |
+
|
93 |
+
if optimizer_idx == 0:
|
94 |
+
# train encoder+decoder+logvar
|
95 |
+
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
96 |
+
last_layer=self.get_last_layer(), split="train")
|
97 |
+
self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
98 |
+
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
99 |
+
return aeloss
|
100 |
+
|
101 |
+
if optimizer_idx == 1:
|
102 |
+
# train the discriminator
|
103 |
+
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
104 |
+
last_layer=self.get_last_layer(), split="train")
|
105 |
+
|
106 |
+
self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
107 |
+
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
108 |
+
return discloss
|
109 |
+
|
110 |
+
def validation_step(self, batch, batch_idx):
|
111 |
+
inputs = self.get_input(batch, self.image_key)
|
112 |
+
reconstructions, posterior = self(inputs)
|
113 |
+
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
|
114 |
+
last_layer=self.get_last_layer(), split="val")
|
115 |
+
|
116 |
+
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
|
117 |
+
last_layer=self.get_last_layer(), split="val")
|
118 |
+
|
119 |
+
self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
|
120 |
+
self.log_dict(log_dict_ae)
|
121 |
+
self.log_dict(log_dict_disc)
|
122 |
+
return self.log_dict
|
123 |
+
|
124 |
+
def test_step(self, batch, batch_idx):
|
125 |
+
inputs = self.get_input(batch, self.image_key)# inputs shape:(b,c,mel_len,T) or (b,c,h,w)
|
126 |
+
reconstructions, posterior = self(inputs)# reconstructions:(b,c,mel_len,T) or (b,c,h,w)
|
127 |
+
reconstructions = (reconstructions + 1)/2 # to mel scale
|
128 |
+
test_ckpt_path = os.path.basename(self.trainer.tested_ckpt_path)
|
129 |
+
savedir = os.path.join(self.trainer.log_dir,f'output_imgs_{test_ckpt_path}','fake_class')
|
130 |
+
if not os.path.exists(savedir):
|
131 |
+
os.makedirs(savedir)
|
132 |
+
|
133 |
+
file_names = batch['f_name']
|
134 |
+
# print(f"reconstructions.shape:{reconstructions.shape}",file_names)
|
135 |
+
reconstructions = reconstructions.cpu().numpy().squeeze(1) # squuze channel dim
|
136 |
+
for b in range(reconstructions.shape[0]):
|
137 |
+
vname_num_split_index = file_names[b].rfind('_')# file_names[b]:video_name+'_'+num
|
138 |
+
v_n,num = file_names[b][:vname_num_split_index],file_names[b][vname_num_split_index+1:]
|
139 |
+
save_img_path = os.path.join(savedir,f'{v_n}_sample_{num}.npy')
|
140 |
+
np.save(save_img_path,reconstructions[b])
|
141 |
+
|
142 |
+
return None
|
143 |
+
|
144 |
+
def configure_optimizers(self):
|
145 |
+
lr = self.learning_rate
|
146 |
+
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
147 |
+
list(self.decoder.parameters())+
|
148 |
+
list(self.quant_conv.parameters())+
|
149 |
+
list(self.post_quant_conv.parameters()),
|
150 |
+
lr=lr, betas=(0.5, 0.9))
|
151 |
+
opt_disc = torch.optim.Adam(list(self.loss.discriminator.parameters()) + list(self.loss.discriminator_multi.parameters()),
|
152 |
+
lr=lr, betas=(0.5, 0.9))
|
153 |
+
return [opt_ae, opt_disc], []
|
154 |
+
|
155 |
+
def get_last_layer(self):
|
156 |
+
return self.decoder.conv_out.weight
|
157 |
+
|
158 |
+
@torch.no_grad()
|
159 |
+
def log_images(self, batch, only_inputs=False, **kwargs):
|
160 |
+
log = dict()
|
161 |
+
x = self.get_input(batch, self.image_key)
|
162 |
+
x = x.to(self.device)
|
163 |
+
if not only_inputs:
|
164 |
+
xrec, posterior = self(x)
|
165 |
+
if x.shape[1] > 3:
|
166 |
+
# colorize with random projection
|
167 |
+
assert xrec.shape[1] > 3
|
168 |
+
x = self.to_rgb(x)
|
169 |
+
xrec = self.to_rgb(xrec)
|
170 |
+
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
|
171 |
+
log["reconstructions"] = xrec
|
172 |
+
log["inputs"] = x
|
173 |
+
return log
|
174 |
+
|
175 |
+
def to_rgb(self, x):
|
176 |
+
assert self.image_key == "segmentation"
|
177 |
+
if not hasattr(self, "colorize"):
|
178 |
+
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
179 |
+
x = F.conv2d(x, weight=self.colorize)
|
180 |
+
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
181 |
+
return x
|
182 |
+
|
183 |
+
|
184 |
+
class IdentityFirstStage(torch.nn.Module):
|
185 |
+
def __init__(self, *args, vq_interface=False, **kwargs):
|
186 |
+
self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
|
187 |
+
super().__init__()
|
188 |
+
|
189 |
+
def encode(self, x, *args, **kwargs):
|
190 |
+
return x
|
191 |
+
|
192 |
+
def decode(self, x, *args, **kwargs):
|
193 |
+
return x
|
194 |
+
|
195 |
+
def quantize(self, x, *args, **kwargs):
|
196 |
+
if self.vq_interface:
|
197 |
+
return x, None, [None, None, None]
|
198 |
+
return x
|
199 |
+
|
200 |
+
def forward(self, x, *args, **kwargs):
|
201 |
+
return x
|
ldm/models/diffusion/__init__.py
ADDED
File without changes
|
ldm/models/diffusion/classifier.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import pytorch_lightning as pl
|
4 |
+
from omegaconf import OmegaConf
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from torch.optim import AdamW
|
7 |
+
from torch.optim.lr_scheduler import LambdaLR
|
8 |
+
from copy import deepcopy
|
9 |
+
from einops import rearrange
|
10 |
+
from glob import glob
|
11 |
+
from natsort import natsorted
|
12 |
+
|
13 |
+
from ldm.modules.diffusionmodules.openaimodel import EncoderUNetModel, UNetModel
|
14 |
+
from ldm.util import log_txt_as_img, default, ismap, instantiate_from_config
|
15 |
+
|
16 |
+
__models__ = {
|
17 |
+
'class_label': EncoderUNetModel,
|
18 |
+
'segmentation': UNetModel
|
19 |
+
}
|
20 |
+
|
21 |
+
|
22 |
+
def disabled_train(self, mode=True):
|
23 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
24 |
+
does not change anymore."""
|
25 |
+
return self
|
26 |
+
|
27 |
+
|
28 |
+
class NoisyLatentImageClassifier(pl.LightningModule):
|
29 |
+
|
30 |
+
def __init__(self,
|
31 |
+
diffusion_path,
|
32 |
+
num_classes,
|
33 |
+
ckpt_path=None,
|
34 |
+
pool='attention',
|
35 |
+
label_key=None,
|
36 |
+
diffusion_ckpt_path=None,
|
37 |
+
scheduler_config=None,
|
38 |
+
weight_decay=1.e-2,
|
39 |
+
log_steps=10,
|
40 |
+
monitor='val/loss',
|
41 |
+
*args,
|
42 |
+
**kwargs):
|
43 |
+
super().__init__(*args, **kwargs)
|
44 |
+
self.num_classes = num_classes
|
45 |
+
# get latest config of diffusion model
|
46 |
+
diffusion_config = natsorted(glob(os.path.join(diffusion_path, 'configs', '*-project.yaml')))[-1]
|
47 |
+
self.diffusion_config = OmegaConf.load(diffusion_config).model
|
48 |
+
self.diffusion_config.params.ckpt_path = diffusion_ckpt_path
|
49 |
+
self.load_diffusion()
|
50 |
+
|
51 |
+
self.monitor = monitor
|
52 |
+
self.numd = self.diffusion_model.first_stage_model.encoder.num_resolutions - 1
|
53 |
+
self.log_time_interval = self.diffusion_model.num_timesteps // log_steps
|
54 |
+
self.log_steps = log_steps
|
55 |
+
|
56 |
+
self.label_key = label_key if not hasattr(self.diffusion_model, 'cond_stage_key') \
|
57 |
+
else self.diffusion_model.cond_stage_key
|
58 |
+
|
59 |
+
assert self.label_key is not None, 'label_key neither in diffusion model nor in model.params'
|
60 |
+
|
61 |
+
if self.label_key not in __models__:
|
62 |
+
raise NotImplementedError()
|
63 |
+
|
64 |
+
self.load_classifier(ckpt_path, pool)
|
65 |
+
|
66 |
+
self.scheduler_config = scheduler_config
|
67 |
+
self.use_scheduler = self.scheduler_config is not None
|
68 |
+
self.weight_decay = weight_decay
|
69 |
+
|
70 |
+
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
71 |
+
sd = torch.load(path, map_location="cpu")
|
72 |
+
if "state_dict" in list(sd.keys()):
|
73 |
+
sd = sd["state_dict"]
|
74 |
+
keys = list(sd.keys())
|
75 |
+
for k in keys:
|
76 |
+
for ik in ignore_keys:
|
77 |
+
if k.startswith(ik):
|
78 |
+
print("Deleting key {} from state_dict.".format(k))
|
79 |
+
del sd[k]
|
80 |
+
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
81 |
+
sd, strict=False)
|
82 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
83 |
+
if len(missing) > 0:
|
84 |
+
print(f"Missing Keys: {missing}")
|
85 |
+
if len(unexpected) > 0:
|
86 |
+
print(f"Unexpected Keys: {unexpected}")
|
87 |
+
|
88 |
+
def load_diffusion(self):
|
89 |
+
model = instantiate_from_config(self.diffusion_config)
|
90 |
+
self.diffusion_model = model.eval()
|
91 |
+
self.diffusion_model.train = disabled_train
|
92 |
+
for param in self.diffusion_model.parameters():
|
93 |
+
param.requires_grad = False
|
94 |
+
|
95 |
+
def load_classifier(self, ckpt_path, pool):
|
96 |
+
model_config = deepcopy(self.diffusion_config.params.unet_config.params)
|
97 |
+
model_config.in_channels = self.diffusion_config.params.unet_config.params.out_channels
|
98 |
+
model_config.out_channels = self.num_classes
|
99 |
+
if self.label_key == 'class_label':
|
100 |
+
model_config.pool = pool
|
101 |
+
|
102 |
+
self.model = __models__[self.label_key](**model_config)
|
103 |
+
if ckpt_path is not None:
|
104 |
+
print('#####################################################################')
|
105 |
+
print(f'load from ckpt "{ckpt_path}"')
|
106 |
+
print('#####################################################################')
|
107 |
+
self.init_from_ckpt(ckpt_path)
|
108 |
+
|
109 |
+
@torch.no_grad()
|
110 |
+
def get_x_noisy(self, x, t, noise=None):
|
111 |
+
noise = default(noise, lambda: torch.randn_like(x))
|
112 |
+
continuous_sqrt_alpha_cumprod = None
|
113 |
+
if self.diffusion_model.use_continuous_noise:
|
114 |
+
continuous_sqrt_alpha_cumprod = self.diffusion_model.sample_continuous_noise_level(x.shape[0], t + 1)
|
115 |
+
# todo: make sure t+1 is correct here
|
116 |
+
|
117 |
+
return self.diffusion_model.q_sample(x_start=x, t=t, noise=noise,
|
118 |
+
continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod)
|
119 |
+
|
120 |
+
def forward(self, x_noisy, t, *args, **kwargs):
|
121 |
+
return self.model(x_noisy, t)
|
122 |
+
|
123 |
+
@torch.no_grad()
|
124 |
+
def get_input(self, batch, k):
|
125 |
+
x = batch[k]
|
126 |
+
if len(x.shape) == 3:
|
127 |
+
x = x[..., None]
|
128 |
+
x = rearrange(x, 'b h w c -> b c h w')
|
129 |
+
x = x.to(memory_format=torch.contiguous_format).float()
|
130 |
+
return x
|
131 |
+
|
132 |
+
@torch.no_grad()
|
133 |
+
def get_conditioning(self, batch, k=None):
|
134 |
+
if k is None:
|
135 |
+
k = self.label_key
|
136 |
+
assert k is not None, 'Needs to provide label key'
|
137 |
+
|
138 |
+
targets = batch[k].to(self.device)
|
139 |
+
|
140 |
+
if self.label_key == 'segmentation':
|
141 |
+
targets = rearrange(targets, 'b h w c -> b c h w')
|
142 |
+
for down in range(self.numd):
|
143 |
+
h, w = targets.shape[-2:]
|
144 |
+
targets = F.interpolate(targets, size=(h // 2, w // 2), mode='nearest')
|
145 |
+
|
146 |
+
# targets = rearrange(targets,'b c h w -> b h w c')
|
147 |
+
|
148 |
+
return targets
|
149 |
+
|
150 |
+
def compute_top_k(self, logits, labels, k, reduction="mean"):
|
151 |
+
_, top_ks = torch.topk(logits, k, dim=1)
|
152 |
+
if reduction == "mean":
|
153 |
+
return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item()
|
154 |
+
elif reduction == "none":
|
155 |
+
return (top_ks == labels[:, None]).float().sum(dim=-1)
|
156 |
+
|
157 |
+
def on_train_epoch_start(self):
|
158 |
+
# save some memory
|
159 |
+
self.diffusion_model.model.to('cpu')
|
160 |
+
|
161 |
+
@torch.no_grad()
|
162 |
+
def write_logs(self, loss, logits, targets):
|
163 |
+
log_prefix = 'train' if self.training else 'val'
|
164 |
+
log = {}
|
165 |
+
log[f"{log_prefix}/loss"] = loss.mean()
|
166 |
+
log[f"{log_prefix}/acc@1"] = self.compute_top_k(
|
167 |
+
logits, targets, k=1, reduction="mean"
|
168 |
+
)
|
169 |
+
log[f"{log_prefix}/acc@5"] = self.compute_top_k(
|
170 |
+
logits, targets, k=5, reduction="mean"
|
171 |
+
)
|
172 |
+
|
173 |
+
self.log_dict(log, prog_bar=False, logger=True, on_step=self.training, on_epoch=True)
|
174 |
+
self.log('loss', log[f"{log_prefix}/loss"], prog_bar=True, logger=False)
|
175 |
+
self.log('global_step', self.global_step, logger=False, on_epoch=False, prog_bar=True)
|
176 |
+
lr = self.optimizers().param_groups[0]['lr']
|
177 |
+
self.log('lr_abs', lr, on_step=True, logger=True, on_epoch=False, prog_bar=True)
|
178 |
+
|
179 |
+
def shared_step(self, batch, t=None):
|
180 |
+
x, *_ = self.diffusion_model.get_input(batch, k=self.diffusion_model.first_stage_key)
|
181 |
+
targets = self.get_conditioning(batch)
|
182 |
+
if targets.dim() == 4:
|
183 |
+
targets = targets.argmax(dim=1)
|
184 |
+
if t is None:
|
185 |
+
t = torch.randint(0, self.diffusion_model.num_timesteps, (x.shape[0],), device=self.device).long()
|
186 |
+
else:
|
187 |
+
t = torch.full(size=(x.shape[0],), fill_value=t, device=self.device).long()
|
188 |
+
x_noisy = self.get_x_noisy(x, t)
|
189 |
+
logits = self(x_noisy, t)
|
190 |
+
|
191 |
+
loss = F.cross_entropy(logits, targets, reduction='none')
|
192 |
+
|
193 |
+
self.write_logs(loss.detach(), logits.detach(), targets.detach())
|
194 |
+
|
195 |
+
loss = loss.mean()
|
196 |
+
return loss, logits, x_noisy, targets
|
197 |
+
|
198 |
+
def training_step(self, batch, batch_idx):
|
199 |
+
loss, *_ = self.shared_step(batch)
|
200 |
+
return loss
|
201 |
+
|
202 |
+
def reset_noise_accs(self):
|
203 |
+
self.noisy_acc = {t: {'acc@1': [], 'acc@5': []} for t in
|
204 |
+
range(0, self.diffusion_model.num_timesteps, self.diffusion_model.log_every_t)}
|
205 |
+
|
206 |
+
def on_validation_start(self):
|
207 |
+
self.reset_noise_accs()
|
208 |
+
|
209 |
+
@torch.no_grad()
|
210 |
+
def validation_step(self, batch, batch_idx):
|
211 |
+
loss, *_ = self.shared_step(batch)
|
212 |
+
|
213 |
+
for t in self.noisy_acc:
|
214 |
+
_, logits, _, targets = self.shared_step(batch, t)
|
215 |
+
self.noisy_acc[t]['acc@1'].append(self.compute_top_k(logits, targets, k=1, reduction='mean'))
|
216 |
+
self.noisy_acc[t]['acc@5'].append(self.compute_top_k(logits, targets, k=5, reduction='mean'))
|
217 |
+
|
218 |
+
return loss
|
219 |
+
|
220 |
+
def configure_optimizers(self):
|
221 |
+
optimizer = AdamW(self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay)
|
222 |
+
|
223 |
+
if self.use_scheduler:
|
224 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
225 |
+
|
226 |
+
print("Setting up LambdaLR scheduler...")
|
227 |
+
scheduler = [
|
228 |
+
{
|
229 |
+
'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule),
|
230 |
+
'interval': 'step',
|
231 |
+
'frequency': 1
|
232 |
+
}]
|
233 |
+
return [optimizer], scheduler
|
234 |
+
|
235 |
+
return optimizer
|
236 |
+
|
237 |
+
@torch.no_grad()
|
238 |
+
def log_images(self, batch, N=8, *args, **kwargs):
|
239 |
+
log = dict()
|
240 |
+
x = self.get_input(batch, self.diffusion_model.first_stage_key)
|
241 |
+
log['inputs'] = x
|
242 |
+
|
243 |
+
y = self.get_conditioning(batch)
|
244 |
+
|
245 |
+
if self.label_key == 'class_label':
|
246 |
+
y = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
|
247 |
+
log['labels'] = y
|
248 |
+
|
249 |
+
if ismap(y):
|
250 |
+
log['labels'] = self.diffusion_model.to_rgb(y)
|
251 |
+
|
252 |
+
for step in range(self.log_steps):
|
253 |
+
current_time = step * self.log_time_interval
|
254 |
+
|
255 |
+
_, logits, x_noisy, _ = self.shared_step(batch, t=current_time)
|
256 |
+
|
257 |
+
log[f'inputs@t{current_time}'] = x_noisy
|
258 |
+
|
259 |
+
pred = F.one_hot(logits.argmax(dim=1), num_classes=self.num_classes)
|
260 |
+
pred = rearrange(pred, 'b h w c -> b c h w')
|
261 |
+
|
262 |
+
log[f'pred@t{current_time}'] = self.diffusion_model.to_rgb(pred)
|
263 |
+
|
264 |
+
for key in log:
|
265 |
+
log[key] = log[key][:N]
|
266 |
+
|
267 |
+
return log
|
ldm/models/diffusion/ddim.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""SAMPLING ONLY."""
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from tqdm import tqdm
|
6 |
+
from functools import partial
|
7 |
+
|
8 |
+
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, \
|
9 |
+
extract_into_tensor
|
10 |
+
|
11 |
+
|
12 |
+
class DDIMSampler(object):
|
13 |
+
def __init__(self, model, schedule="linear", **kwargs):
|
14 |
+
super().__init__()
|
15 |
+
self.model = model
|
16 |
+
self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
17 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
18 |
+
self.schedule = schedule
|
19 |
+
|
20 |
+
def register_buffer(self, name, attr):
|
21 |
+
if type(attr) == torch.Tensor:
|
22 |
+
# if attr.device != torch.device("cuda"):
|
23 |
+
# attr = attr.to(torch.device("cuda"))
|
24 |
+
attr = attr.to(self.device)
|
25 |
+
setattr(self, name, attr)
|
26 |
+
|
27 |
+
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
28 |
+
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
29 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
30 |
+
alphas_cumprod = self.model.alphas_cumprod
|
31 |
+
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
32 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
33 |
+
|
34 |
+
self.register_buffer('betas', to_torch(self.model.betas))
|
35 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
36 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
37 |
+
|
38 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
39 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
40 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
41 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
42 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
43 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
44 |
+
|
45 |
+
# ddim sampling parameters
|
46 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
47 |
+
ddim_timesteps=self.ddim_timesteps,
|
48 |
+
eta=ddim_eta,verbose=verbose)
|
49 |
+
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
50 |
+
self.register_buffer('ddim_alphas', ddim_alphas)
|
51 |
+
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
52 |
+
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
53 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
54 |
+
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
55 |
+
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
56 |
+
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
57 |
+
|
58 |
+
@torch.no_grad()
|
59 |
+
def sample(self,
|
60 |
+
S,
|
61 |
+
batch_size,
|
62 |
+
shape,
|
63 |
+
conditioning=None,
|
64 |
+
callback=None,
|
65 |
+
normals_sequence=None,
|
66 |
+
img_callback=None,
|
67 |
+
quantize_x0=False,
|
68 |
+
eta=0.,
|
69 |
+
mask=None,
|
70 |
+
x0=None,
|
71 |
+
temperature=1.,
|
72 |
+
noise_dropout=0.,
|
73 |
+
score_corrector=None,
|
74 |
+
corrector_kwargs=None,
|
75 |
+
verbose=True,
|
76 |
+
x_T=None,
|
77 |
+
log_every_t=100,
|
78 |
+
unconditional_guidance_scale=1.,
|
79 |
+
unconditional_conditioning=None,
|
80 |
+
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
81 |
+
**kwargs
|
82 |
+
):
|
83 |
+
if conditioning is not None:
|
84 |
+
if isinstance(conditioning, dict):
|
85 |
+
ctmp = conditioning[list(conditioning.keys())[0]]
|
86 |
+
while isinstance(ctmp, list): ctmp = ctmp[0]
|
87 |
+
cbs = ctmp.shape[0]
|
88 |
+
if cbs != batch_size:
|
89 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
90 |
+
else:
|
91 |
+
if conditioning.shape[0] != batch_size:
|
92 |
+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
93 |
+
|
94 |
+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
95 |
+
# sampling
|
96 |
+
C, H, W = shape
|
97 |
+
size = (batch_size, C, H, W)
|
98 |
+
# print(f'Data shape for DDIM sampling is {size}, eta {eta}')
|
99 |
+
|
100 |
+
samples, intermediates = self.ddim_sampling(conditioning, size,
|
101 |
+
callback=callback,
|
102 |
+
img_callback=img_callback,
|
103 |
+
quantize_denoised=quantize_x0,
|
104 |
+
mask=mask, x0=x0,
|
105 |
+
ddim_use_original_steps=False,
|
106 |
+
noise_dropout=noise_dropout,
|
107 |
+
temperature=temperature,
|
108 |
+
score_corrector=score_corrector,
|
109 |
+
corrector_kwargs=corrector_kwargs,
|
110 |
+
x_T=x_T,
|
111 |
+
log_every_t=log_every_t,
|
112 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
113 |
+
unconditional_conditioning=unconditional_conditioning,
|
114 |
+
)
|
115 |
+
return samples, intermediates
|
116 |
+
|
117 |
+
@torch.no_grad()
|
118 |
+
def ddim_sampling(self, cond, shape,
|
119 |
+
x_T=None, ddim_use_original_steps=False,
|
120 |
+
callback=None, timesteps=None, quantize_denoised=False,
|
121 |
+
mask=None, x0=None, img_callback=None, log_every_t=100,
|
122 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
123 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None,):
|
124 |
+
device = self.model.betas.device
|
125 |
+
b = shape[0]
|
126 |
+
if x_T is None:
|
127 |
+
img = torch.randn(shape, device=device)
|
128 |
+
else:
|
129 |
+
img = x_T
|
130 |
+
|
131 |
+
if timesteps is None:
|
132 |
+
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
133 |
+
elif timesteps is not None and not ddim_use_original_steps:
|
134 |
+
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
135 |
+
timesteps = self.ddim_timesteps[:subset_end]
|
136 |
+
|
137 |
+
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
138 |
+
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
|
139 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
140 |
+
|
141 |
+
# iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
|
142 |
+
|
143 |
+
for i, step in enumerate(time_range):
|
144 |
+
index = total_steps - i - 1
|
145 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
146 |
+
|
147 |
+
if mask is not None:
|
148 |
+
assert x0 is not None
|
149 |
+
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
150 |
+
img = img_orig * mask + (1. - mask) * img
|
151 |
+
|
152 |
+
outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
153 |
+
quantize_denoised=quantize_denoised, temperature=temperature,
|
154 |
+
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
155 |
+
corrector_kwargs=corrector_kwargs,
|
156 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
157 |
+
unconditional_conditioning=unconditional_conditioning)
|
158 |
+
img, pred_x0 = outs
|
159 |
+
if callback: callback(i)
|
160 |
+
if img_callback: img_callback(pred_x0, i)
|
161 |
+
|
162 |
+
if index % log_every_t == 0 or index == total_steps - 1:
|
163 |
+
intermediates['x_inter'].append(img)
|
164 |
+
intermediates['pred_x0'].append(pred_x0)
|
165 |
+
|
166 |
+
return img, intermediates
|
167 |
+
|
168 |
+
@torch.no_grad()
|
169 |
+
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
170 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
171 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None):
|
172 |
+
b, *_, device = *x.shape, x.device
|
173 |
+
|
174 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
175 |
+
e_t = self.model.apply_model(x, t, c)
|
176 |
+
else:
|
177 |
+
x_in = torch.cat([x] * 2)
|
178 |
+
t_in = torch.cat([t] * 2)
|
179 |
+
if isinstance(c, dict):
|
180 |
+
assert isinstance(unconditional_conditioning, dict)
|
181 |
+
c_in = dict()
|
182 |
+
for k in c:
|
183 |
+
if isinstance(c[k], list):
|
184 |
+
c_in[k] = [torch.cat([
|
185 |
+
unconditional_conditioning[k][i],
|
186 |
+
c[k][i]]) for i in range(len(c[k]))]
|
187 |
+
else:
|
188 |
+
c_in[k] = torch.cat([
|
189 |
+
unconditional_conditioning[k],
|
190 |
+
c[k]])
|
191 |
+
elif isinstance(c, list):
|
192 |
+
c_in = list()
|
193 |
+
assert isinstance(unconditional_conditioning, list)
|
194 |
+
for i in range(len(c)):
|
195 |
+
c_in.append(torch.cat([unconditional_conditioning[i], c[i]]))
|
196 |
+
else:
|
197 |
+
c_in = torch.cat([unconditional_conditioning, c])# c/uc shape [b,seq_len=77,dim=1024],c_in shape [b*2,seq_len,dim]
|
198 |
+
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
199 |
+
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
200 |
+
|
201 |
+
if score_corrector is not None:
|
202 |
+
assert self.model.parameterization == "eps"
|
203 |
+
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
204 |
+
|
205 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
206 |
+
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
207 |
+
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
208 |
+
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
209 |
+
# select parameters corresponding to the currently considered timestep
|
210 |
+
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
211 |
+
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
212 |
+
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
213 |
+
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
214 |
+
|
215 |
+
# current prediction for x_0
|
216 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
217 |
+
if quantize_denoised:
|
218 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
219 |
+
# direction pointing to x_t
|
220 |
+
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
221 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
222 |
+
if noise_dropout > 0.:
|
223 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
224 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
225 |
+
return x_prev, pred_x0
|
226 |
+
|
227 |
+
@torch.no_grad()
|
228 |
+
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
229 |
+
# fast, but does not allow for exact reconstruction
|
230 |
+
# t serves as an index to gather the correct alphas
|
231 |
+
if use_original_steps:
|
232 |
+
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
233 |
+
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
234 |
+
else:
|
235 |
+
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
236 |
+
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
237 |
+
|
238 |
+
if noise is None:
|
239 |
+
noise = torch.randn_like(x0)
|
240 |
+
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
|
241 |
+
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
|
242 |
+
|
243 |
+
@torch.no_grad()
|
244 |
+
def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
|
245 |
+
use_original_steps=False):
|
246 |
+
|
247 |
+
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
|
248 |
+
timesteps = timesteps[:t_start]
|
249 |
+
|
250 |
+
time_range = np.flip(timesteps)
|
251 |
+
total_steps = timesteps.shape[0]
|
252 |
+
# print(f"Running DDIM Sampling with {total_steps} timesteps")
|
253 |
+
|
254 |
+
# iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
|
255 |
+
x_dec = x_latent
|
256 |
+
for i, step in enumerate(time_range):
|
257 |
+
index = total_steps - i - 1
|
258 |
+
ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
|
259 |
+
x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
|
260 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
261 |
+
unconditional_conditioning=unconditional_conditioning)
|
262 |
+
return x_dec
|
ldm/models/diffusion/ddpm.py
ADDED
@@ -0,0 +1,1444 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
wild mixture of
|
3 |
+
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
4 |
+
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
|
5 |
+
https://github.com/CompVis/taming-transformers
|
6 |
+
-- merci
|
7 |
+
"""
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import numpy as np
|
11 |
+
import pytorch_lightning as pl
|
12 |
+
from torch.optim.lr_scheduler import LambdaLR
|
13 |
+
from einops import rearrange, repeat
|
14 |
+
from contextlib import contextmanager
|
15 |
+
from functools import partial
|
16 |
+
from tqdm import tqdm
|
17 |
+
from torchvision.utils import make_grid
|
18 |
+
from pytorch_lightning.utilities.distributed import rank_zero_only
|
19 |
+
|
20 |
+
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
|
21 |
+
from ldm.modules.ema import LitEma
|
22 |
+
from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
|
23 |
+
from ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL
|
24 |
+
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
|
25 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
26 |
+
|
27 |
+
|
28 |
+
__conditioning_keys__ = {'concat': 'c_concat',
|
29 |
+
'crossattn': 'c_crossattn',
|
30 |
+
'adm': 'y'}
|
31 |
+
|
32 |
+
|
33 |
+
def disabled_train(self, mode=True):
|
34 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
35 |
+
does not change anymore."""
|
36 |
+
return self
|
37 |
+
|
38 |
+
|
39 |
+
def uniform_on_device(r1, r2, shape, device):
|
40 |
+
return (r1 - r2) * torch.rand(*shape, device=device) + r2
|
41 |
+
|
42 |
+
|
43 |
+
class DDPM(pl.LightningModule):
|
44 |
+
# classic DDPM with Gaussian diffusion, in image space
|
45 |
+
def __init__(self,
|
46 |
+
unet_config,
|
47 |
+
timesteps=1000,
|
48 |
+
beta_schedule="linear",
|
49 |
+
loss_type="l2",
|
50 |
+
ckpt_path=None,
|
51 |
+
ignore_keys=[],
|
52 |
+
load_only_unet=False,
|
53 |
+
monitor="val/loss",
|
54 |
+
use_ema=True,
|
55 |
+
first_stage_key="image",
|
56 |
+
image_size=256,
|
57 |
+
channels=3,
|
58 |
+
log_every_t=100,
|
59 |
+
clip_denoised=True,
|
60 |
+
linear_start=1e-4,
|
61 |
+
linear_end=2e-2,
|
62 |
+
cosine_s=8e-3,
|
63 |
+
given_betas=None,
|
64 |
+
original_elbo_weight=0.,
|
65 |
+
v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
|
66 |
+
l_simple_weight=1.,
|
67 |
+
conditioning_key=None,
|
68 |
+
parameterization="eps", # all config files uses "eps"
|
69 |
+
scheduler_config=None,
|
70 |
+
use_positional_encodings=False,
|
71 |
+
learn_logvar=False,
|
72 |
+
logvar_init=0.,
|
73 |
+
):
|
74 |
+
super().__init__()
|
75 |
+
assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
|
76 |
+
self.parameterization = parameterization
|
77 |
+
print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
|
78 |
+
self.cond_stage_model = None
|
79 |
+
self.clip_denoised = clip_denoised
|
80 |
+
self.log_every_t = log_every_t
|
81 |
+
self.first_stage_key = first_stage_key
|
82 |
+
self.image_size = image_size # try conv?
|
83 |
+
self.channels = channels
|
84 |
+
self.use_positional_encodings = use_positional_encodings
|
85 |
+
self.model = DiffusionWrapper(unet_config, conditioning_key)
|
86 |
+
count_params(self.model, verbose=True)
|
87 |
+
self.use_ema = use_ema
|
88 |
+
if self.use_ema:
|
89 |
+
self.model_ema = LitEma(self.model)
|
90 |
+
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
91 |
+
|
92 |
+
self.use_scheduler = scheduler_config is not None
|
93 |
+
if self.use_scheduler:
|
94 |
+
self.scheduler_config = scheduler_config
|
95 |
+
|
96 |
+
self.v_posterior = v_posterior
|
97 |
+
self.original_elbo_weight = original_elbo_weight
|
98 |
+
self.l_simple_weight = l_simple_weight
|
99 |
+
|
100 |
+
if monitor is not None:
|
101 |
+
self.monitor = monitor
|
102 |
+
if ckpt_path is not None:
|
103 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
|
104 |
+
|
105 |
+
self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
|
106 |
+
linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
|
107 |
+
|
108 |
+
self.loss_type = loss_type
|
109 |
+
|
110 |
+
self.learn_logvar = learn_logvar
|
111 |
+
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
|
112 |
+
if self.learn_logvar:
|
113 |
+
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
|
114 |
+
|
115 |
+
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
116 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
117 |
+
if exists(given_betas):
|
118 |
+
betas = given_betas
|
119 |
+
else:
|
120 |
+
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
|
121 |
+
cosine_s=cosine_s)
|
122 |
+
alphas = 1. - betas
|
123 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
124 |
+
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
125 |
+
|
126 |
+
timesteps, = betas.shape
|
127 |
+
self.num_timesteps = int(timesteps)
|
128 |
+
self.linear_start = linear_start
|
129 |
+
self.linear_end = linear_end
|
130 |
+
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
|
131 |
+
|
132 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
133 |
+
|
134 |
+
self.register_buffer('betas', to_torch(betas))
|
135 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
136 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
137 |
+
|
138 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
139 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
140 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
141 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
142 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
143 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
144 |
+
|
145 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
146 |
+
posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
|
147 |
+
1. - alphas_cumprod) + self.v_posterior * betas
|
148 |
+
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
149 |
+
self.register_buffer('posterior_variance', to_torch(posterior_variance))
|
150 |
+
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
151 |
+
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
|
152 |
+
self.register_buffer('posterior_mean_coef1', to_torch(
|
153 |
+
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
|
154 |
+
self.register_buffer('posterior_mean_coef2', to_torch(
|
155 |
+
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
|
156 |
+
|
157 |
+
if self.parameterization == "eps":
|
158 |
+
lvlb_weights = self.betas ** 2 / (
|
159 |
+
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
|
160 |
+
elif self.parameterization == "x0":
|
161 |
+
lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
|
162 |
+
else:
|
163 |
+
raise NotImplementedError("mu not supported")
|
164 |
+
# TODO how to choose this term
|
165 |
+
lvlb_weights[0] = lvlb_weights[1]
|
166 |
+
self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
|
167 |
+
assert not torch.isnan(self.lvlb_weights).all()
|
168 |
+
|
169 |
+
@contextmanager
|
170 |
+
def ema_scope(self, context=None):
|
171 |
+
if self.use_ema:
|
172 |
+
self.model_ema.store(self.model.parameters())
|
173 |
+
self.model_ema.copy_to(self.model)
|
174 |
+
if context is not None:
|
175 |
+
print(f"{context}: Switched to EMA weights")
|
176 |
+
try:
|
177 |
+
yield None
|
178 |
+
finally:
|
179 |
+
if self.use_ema:
|
180 |
+
self.model_ema.restore(self.model.parameters())
|
181 |
+
if context is not None:
|
182 |
+
print(f"{context}: Restored training weights")
|
183 |
+
|
184 |
+
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
185 |
+
sd = torch.load(path, map_location="cpu")
|
186 |
+
if "state_dict" in list(sd.keys()):
|
187 |
+
sd = sd["state_dict"]
|
188 |
+
keys = list(sd.keys())
|
189 |
+
for k in keys:
|
190 |
+
for ik in ignore_keys:
|
191 |
+
if k.startswith(ik):
|
192 |
+
print("Deleting key {} from state_dict.".format(k))
|
193 |
+
del sd[k]
|
194 |
+
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
195 |
+
sd, strict=False)
|
196 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
197 |
+
if len(missing) > 0:
|
198 |
+
print(f"Missing Keys: {missing}")
|
199 |
+
if len(unexpected) > 0:
|
200 |
+
print(f"Unexpected Keys: {unexpected}")
|
201 |
+
|
202 |
+
def q_mean_variance(self, x_start, t):
|
203 |
+
"""
|
204 |
+
Get the distribution q(x_t | x_0).
|
205 |
+
:param x_start: the [N x C x ...] tensor of noiseless inputs.
|
206 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
207 |
+
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
|
208 |
+
"""
|
209 |
+
mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
|
210 |
+
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
|
211 |
+
log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
|
212 |
+
return mean, variance, log_variance
|
213 |
+
|
214 |
+
def predict_start_from_noise(self, x_t, t, noise):
|
215 |
+
return (
|
216 |
+
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
|
217 |
+
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
|
218 |
+
)
|
219 |
+
|
220 |
+
def q_posterior(self, x_start, x_t, t):
|
221 |
+
posterior_mean = (
|
222 |
+
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
|
223 |
+
extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
224 |
+
)
|
225 |
+
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
|
226 |
+
posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
|
227 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
228 |
+
|
229 |
+
def p_mean_variance(self, x, t, clip_denoised: bool):
|
230 |
+
model_out = self.model(x, t)
|
231 |
+
if self.parameterization == "eps":
|
232 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
233 |
+
elif self.parameterization == "x0":
|
234 |
+
x_recon = model_out
|
235 |
+
if clip_denoised:
|
236 |
+
x_recon.clamp_(-1., 1.)
|
237 |
+
|
238 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
239 |
+
return model_mean, posterior_variance, posterior_log_variance
|
240 |
+
|
241 |
+
@torch.no_grad()
|
242 |
+
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
|
243 |
+
b, *_, device = *x.shape, x.device
|
244 |
+
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
|
245 |
+
noise = noise_like(x.shape, device, repeat_noise)
|
246 |
+
# no noise when t == 0
|
247 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
248 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
249 |
+
|
250 |
+
@torch.no_grad()
|
251 |
+
def p_sample_loop(self, shape, return_intermediates=False):
|
252 |
+
device = self.betas.device
|
253 |
+
b = shape[0]
|
254 |
+
img = torch.randn(shape, device=device)
|
255 |
+
intermediates = [img]
|
256 |
+
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
|
257 |
+
img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
|
258 |
+
clip_denoised=self.clip_denoised)
|
259 |
+
if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
|
260 |
+
intermediates.append(img)
|
261 |
+
if return_intermediates:
|
262 |
+
return img, intermediates
|
263 |
+
return img
|
264 |
+
|
265 |
+
@torch.no_grad()
|
266 |
+
def sample(self, batch_size=16, return_intermediates=False):
|
267 |
+
image_size = self.image_size
|
268 |
+
channels = self.channels
|
269 |
+
return self.p_sample_loop((batch_size, channels, image_size, image_size),
|
270 |
+
return_intermediates=return_intermediates)
|
271 |
+
|
272 |
+
def q_sample(self, x_start, t, noise=None):
|
273 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
274 |
+
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
|
275 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
|
276 |
+
|
277 |
+
def get_loss(self, pred, target, mean=True):
|
278 |
+
if self.loss_type == 'l1':
|
279 |
+
loss = (target - pred).abs()
|
280 |
+
if mean:
|
281 |
+
loss = loss.mean()
|
282 |
+
elif self.loss_type == 'l2':
|
283 |
+
if mean:
|
284 |
+
loss = torch.nn.functional.mse_loss(target, pred)
|
285 |
+
else:
|
286 |
+
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
|
287 |
+
else:
|
288 |
+
raise NotImplementedError("unknown loss type '{loss_type}'")
|
289 |
+
|
290 |
+
return loss
|
291 |
+
|
292 |
+
def p_losses(self, x_start, t, noise=None):
|
293 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
294 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
295 |
+
model_out = self.model(x_noisy, t)
|
296 |
+
|
297 |
+
loss_dict = {}
|
298 |
+
if self.parameterization == "eps":
|
299 |
+
target = noise
|
300 |
+
elif self.parameterization == "x0":
|
301 |
+
target = x_start
|
302 |
+
else:
|
303 |
+
raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
|
304 |
+
|
305 |
+
loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
|
306 |
+
|
307 |
+
log_prefix = 'train' if self.training else 'val'
|
308 |
+
|
309 |
+
loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
|
310 |
+
loss_simple = loss.mean() * self.l_simple_weight
|
311 |
+
|
312 |
+
loss_vlb = (self.lvlb_weights[t] * loss).mean()
|
313 |
+
loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
|
314 |
+
|
315 |
+
loss = loss_simple + self.original_elbo_weight * loss_vlb
|
316 |
+
|
317 |
+
loss_dict.update({f'{log_prefix}/loss': loss})
|
318 |
+
|
319 |
+
return loss, loss_dict
|
320 |
+
|
321 |
+
def forward(self, x, *args, **kwargs):
|
322 |
+
# b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
|
323 |
+
# assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
|
324 |
+
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
325 |
+
return self.p_losses(x, t, *args, **kwargs)
|
326 |
+
|
327 |
+
def get_input(self, batch, k):
|
328 |
+
x = batch[k]
|
329 |
+
if len(x.shape) == 3:
|
330 |
+
x = x[..., None]
|
331 |
+
x = rearrange(x, 'b h w c -> b c h w')
|
332 |
+
x = x.to(memory_format=torch.contiguous_format).float()
|
333 |
+
return x
|
334 |
+
|
335 |
+
def shared_step(self, batch):
|
336 |
+
x = self.get_input(batch, self.first_stage_key)
|
337 |
+
loss, loss_dict = self(x)
|
338 |
+
return loss, loss_dict
|
339 |
+
|
340 |
+
def training_step(self, batch, batch_idx):
|
341 |
+
loss, loss_dict = self.shared_step(batch)
|
342 |
+
|
343 |
+
self.log_dict(loss_dict, prog_bar=True,
|
344 |
+
logger=True, on_step=True, on_epoch=True)
|
345 |
+
|
346 |
+
self.log("global_step", self.global_step,
|
347 |
+
prog_bar=True, logger=True, on_step=True, on_epoch=False)
|
348 |
+
|
349 |
+
if self.use_scheduler:
|
350 |
+
lr = self.optimizers().param_groups[0]['lr']
|
351 |
+
self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
|
352 |
+
|
353 |
+
return loss
|
354 |
+
|
355 |
+
@torch.no_grad()
|
356 |
+
def validation_step(self, batch, batch_idx):
|
357 |
+
_, loss_dict_no_ema = self.shared_step(batch)
|
358 |
+
with self.ema_scope():
|
359 |
+
_, loss_dict_ema = self.shared_step(batch)
|
360 |
+
loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
|
361 |
+
self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
|
362 |
+
self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
|
363 |
+
|
364 |
+
def on_train_batch_end(self, *args, **kwargs):
|
365 |
+
if self.use_ema:
|
366 |
+
self.model_ema(self.model)
|
367 |
+
|
368 |
+
def _get_rows_from_list(self, samples):
|
369 |
+
n_imgs_per_row = len(samples)
|
370 |
+
denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
|
371 |
+
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
372 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
373 |
+
return denoise_grid
|
374 |
+
|
375 |
+
@torch.no_grad()
|
376 |
+
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
|
377 |
+
log = dict()
|
378 |
+
x = self.get_input(batch, self.first_stage_key)
|
379 |
+
N = min(x.shape[0], N)
|
380 |
+
n_row = min(x.shape[0], n_row)
|
381 |
+
x = x.to(self.device)[:N]
|
382 |
+
log["inputs"] = x
|
383 |
+
|
384 |
+
# get diffusion row
|
385 |
+
diffusion_row = list()
|
386 |
+
x_start = x[:n_row]
|
387 |
+
|
388 |
+
for t in range(self.num_timesteps):
|
389 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
390 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
391 |
+
t = t.to(self.device).long()
|
392 |
+
noise = torch.randn_like(x_start)
|
393 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
394 |
+
diffusion_row.append(x_noisy)
|
395 |
+
|
396 |
+
log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
|
397 |
+
|
398 |
+
if sample:
|
399 |
+
# get denoise row
|
400 |
+
with self.ema_scope("Plotting"):
|
401 |
+
samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
|
402 |
+
|
403 |
+
log["samples"] = samples
|
404 |
+
log["denoise_row"] = self._get_rows_from_list(denoise_row)
|
405 |
+
|
406 |
+
if return_keys:
|
407 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
408 |
+
return log
|
409 |
+
else:
|
410 |
+
return {key: log[key] for key in return_keys}
|
411 |
+
return log
|
412 |
+
|
413 |
+
def configure_optimizers(self):
|
414 |
+
lr = self.learning_rate
|
415 |
+
params = list(self.model.parameters())
|
416 |
+
if self.learn_logvar:
|
417 |
+
params = params + [self.logvar]
|
418 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
419 |
+
return opt
|
420 |
+
|
421 |
+
|
422 |
+
class LatentDiffusion(DDPM):
|
423 |
+
"""main class"""
|
424 |
+
def __init__(self,
|
425 |
+
first_stage_config,
|
426 |
+
cond_stage_config,
|
427 |
+
num_timesteps_cond=None,
|
428 |
+
cond_stage_key="image",# 'caption' for txt2image, 'masked_image' for inpainting
|
429 |
+
cond_stage_trainable=False,
|
430 |
+
concat_mode=True,# true for inpainting
|
431 |
+
cond_stage_forward=None,
|
432 |
+
conditioning_key=None, # 'crossattn' for txt2image, None for inpainting
|
433 |
+
scale_factor=1.0,
|
434 |
+
scale_by_std=False,
|
435 |
+
*args, **kwargs):
|
436 |
+
self.num_timesteps_cond = default(num_timesteps_cond, 1)
|
437 |
+
self.scale_by_std = scale_by_std
|
438 |
+
assert self.num_timesteps_cond <= kwargs['timesteps']
|
439 |
+
# for backwards compatibility after implementation of DiffusionWrapper
|
440 |
+
if conditioning_key is None:
|
441 |
+
conditioning_key = 'concat' if concat_mode else 'crossattn'
|
442 |
+
if cond_stage_config == '__is_unconditional__':
|
443 |
+
conditioning_key = None
|
444 |
+
ckpt_path = kwargs.pop("ckpt_path", None)
|
445 |
+
ignore_keys = kwargs.pop("ignore_keys", [])
|
446 |
+
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
|
447 |
+
self.concat_mode = concat_mode
|
448 |
+
self.cond_stage_trainable = cond_stage_trainable
|
449 |
+
self.cond_stage_key = cond_stage_key
|
450 |
+
try:
|
451 |
+
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
|
452 |
+
except:
|
453 |
+
self.num_downs = 0
|
454 |
+
if not scale_by_std:
|
455 |
+
self.scale_factor = scale_factor
|
456 |
+
else:
|
457 |
+
self.register_buffer('scale_factor', torch.tensor(scale_factor))
|
458 |
+
self.instantiate_first_stage(first_stage_config)
|
459 |
+
self.instantiate_cond_stage(cond_stage_config)
|
460 |
+
self.cond_stage_forward = cond_stage_forward
|
461 |
+
self.clip_denoised = False
|
462 |
+
self.bbox_tokenizer = None
|
463 |
+
|
464 |
+
self.restarted_from_ckpt = False
|
465 |
+
if ckpt_path is not None:
|
466 |
+
self.init_from_ckpt(ckpt_path, ignore_keys)
|
467 |
+
self.restarted_from_ckpt = True
|
468 |
+
|
469 |
+
def make_cond_schedule(self, ):
|
470 |
+
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
|
471 |
+
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
|
472 |
+
self.cond_ids[:self.num_timesteps_cond] = ids
|
473 |
+
|
474 |
+
@rank_zero_only
|
475 |
+
@torch.no_grad()
|
476 |
+
def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
|
477 |
+
# only for very first batch
|
478 |
+
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
|
479 |
+
assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
|
480 |
+
# set rescale weight to 1./std of encodings
|
481 |
+
print("### USING STD-RESCALING ###")
|
482 |
+
x = super().get_input(batch, self.first_stage_key)
|
483 |
+
x = x.to(self.device)
|
484 |
+
encoder_posterior = self.encode_first_stage(x)
|
485 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
486 |
+
del self.scale_factor
|
487 |
+
self.register_buffer('scale_factor', 1. / z.flatten().std())
|
488 |
+
print(f"setting self.scale_factor to {self.scale_factor}")
|
489 |
+
print("### USING STD-RESCALING ###")
|
490 |
+
|
491 |
+
def register_schedule(self,
|
492 |
+
given_betas=None, beta_schedule="linear", timesteps=1000,
|
493 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
494 |
+
super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
|
495 |
+
|
496 |
+
self.shorten_cond_schedule = self.num_timesteps_cond > 1
|
497 |
+
if self.shorten_cond_schedule:
|
498 |
+
self.make_cond_schedule()
|
499 |
+
|
500 |
+
def instantiate_first_stage(self, config):
|
501 |
+
model = instantiate_from_config(config)
|
502 |
+
self.first_stage_model = model.eval()
|
503 |
+
self.first_stage_model.train = disabled_train
|
504 |
+
for param in self.first_stage_model.parameters():
|
505 |
+
param.requires_grad = False
|
506 |
+
|
507 |
+
def instantiate_cond_stage(self, config):
|
508 |
+
if not self.cond_stage_trainable:
|
509 |
+
if config == "__is_first_stage__":# inpaint
|
510 |
+
print("Using first stage also as cond stage.")
|
511 |
+
self.cond_stage_model = self.first_stage_model
|
512 |
+
elif config == "__is_unconditional__":
|
513 |
+
print(f"Training {self.__class__.__name__} as an unconditional model.")
|
514 |
+
self.cond_stage_model = None
|
515 |
+
# self.be_unconditional = True
|
516 |
+
else:
|
517 |
+
model = instantiate_from_config(config)
|
518 |
+
self.cond_stage_model = model.eval()
|
519 |
+
self.cond_stage_model.train = disabled_train
|
520 |
+
for param in self.cond_stage_model.parameters():
|
521 |
+
param.requires_grad = False
|
522 |
+
else:
|
523 |
+
assert config != '__is_first_stage__'
|
524 |
+
assert config != '__is_unconditional__'
|
525 |
+
model = instantiate_from_config(config)
|
526 |
+
self.cond_stage_model = model
|
527 |
+
|
528 |
+
def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
|
529 |
+
denoise_row = []
|
530 |
+
for zd in tqdm(samples, desc=desc):
|
531 |
+
denoise_row.append(self.decode_first_stage(zd.to(self.device),
|
532 |
+
force_not_quantize=force_no_decoder_quantization))
|
533 |
+
n_imgs_per_row = len(denoise_row)
|
534 |
+
denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
|
535 |
+
denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
|
536 |
+
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
537 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
538 |
+
return denoise_grid
|
539 |
+
|
540 |
+
def get_first_stage_encoding(self, encoder_posterior):
|
541 |
+
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
|
542 |
+
z = encoder_posterior.sample()
|
543 |
+
elif isinstance(encoder_posterior, torch.Tensor):
|
544 |
+
z = encoder_posterior
|
545 |
+
else:
|
546 |
+
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
|
547 |
+
return self.scale_factor * z
|
548 |
+
|
549 |
+
def get_learned_conditioning(self, c):
|
550 |
+
if self.cond_stage_forward is None:
|
551 |
+
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
|
552 |
+
c = self.cond_stage_model.encode(c)
|
553 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
554 |
+
c = c.mode()
|
555 |
+
else:
|
556 |
+
c = self.cond_stage_model(c)
|
557 |
+
else:
|
558 |
+
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
|
559 |
+
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
|
560 |
+
return c
|
561 |
+
|
562 |
+
def meshgrid(self, h, w):
|
563 |
+
y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
|
564 |
+
x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
|
565 |
+
|
566 |
+
arr = torch.cat([y, x], dim=-1)
|
567 |
+
return arr
|
568 |
+
|
569 |
+
def delta_border(self, h, w):
|
570 |
+
"""
|
571 |
+
:param h: height
|
572 |
+
:param w: width
|
573 |
+
:return: normalized distance to image border,
|
574 |
+
wtith min distance = 0 at border and max dist = 0.5 at image center
|
575 |
+
"""
|
576 |
+
lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
|
577 |
+
arr = self.meshgrid(h, w) / lower_right_corner
|
578 |
+
dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
|
579 |
+
dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
|
580 |
+
edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
|
581 |
+
return edge_dist
|
582 |
+
|
583 |
+
def get_weighting(self, h, w, Ly, Lx, device):
|
584 |
+
weighting = self.delta_border(h, w)
|
585 |
+
weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
|
586 |
+
self.split_input_params["clip_max_weight"], )
|
587 |
+
weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
|
588 |
+
|
589 |
+
if self.split_input_params["tie_braker"]:
|
590 |
+
L_weighting = self.delta_border(Ly, Lx)
|
591 |
+
L_weighting = torch.clip(L_weighting,
|
592 |
+
self.split_input_params["clip_min_tie_weight"],
|
593 |
+
self.split_input_params["clip_max_tie_weight"])
|
594 |
+
|
595 |
+
L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
|
596 |
+
weighting = weighting * L_weighting
|
597 |
+
return weighting
|
598 |
+
|
599 |
+
def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
|
600 |
+
"""
|
601 |
+
:param x: img of size (bs, c, h, w)
|
602 |
+
:return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
|
603 |
+
"""
|
604 |
+
bs, nc, h, w = x.shape
|
605 |
+
|
606 |
+
# number of crops in image
|
607 |
+
Ly = (h - kernel_size[0]) // stride[0] + 1
|
608 |
+
Lx = (w - kernel_size[1]) // stride[1] + 1
|
609 |
+
|
610 |
+
if uf == 1 and df == 1:
|
611 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
612 |
+
unfold = torch.nn.Unfold(**fold_params)
|
613 |
+
|
614 |
+
fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
|
615 |
+
|
616 |
+
weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
|
617 |
+
normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
|
618 |
+
weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
|
619 |
+
|
620 |
+
elif uf > 1 and df == 1:
|
621 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
622 |
+
unfold = torch.nn.Unfold(**fold_params)
|
623 |
+
|
624 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
|
625 |
+
dilation=1, padding=0,
|
626 |
+
stride=(stride[0] * uf, stride[1] * uf))
|
627 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
|
628 |
+
|
629 |
+
weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
|
630 |
+
normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
|
631 |
+
weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
|
632 |
+
|
633 |
+
elif df > 1 and uf == 1:
|
634 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
635 |
+
unfold = torch.nn.Unfold(**fold_params)
|
636 |
+
|
637 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
|
638 |
+
dilation=1, padding=0,
|
639 |
+
stride=(stride[0] // df, stride[1] // df))
|
640 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
|
641 |
+
|
642 |
+
weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
|
643 |
+
normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
|
644 |
+
weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
|
645 |
+
|
646 |
+
else:
|
647 |
+
raise NotImplementedError
|
648 |
+
|
649 |
+
return fold, unfold, normalization, weighting
|
650 |
+
|
651 |
+
@torch.no_grad()
|
652 |
+
def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
|
653 |
+
cond_key=None, return_original_cond=False, bs=None):
|
654 |
+
x = super().get_input(batch, k)
|
655 |
+
if bs is not None:
|
656 |
+
x = x[:bs]
|
657 |
+
x = x.to(self.device)
|
658 |
+
encoder_posterior = self.encode_first_stage(x)
|
659 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
660 |
+
|
661 |
+
if self.model.conditioning_key is not None:
|
662 |
+
if cond_key is None:
|
663 |
+
cond_key = self.cond_stage_key
|
664 |
+
if cond_key != self.first_stage_key:# cond_key is not image. for inapint it's masked_img
|
665 |
+
if cond_key in ['caption', 'coordinates_bbox']:
|
666 |
+
xc = batch[cond_key]
|
667 |
+
elif cond_key == 'class_label':
|
668 |
+
xc = batch
|
669 |
+
else:
|
670 |
+
xc = super().get_input(batch, cond_key).to(self.device)
|
671 |
+
else:
|
672 |
+
xc = x
|
673 |
+
if not self.cond_stage_trainable or force_c_encode:
|
674 |
+
if isinstance(xc, dict) or isinstance(xc, list):
|
675 |
+
# import pudb; pudb.set_trace()
|
676 |
+
c = self.get_learned_conditioning(xc)
|
677 |
+
else:
|
678 |
+
c = self.get_learned_conditioning(xc.to(self.device))
|
679 |
+
else:
|
680 |
+
c = xc
|
681 |
+
if bs is not None:
|
682 |
+
c = c[:bs]
|
683 |
+
|
684 |
+
if self.use_positional_encodings:
|
685 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
686 |
+
ckey = __conditioning_keys__[self.model.conditioning_key]
|
687 |
+
c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
|
688 |
+
|
689 |
+
else:
|
690 |
+
c = None
|
691 |
+
xc = None
|
692 |
+
if self.use_positional_encodings:
|
693 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
694 |
+
c = {'pos_x': pos_x, 'pos_y': pos_y}
|
695 |
+
out = [z, c]
|
696 |
+
if return_first_stage_outputs:
|
697 |
+
xrec = self.decode_first_stage(z)
|
698 |
+
out.extend([x, xrec])
|
699 |
+
if return_original_cond:
|
700 |
+
out.append(xc)
|
701 |
+
return out
|
702 |
+
|
703 |
+
@torch.no_grad()
|
704 |
+
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
705 |
+
if predict_cids:
|
706 |
+
if z.dim() == 4:
|
707 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
708 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
709 |
+
z = rearrange(z, 'b h w c -> b c h w').contiguous()
|
710 |
+
|
711 |
+
z = 1. / self.scale_factor * z
|
712 |
+
|
713 |
+
if hasattr(self, "split_input_params"):
|
714 |
+
if self.split_input_params["patch_distributed_vq"]:
|
715 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
716 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
717 |
+
uf = self.split_input_params["vqf"]
|
718 |
+
bs, nc, h, w = z.shape
|
719 |
+
if ks[0] > h or ks[1] > w:
|
720 |
+
ks = (min(ks[0], h), min(ks[1], w))
|
721 |
+
print("reducing Kernel")
|
722 |
+
|
723 |
+
if stride[0] > h or stride[1] > w:
|
724 |
+
stride = (min(stride[0], h), min(stride[1], w))
|
725 |
+
print("reducing stride")
|
726 |
+
|
727 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
|
728 |
+
|
729 |
+
z = unfold(z) # (bn, nc * prod(**ks), L)
|
730 |
+
# 1. Reshape to img shape
|
731 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
732 |
+
|
733 |
+
# 2. apply model loop over last dim
|
734 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
735 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
|
736 |
+
force_not_quantize=predict_cids or force_not_quantize)
|
737 |
+
for i in range(z.shape[-1])]
|
738 |
+
else:
|
739 |
+
|
740 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
|
741 |
+
for i in range(z.shape[-1])]
|
742 |
+
|
743 |
+
o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
|
744 |
+
o = o * weighting
|
745 |
+
# Reverse 1. reshape to img shape
|
746 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
747 |
+
# stitch crops together
|
748 |
+
decoded = fold(o)
|
749 |
+
decoded = decoded / normalization # norm is shape (1, 1, h, w)
|
750 |
+
return decoded
|
751 |
+
else:
|
752 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
753 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
754 |
+
else:
|
755 |
+
return self.first_stage_model.decode(z)
|
756 |
+
|
757 |
+
else:
|
758 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
759 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
760 |
+
else:
|
761 |
+
return self.first_stage_model.decode(z)
|
762 |
+
|
763 |
+
# same as above but without decorator
|
764 |
+
def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
765 |
+
if predict_cids:
|
766 |
+
if z.dim() == 4:
|
767 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
768 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
769 |
+
z = rearrange(z, 'b h w c -> b c h w').contiguous()
|
770 |
+
|
771 |
+
z = 1. / self.scale_factor * z
|
772 |
+
|
773 |
+
if hasattr(self, "split_input_params"):
|
774 |
+
if self.split_input_params["patch_distributed_vq"]:
|
775 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
776 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
777 |
+
uf = self.split_input_params["vqf"]
|
778 |
+
bs, nc, h, w = z.shape
|
779 |
+
if ks[0] > h or ks[1] > w:
|
780 |
+
ks = (min(ks[0], h), min(ks[1], w))
|
781 |
+
print("reducing Kernel")
|
782 |
+
|
783 |
+
if stride[0] > h or stride[1] > w:
|
784 |
+
stride = (min(stride[0], h), min(stride[1], w))
|
785 |
+
print("reducing stride")
|
786 |
+
|
787 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
|
788 |
+
|
789 |
+
z = unfold(z) # (bn, nc * prod(**ks), L)
|
790 |
+
# 1. Reshape to img shape
|
791 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
792 |
+
|
793 |
+
# 2. apply model loop over last dim
|
794 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
795 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
|
796 |
+
force_not_quantize=predict_cids or force_not_quantize)
|
797 |
+
for i in range(z.shape[-1])]
|
798 |
+
else:
|
799 |
+
|
800 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
|
801 |
+
for i in range(z.shape[-1])]
|
802 |
+
|
803 |
+
o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
|
804 |
+
o = o * weighting
|
805 |
+
# Reverse 1. reshape to img shape
|
806 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
807 |
+
# stitch crops together
|
808 |
+
decoded = fold(o)
|
809 |
+
decoded = decoded / normalization # norm is shape (1, 1, h, w)
|
810 |
+
return decoded
|
811 |
+
else:
|
812 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
813 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
814 |
+
else:
|
815 |
+
return self.first_stage_model.decode(z)
|
816 |
+
|
817 |
+
else:
|
818 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
819 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
820 |
+
else:
|
821 |
+
return self.first_stage_model.decode(z)
|
822 |
+
|
823 |
+
@torch.no_grad()
|
824 |
+
def encode_first_stage(self, x):
|
825 |
+
if hasattr(self, "split_input_params"):
|
826 |
+
if self.split_input_params["patch_distributed_vq"]:
|
827 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
828 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
829 |
+
df = self.split_input_params["vqf"]
|
830 |
+
self.split_input_params['original_image_size'] = x.shape[-2:]
|
831 |
+
bs, nc, h, w = x.shape
|
832 |
+
if ks[0] > h or ks[1] > w:
|
833 |
+
ks = (min(ks[0], h), min(ks[1], w))
|
834 |
+
print("reducing Kernel")
|
835 |
+
|
836 |
+
if stride[0] > h or stride[1] > w:
|
837 |
+
stride = (min(stride[0], h), min(stride[1], w))
|
838 |
+
print("reducing stride")
|
839 |
+
|
840 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)
|
841 |
+
z = unfold(x) # (bn, nc * prod(**ks), L)
|
842 |
+
# Reshape to img shape
|
843 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
844 |
+
|
845 |
+
output_list = [self.first_stage_model.encode(z[:, :, :, :, i])
|
846 |
+
for i in range(z.shape[-1])]
|
847 |
+
|
848 |
+
o = torch.stack(output_list, axis=-1)
|
849 |
+
o = o * weighting
|
850 |
+
|
851 |
+
# Reverse reshape to img shape
|
852 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
853 |
+
# stitch crops together
|
854 |
+
decoded = fold(o)
|
855 |
+
decoded = decoded / normalization
|
856 |
+
return decoded
|
857 |
+
|
858 |
+
else:
|
859 |
+
return self.first_stage_model.encode(x)
|
860 |
+
else:
|
861 |
+
return self.first_stage_model.encode(x)
|
862 |
+
|
863 |
+
def shared_step(self, batch, **kwargs):
|
864 |
+
x, c = self.get_input(batch, self.first_stage_key)
|
865 |
+
loss = self(x, c)
|
866 |
+
return loss
|
867 |
+
|
868 |
+
def forward(self, x, c, *args, **kwargs):
|
869 |
+
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
870 |
+
if self.model.conditioning_key is not None:
|
871 |
+
assert c is not None
|
872 |
+
if self.cond_stage_trainable:# true when use text
|
873 |
+
c = self.get_learned_conditioning(c) # c: string list -> [B, T, Context_dim]
|
874 |
+
if self.shorten_cond_schedule: # TODO: drop this option
|
875 |
+
tc = self.cond_ids[t].to(self.device)
|
876 |
+
c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
|
877 |
+
return self.p_losses(x, c, t, *args, **kwargs)
|
878 |
+
|
879 |
+
def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset
|
880 |
+
def rescale_bbox(bbox):
|
881 |
+
x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
|
882 |
+
y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
|
883 |
+
w = min(bbox[2] / crop_coordinates[2], 1 - x0)
|
884 |
+
h = min(bbox[3] / crop_coordinates[3], 1 - y0)
|
885 |
+
return x0, y0, w, h
|
886 |
+
|
887 |
+
return [rescale_bbox(b) for b in bboxes]
|
888 |
+
|
889 |
+
def apply_model(self, x_noisy, t, cond, return_ids=False):
|
890 |
+
|
891 |
+
if isinstance(cond, dict):
|
892 |
+
# hybrid case, cond is exptected to be a dict
|
893 |
+
pass
|
894 |
+
else:
|
895 |
+
if not isinstance(cond, list):
|
896 |
+
cond = [cond]
|
897 |
+
key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
|
898 |
+
cond = {key: cond}
|
899 |
+
|
900 |
+
if hasattr(self, "split_input_params"):
|
901 |
+
assert len(cond) == 1 # todo can only deal with one conditioning atm
|
902 |
+
assert not return_ids
|
903 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
904 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
905 |
+
|
906 |
+
h, w = x_noisy.shape[-2:]
|
907 |
+
|
908 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride)
|
909 |
+
|
910 |
+
z = unfold(x_noisy) # (bn, nc * prod(**ks), L)
|
911 |
+
# Reshape to img shape
|
912 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
913 |
+
z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
|
914 |
+
|
915 |
+
if self.cond_stage_key in ["image", "LR_image", "segmentation",
|
916 |
+
'bbox_img'] and self.model.conditioning_key: # todo check for completeness
|
917 |
+
c_key = next(iter(cond.keys())) # get key
|
918 |
+
c = next(iter(cond.values())) # get value
|
919 |
+
assert (len(c) == 1) # todo extend to list with more than one elem
|
920 |
+
c = c[0] # get element
|
921 |
+
|
922 |
+
c = unfold(c)
|
923 |
+
c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
924 |
+
|
925 |
+
cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
|
926 |
+
|
927 |
+
elif self.cond_stage_key == 'coordinates_bbox':
|
928 |
+
assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
|
929 |
+
|
930 |
+
# assuming padding of unfold is always 0 and its dilation is always 1
|
931 |
+
n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
|
932 |
+
full_img_h, full_img_w = self.split_input_params['original_image_size']
|
933 |
+
# as we are operating on latents, we need the factor from the original image size to the
|
934 |
+
# spatial latent size to properly rescale the crops for regenerating the bbox annotations
|
935 |
+
num_downs = self.first_stage_model.encoder.num_resolutions - 1
|
936 |
+
rescale_latent = 2 ** (num_downs)
|
937 |
+
|
938 |
+
# get top left postions of patches as conforming for the bbbox tokenizer, therefore we
|
939 |
+
# need to rescale the tl patch coordinates to be in between (0,1)
|
940 |
+
tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
|
941 |
+
rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
|
942 |
+
for patch_nr in range(z.shape[-1])]
|
943 |
+
|
944 |
+
# patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
|
945 |
+
patch_limits = [(x_tl, y_tl,
|
946 |
+
rescale_latent * ks[0] / full_img_w,
|
947 |
+
rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates]
|
948 |
+
# patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
|
949 |
+
|
950 |
+
# tokenize crop coordinates for the bounding boxes of the respective patches
|
951 |
+
patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device)
|
952 |
+
for bbox in patch_limits] # list of length l with tensors of shape (1, 2)
|
953 |
+
print(patch_limits_tknzd[0].shape)
|
954 |
+
# cut tknzd crop position from conditioning
|
955 |
+
assert isinstance(cond, dict), 'cond must be dict to be fed into model'
|
956 |
+
cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
|
957 |
+
print(cut_cond.shape)
|
958 |
+
|
959 |
+
adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd])
|
960 |
+
adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
|
961 |
+
print(adapted_cond.shape)
|
962 |
+
adapted_cond = self.get_learned_conditioning(adapted_cond)
|
963 |
+
print(adapted_cond.shape)
|
964 |
+
adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1])
|
965 |
+
print(adapted_cond.shape)
|
966 |
+
|
967 |
+
cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
|
968 |
+
|
969 |
+
else:
|
970 |
+
cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient
|
971 |
+
|
972 |
+
# apply model by loop over crops
|
973 |
+
output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])]
|
974 |
+
assert not isinstance(output_list[0],
|
975 |
+
tuple) # todo cant deal with multiple model outputs check this never happens
|
976 |
+
|
977 |
+
o = torch.stack(output_list, axis=-1)
|
978 |
+
o = o * weighting
|
979 |
+
# Reverse reshape to img shape
|
980 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
981 |
+
# stitch crops together
|
982 |
+
x_recon = fold(o) / normalization
|
983 |
+
|
984 |
+
else:
|
985 |
+
x_recon = self.model(x_noisy, t, **cond)
|
986 |
+
|
987 |
+
if isinstance(x_recon, tuple) and not return_ids:
|
988 |
+
return x_recon[0]
|
989 |
+
else:
|
990 |
+
return x_recon
|
991 |
+
|
992 |
+
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
993 |
+
return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
|
994 |
+
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
995 |
+
|
996 |
+
def _prior_bpd(self, x_start):
|
997 |
+
"""
|
998 |
+
Get the prior KL term for the variational lower-bound, measured in
|
999 |
+
bits-per-dim.
|
1000 |
+
This term can't be optimized, as it only depends on the encoder.
|
1001 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
1002 |
+
:return: a batch of [N] KL values (in bits), one per batch element.
|
1003 |
+
"""
|
1004 |
+
batch_size = x_start.shape[0]
|
1005 |
+
t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
|
1006 |
+
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
|
1007 |
+
kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
|
1008 |
+
return mean_flat(kl_prior) / np.log(2.0)
|
1009 |
+
|
1010 |
+
def p_losses(self, x_start, cond, t, noise=None):
|
1011 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
1012 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
1013 |
+
model_output = self.apply_model(x_noisy, t, cond)
|
1014 |
+
|
1015 |
+
loss_dict = {}
|
1016 |
+
prefix = 'train' if self.training else 'val'
|
1017 |
+
|
1018 |
+
if self.parameterization == "x0":
|
1019 |
+
target = x_start
|
1020 |
+
elif self.parameterization == "eps":
|
1021 |
+
target = noise
|
1022 |
+
else:
|
1023 |
+
raise NotImplementedError()
|
1024 |
+
|
1025 |
+
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
|
1026 |
+
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
|
1027 |
+
|
1028 |
+
logvar_t = self.logvar[t].to(self.device)
|
1029 |
+
loss = loss_simple / torch.exp(logvar_t) + logvar_t
|
1030 |
+
# loss = loss_simple / torch.exp(self.logvar) + self.logvar
|
1031 |
+
if self.learn_logvar:
|
1032 |
+
loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
|
1033 |
+
loss_dict.update({'logvar': self.logvar.data.mean()})
|
1034 |
+
|
1035 |
+
loss = self.l_simple_weight * loss.mean()
|
1036 |
+
|
1037 |
+
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
|
1038 |
+
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
|
1039 |
+
loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
|
1040 |
+
loss += (self.original_elbo_weight * loss_vlb)
|
1041 |
+
loss_dict.update({f'{prefix}/loss': loss})
|
1042 |
+
|
1043 |
+
return loss, loss_dict
|
1044 |
+
|
1045 |
+
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
|
1046 |
+
return_x0=False, score_corrector=None, corrector_kwargs=None):
|
1047 |
+
t_in = t
|
1048 |
+
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
|
1049 |
+
|
1050 |
+
if score_corrector is not None:
|
1051 |
+
assert self.parameterization == "eps"
|
1052 |
+
model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
|
1053 |
+
|
1054 |
+
if return_codebook_ids:
|
1055 |
+
model_out, logits = model_out
|
1056 |
+
|
1057 |
+
if self.parameterization == "eps":
|
1058 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
1059 |
+
elif self.parameterization == "x0":
|
1060 |
+
x_recon = model_out
|
1061 |
+
else:
|
1062 |
+
raise NotImplementedError()
|
1063 |
+
|
1064 |
+
if clip_denoised:
|
1065 |
+
x_recon.clamp_(-1., 1.)
|
1066 |
+
if quantize_denoised:
|
1067 |
+
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
|
1068 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
1069 |
+
if return_codebook_ids:
|
1070 |
+
return model_mean, posterior_variance, posterior_log_variance, logits
|
1071 |
+
elif return_x0:
|
1072 |
+
return model_mean, posterior_variance, posterior_log_variance, x_recon
|
1073 |
+
else:
|
1074 |
+
return model_mean, posterior_variance, posterior_log_variance
|
1075 |
+
|
1076 |
+
@torch.no_grad()
|
1077 |
+
def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
|
1078 |
+
return_codebook_ids=False, quantize_denoised=False, return_x0=False,
|
1079 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
|
1080 |
+
b, *_, device = *x.shape, x.device
|
1081 |
+
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
|
1082 |
+
return_codebook_ids=return_codebook_ids,
|
1083 |
+
quantize_denoised=quantize_denoised,
|
1084 |
+
return_x0=return_x0,
|
1085 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
1086 |
+
if return_codebook_ids:
|
1087 |
+
raise DeprecationWarning("Support dropped.")
|
1088 |
+
model_mean, _, model_log_variance, logits = outputs
|
1089 |
+
elif return_x0:
|
1090 |
+
model_mean, _, model_log_variance, x0 = outputs
|
1091 |
+
else:
|
1092 |
+
model_mean, _, model_log_variance = outputs
|
1093 |
+
|
1094 |
+
noise = noise_like(x.shape, device, repeat_noise) * temperature
|
1095 |
+
if noise_dropout > 0.:
|
1096 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
1097 |
+
# no noise when t == 0
|
1098 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
1099 |
+
|
1100 |
+
if return_codebook_ids:
|
1101 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
|
1102 |
+
if return_x0:
|
1103 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
|
1104 |
+
else:
|
1105 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
1106 |
+
|
1107 |
+
@torch.no_grad()
|
1108 |
+
def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
|
1109 |
+
img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
|
1110 |
+
score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
|
1111 |
+
log_every_t=None):
|
1112 |
+
if not log_every_t:
|
1113 |
+
log_every_t = self.log_every_t
|
1114 |
+
timesteps = self.num_timesteps
|
1115 |
+
if batch_size is not None:
|
1116 |
+
b = batch_size if batch_size is not None else shape[0]
|
1117 |
+
shape = [batch_size] + list(shape)
|
1118 |
+
else:
|
1119 |
+
b = batch_size = shape[0]
|
1120 |
+
if x_T is None:
|
1121 |
+
img = torch.randn(shape, device=self.device)
|
1122 |
+
else:
|
1123 |
+
img = x_T
|
1124 |
+
intermediates = []
|
1125 |
+
if cond is not None:
|
1126 |
+
if isinstance(cond, dict):
|
1127 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
1128 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
1129 |
+
else:
|
1130 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
1131 |
+
|
1132 |
+
if start_T is not None:
|
1133 |
+
timesteps = min(timesteps, start_T)
|
1134 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
|
1135 |
+
total=timesteps) if verbose else reversed(
|
1136 |
+
range(0, timesteps))
|
1137 |
+
if type(temperature) == float:
|
1138 |
+
temperature = [temperature] * timesteps
|
1139 |
+
|
1140 |
+
for i in iterator:
|
1141 |
+
ts = torch.full((b,), i, device=self.device, dtype=torch.long)
|
1142 |
+
if self.shorten_cond_schedule:
|
1143 |
+
assert self.model.conditioning_key != 'hybrid'
|
1144 |
+
tc = self.cond_ids[ts].to(cond.device)
|
1145 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
1146 |
+
|
1147 |
+
img, x0_partial = self.p_sample(img, cond, ts,
|
1148 |
+
clip_denoised=self.clip_denoised,
|
1149 |
+
quantize_denoised=quantize_denoised, return_x0=True,
|
1150 |
+
temperature=temperature[i], noise_dropout=noise_dropout,
|
1151 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
1152 |
+
if mask is not None:
|
1153 |
+
assert x0 is not None
|
1154 |
+
img_orig = self.q_sample(x0, ts)
|
1155 |
+
img = img_orig * mask + (1. - mask) * img
|
1156 |
+
|
1157 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
1158 |
+
intermediates.append(x0_partial)
|
1159 |
+
if callback: callback(i)
|
1160 |
+
if img_callback: img_callback(img, i)
|
1161 |
+
return img, intermediates
|
1162 |
+
|
1163 |
+
@torch.no_grad()
|
1164 |
+
def p_sample_loop(self, cond, shape, return_intermediates=False,
|
1165 |
+
x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
|
1166 |
+
mask=None, x0=None, img_callback=None, start_T=None,
|
1167 |
+
log_every_t=None):
|
1168 |
+
|
1169 |
+
if not log_every_t:
|
1170 |
+
log_every_t = self.log_every_t
|
1171 |
+
device = self.betas.device
|
1172 |
+
b = shape[0]
|
1173 |
+
if x_T is None:
|
1174 |
+
img = torch.randn(shape, device=device)
|
1175 |
+
else:
|
1176 |
+
img = x_T
|
1177 |
+
|
1178 |
+
intermediates = [img]
|
1179 |
+
if timesteps is None:
|
1180 |
+
timesteps = self.num_timesteps
|
1181 |
+
|
1182 |
+
if start_T is not None:
|
1183 |
+
timesteps = min(timesteps, start_T)
|
1184 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
|
1185 |
+
range(0, timesteps))
|
1186 |
+
|
1187 |
+
if mask is not None:
|
1188 |
+
assert x0 is not None
|
1189 |
+
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
|
1190 |
+
|
1191 |
+
for i in iterator:
|
1192 |
+
ts = torch.full((b,), i, device=device, dtype=torch.long)
|
1193 |
+
if self.shorten_cond_schedule:
|
1194 |
+
assert self.model.conditioning_key != 'hybrid'
|
1195 |
+
tc = self.cond_ids[ts].to(cond.device)
|
1196 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
1197 |
+
|
1198 |
+
img = self.p_sample(img, cond, ts,
|
1199 |
+
clip_denoised=self.clip_denoised,
|
1200 |
+
quantize_denoised=quantize_denoised)
|
1201 |
+
if mask is not None:
|
1202 |
+
img_orig = self.q_sample(x0, ts)
|
1203 |
+
img = img_orig * mask + (1. - mask) * img
|
1204 |
+
|
1205 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
1206 |
+
intermediates.append(img)
|
1207 |
+
if callback: callback(i)
|
1208 |
+
if img_callback: img_callback(img, i)
|
1209 |
+
|
1210 |
+
if return_intermediates:
|
1211 |
+
return img, intermediates
|
1212 |
+
return img
|
1213 |
+
|
1214 |
+
@torch.no_grad()
|
1215 |
+
def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
|
1216 |
+
verbose=True, timesteps=None, quantize_denoised=False,
|
1217 |
+
mask=None, x0=None, shape=None,**kwargs):
|
1218 |
+
if shape is None:
|
1219 |
+
shape = (batch_size, self.channels, self.image_size, self.image_size)
|
1220 |
+
if cond is not None:
|
1221 |
+
if isinstance(cond, dict):
|
1222 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
1223 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
1224 |
+
else:
|
1225 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
1226 |
+
return self.p_sample_loop(cond,
|
1227 |
+
shape,
|
1228 |
+
return_intermediates=return_intermediates, x_T=x_T,
|
1229 |
+
verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
|
1230 |
+
mask=mask, x0=x0)
|
1231 |
+
|
1232 |
+
@torch.no_grad()
|
1233 |
+
def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs):
|
1234 |
+
|
1235 |
+
if ddim:
|
1236 |
+
ddim_sampler = DDIMSampler(self)
|
1237 |
+
shape = (self.channels, self.image_size, self.image_size)
|
1238 |
+
samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size,
|
1239 |
+
shape,cond,verbose=False,**kwargs)
|
1240 |
+
|
1241 |
+
else:
|
1242 |
+
samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
|
1243 |
+
return_intermediates=True,**kwargs)
|
1244 |
+
|
1245 |
+
return samples, intermediates
|
1246 |
+
|
1247 |
+
|
1248 |
+
@torch.no_grad()
|
1249 |
+
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
1250 |
+
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
1251 |
+
plot_diffusion_rows=True, **kwargs):
|
1252 |
+
|
1253 |
+
use_ddim = ddim_steps is not None
|
1254 |
+
|
1255 |
+
log = dict()
|
1256 |
+
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
|
1257 |
+
return_first_stage_outputs=True,
|
1258 |
+
force_c_encode=True,
|
1259 |
+
return_original_cond=True,
|
1260 |
+
bs=N)
|
1261 |
+
N = min(x.shape[0], N)
|
1262 |
+
n_row = min(x.shape[0], n_row)
|
1263 |
+
log["inputs"] = x
|
1264 |
+
log["reconstruction"] = xrec
|
1265 |
+
if self.model.conditioning_key is not None:
|
1266 |
+
if hasattr(self.cond_stage_model, "decode"):
|
1267 |
+
xc = self.cond_stage_model.decode(c)
|
1268 |
+
log["conditioning"] = xc
|
1269 |
+
elif self.cond_stage_key in ["caption"]:
|
1270 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"])
|
1271 |
+
log["conditioning"] = xc
|
1272 |
+
elif self.cond_stage_key == 'class_label':
|
1273 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
|
1274 |
+
log['conditioning'] = xc
|
1275 |
+
elif isimage(xc):
|
1276 |
+
log["conditioning"] = xc
|
1277 |
+
if ismap(xc):
|
1278 |
+
log["original_conditioning"] = self.to_rgb(xc)
|
1279 |
+
|
1280 |
+
if plot_diffusion_rows:
|
1281 |
+
# get diffusion row
|
1282 |
+
diffusion_row = list()
|
1283 |
+
z_start = z[:n_row]
|
1284 |
+
for t in range(self.num_timesteps):
|
1285 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
1286 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
1287 |
+
t = t.to(self.device).long()
|
1288 |
+
noise = torch.randn_like(z_start)
|
1289 |
+
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
1290 |
+
diffusion_row.append(self.decode_first_stage(z_noisy))
|
1291 |
+
|
1292 |
+
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
1293 |
+
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
1294 |
+
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
1295 |
+
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
1296 |
+
log["diffusion_row"] = diffusion_grid
|
1297 |
+
|
1298 |
+
if sample:
|
1299 |
+
# get denoise row
|
1300 |
+
with self.ema_scope("Plotting"):
|
1301 |
+
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
|
1302 |
+
ddim_steps=ddim_steps,eta=ddim_eta)
|
1303 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
1304 |
+
x_samples = self.decode_first_stage(samples)
|
1305 |
+
log["samples"] = x_samples
|
1306 |
+
if plot_denoise_rows:
|
1307 |
+
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
1308 |
+
log["denoise_row"] = denoise_grid
|
1309 |
+
|
1310 |
+
if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
|
1311 |
+
self.first_stage_model, IdentityFirstStage):
|
1312 |
+
# also display when quantizing x0 while sampling
|
1313 |
+
with self.ema_scope("Plotting Quantized Denoised"):
|
1314 |
+
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
|
1315 |
+
ddim_steps=ddim_steps,eta=ddim_eta,
|
1316 |
+
quantize_denoised=True)
|
1317 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
|
1318 |
+
# quantize_denoised=True)
|
1319 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1320 |
+
log["samples_x0_quantized"] = x_samples
|
1321 |
+
|
1322 |
+
if inpaint:
|
1323 |
+
# make a simple center square
|
1324 |
+
b, h, w = z.shape[0], z.shape[2], z.shape[3]
|
1325 |
+
mask = torch.ones(N, h, w).to(self.device)
|
1326 |
+
# zeros will be filled in
|
1327 |
+
mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
|
1328 |
+
mask = mask[:, None, ...]
|
1329 |
+
with self.ema_scope("Plotting Inpaint"):
|
1330 |
+
|
1331 |
+
samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,
|
1332 |
+
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
1333 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1334 |
+
log["samples_inpainting"] = x_samples
|
1335 |
+
log["mask"] = mask
|
1336 |
+
|
1337 |
+
# outpaint
|
1338 |
+
with self.ema_scope("Plotting Outpaint"):
|
1339 |
+
samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,
|
1340 |
+
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
1341 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1342 |
+
log["samples_outpainting"] = x_samples
|
1343 |
+
|
1344 |
+
if plot_progressive_rows:
|
1345 |
+
with self.ema_scope("Plotting Progressives"):
|
1346 |
+
img, progressives = self.progressive_denoising(c,
|
1347 |
+
shape=(self.channels, self.image_size, self.image_size),
|
1348 |
+
batch_size=N)
|
1349 |
+
prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
|
1350 |
+
log["progressive_row"] = prog_row
|
1351 |
+
|
1352 |
+
if return_keys:
|
1353 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
1354 |
+
return log
|
1355 |
+
else:
|
1356 |
+
return {key: log[key] for key in return_keys}
|
1357 |
+
return log
|
1358 |
+
|
1359 |
+
def configure_optimizers(self):
|
1360 |
+
lr = self.learning_rate
|
1361 |
+
params = list(self.model.parameters())
|
1362 |
+
if self.cond_stage_trainable:
|
1363 |
+
print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
|
1364 |
+
params = params + list(self.cond_stage_model.parameters())
|
1365 |
+
if self.learn_logvar:
|
1366 |
+
print('Diffusion model optimizing logvar')
|
1367 |
+
params.append(self.logvar)
|
1368 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
1369 |
+
if self.use_scheduler:
|
1370 |
+
assert 'target' in self.scheduler_config
|
1371 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
1372 |
+
|
1373 |
+
print("Setting up LambdaLR scheduler...")
|
1374 |
+
scheduler = [
|
1375 |
+
{
|
1376 |
+
'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
|
1377 |
+
'interval': 'step',
|
1378 |
+
'frequency': 1
|
1379 |
+
}]
|
1380 |
+
return [opt], scheduler
|
1381 |
+
return opt
|
1382 |
+
|
1383 |
+
@torch.no_grad()
|
1384 |
+
def to_rgb(self, x):
|
1385 |
+
x = x.float()
|
1386 |
+
if not hasattr(self, "colorize"):
|
1387 |
+
self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
|
1388 |
+
x = nn.functional.conv2d(x, weight=self.colorize)
|
1389 |
+
x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
|
1390 |
+
return x
|
1391 |
+
|
1392 |
+
|
1393 |
+
class DiffusionWrapper(pl.LightningModule):
|
1394 |
+
def __init__(self, diff_model_config, conditioning_key):
|
1395 |
+
super().__init__()
|
1396 |
+
self.diffusion_model = instantiate_from_config(diff_model_config)
|
1397 |
+
self.conditioning_key = conditioning_key # 'crossattn' for txt2image, concat for inpainting
|
1398 |
+
assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm']
|
1399 |
+
|
1400 |
+
def forward(self, x, t, c_concat: list = None, c_crossattn: list = None):
|
1401 |
+
"""param x: tensor with shape:[B,C,mel_len,T]"""
|
1402 |
+
if self.conditioning_key is None:
|
1403 |
+
out = self.diffusion_model(x, t)
|
1404 |
+
elif self.conditioning_key == 'concat':
|
1405 |
+
xc = torch.cat([x] + c_concat, dim=1)# channel dim,x shape (b,3,64,64) c_concat shape(b,4,64,64)
|
1406 |
+
out = self.diffusion_model(xc, t)
|
1407 |
+
elif self.conditioning_key == 'crossattn':
|
1408 |
+
cc = torch.cat(c_crossattn, 1)# [b,seq_len,dim]
|
1409 |
+
out = self.diffusion_model(x, t, context=cc)
|
1410 |
+
elif self.conditioning_key == 'hybrid':# not implemented in the LatentDiffusion
|
1411 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
1412 |
+
cc = torch.cat(c_crossattn, 1)
|
1413 |
+
out = self.diffusion_model(xc, t, context=cc)
|
1414 |
+
elif self.conditioning_key == 'adm':
|
1415 |
+
cc = c_crossattn[0]
|
1416 |
+
out = self.diffusion_model(x, t, y=cc)
|
1417 |
+
else:
|
1418 |
+
raise NotImplementedError()
|
1419 |
+
|
1420 |
+
return out
|
1421 |
+
|
1422 |
+
|
1423 |
+
class Layout2ImgDiffusion(LatentDiffusion):
|
1424 |
+
# TODO: move all layout-specific hacks to this class
|
1425 |
+
def __init__(self, cond_stage_key, *args, **kwargs):
|
1426 |
+
assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"'
|
1427 |
+
super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs)
|
1428 |
+
|
1429 |
+
def log_images(self, batch, N=8, *args, **kwargs):
|
1430 |
+
logs = super().log_images(batch=batch, N=N, *args, **kwargs)
|
1431 |
+
|
1432 |
+
key = 'train' if self.training else 'validation'
|
1433 |
+
dset = self.trainer.datamodule.datasets[key]
|
1434 |
+
mapper = dset.conditional_builders[self.cond_stage_key]
|
1435 |
+
|
1436 |
+
bbox_imgs = []
|
1437 |
+
map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno))
|
1438 |
+
for tknzd_bbox in batch[self.cond_stage_key][:N]:
|
1439 |
+
bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256))
|
1440 |
+
bbox_imgs.append(bboximg)
|
1441 |
+
|
1442 |
+
cond_img = torch.stack(bbox_imgs, dim=0)
|
1443 |
+
logs['bbox_image'] = cond_img
|
1444 |
+
return logs
|
ldm/models/diffusion/ddpm_audio.py
ADDED
@@ -0,0 +1,1262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
wild mixture of
|
3 |
+
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
4 |
+
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
|
5 |
+
https://github.com/CompVis/taming-transformers
|
6 |
+
-- merci
|
7 |
+
"""
|
8 |
+
import os
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import numpy as np
|
12 |
+
import pytorch_lightning as pl
|
13 |
+
from torch.optim.lr_scheduler import LambdaLR
|
14 |
+
from einops import rearrange, repeat
|
15 |
+
from contextlib import contextmanager
|
16 |
+
from functools import partial
|
17 |
+
from tqdm import tqdm
|
18 |
+
from torchvision.utils import make_grid
|
19 |
+
from pytorch_lightning.utilities.distributed import rank_zero_only
|
20 |
+
|
21 |
+
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
|
22 |
+
from ldm.modules.ema import LitEma
|
23 |
+
from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
|
24 |
+
from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
|
25 |
+
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
|
26 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
27 |
+
from ldm.models.diffusion.ddpm import DDPM, disabled_train
|
28 |
+
from omegaconf import ListConfig
|
29 |
+
|
30 |
+
__conditioning_keys__ = {'concat': 'c_concat',
|
31 |
+
'crossattn': 'c_crossattn',
|
32 |
+
'adm': 'y'}
|
33 |
+
|
34 |
+
|
35 |
+
class LatentDiffusion_audio(DDPM):
|
36 |
+
"""main class"""
|
37 |
+
def __init__(self,
|
38 |
+
first_stage_config,
|
39 |
+
cond_stage_config,
|
40 |
+
num_timesteps_cond=None,
|
41 |
+
mel_dim=80,
|
42 |
+
mel_length=848,
|
43 |
+
cond_stage_key="image",
|
44 |
+
cond_stage_trainable=False,
|
45 |
+
concat_mode=True,
|
46 |
+
cond_stage_forward=None,
|
47 |
+
conditioning_key=None,
|
48 |
+
scale_factor=1.0,
|
49 |
+
scale_by_std=False,
|
50 |
+
*args, **kwargs):
|
51 |
+
self.num_timesteps_cond = default(num_timesteps_cond, 1)
|
52 |
+
self.scale_by_std = scale_by_std
|
53 |
+
assert self.num_timesteps_cond <= kwargs['timesteps']
|
54 |
+
# for backwards compatibility after implementation of DiffusionWrapper
|
55 |
+
if conditioning_key is None:
|
56 |
+
conditioning_key = 'concat' if concat_mode else 'crossattn'
|
57 |
+
if cond_stage_config == '__is_unconditional__':
|
58 |
+
conditioning_key = None
|
59 |
+
ckpt_path = kwargs.pop("ckpt_path", None)
|
60 |
+
ignore_keys = kwargs.pop("ignore_keys", [])
|
61 |
+
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
|
62 |
+
self.concat_mode = concat_mode
|
63 |
+
self.mel_dim = mel_dim
|
64 |
+
self.mel_length = mel_length
|
65 |
+
self.cond_stage_trainable = cond_stage_trainable
|
66 |
+
self.cond_stage_key = cond_stage_key
|
67 |
+
try:
|
68 |
+
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
|
69 |
+
except:
|
70 |
+
self.num_downs = 0
|
71 |
+
if not scale_by_std:
|
72 |
+
self.scale_factor = scale_factor
|
73 |
+
else:
|
74 |
+
self.register_buffer('scale_factor', torch.tensor(scale_factor))
|
75 |
+
self.instantiate_first_stage(first_stage_config)
|
76 |
+
self.instantiate_cond_stage(cond_stage_config)
|
77 |
+
self.cond_stage_forward = cond_stage_forward
|
78 |
+
self.clip_denoised = False
|
79 |
+
self.bbox_tokenizer = None
|
80 |
+
|
81 |
+
self.restarted_from_ckpt = False
|
82 |
+
if ckpt_path is not None:
|
83 |
+
self.init_from_ckpt(ckpt_path, ignore_keys)
|
84 |
+
self.restarted_from_ckpt = True
|
85 |
+
|
86 |
+
def make_cond_schedule(self, ):
|
87 |
+
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
|
88 |
+
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
|
89 |
+
self.cond_ids[:self.num_timesteps_cond] = ids
|
90 |
+
|
91 |
+
@rank_zero_only
|
92 |
+
@torch.no_grad()
|
93 |
+
def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
|
94 |
+
# only for very first batch
|
95 |
+
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
|
96 |
+
assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
|
97 |
+
# set rescale weight to 1./std of encodings
|
98 |
+
print("### USING STD-RESCALING ###")
|
99 |
+
x = super().get_input(batch, self.first_stage_key)
|
100 |
+
x = x.to(self.device)
|
101 |
+
encoder_posterior = self.encode_first_stage(x)
|
102 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
103 |
+
del self.scale_factor
|
104 |
+
self.register_buffer('scale_factor', 1. / z.flatten().std())
|
105 |
+
print(f"setting self.scale_factor to {self.scale_factor}")
|
106 |
+
print("### USING STD-RESCALING ###")
|
107 |
+
|
108 |
+
def register_schedule(self,
|
109 |
+
given_betas=None, beta_schedule="linear", timesteps=1000,
|
110 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
111 |
+
super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
|
112 |
+
|
113 |
+
self.shorten_cond_schedule = self.num_timesteps_cond > 1
|
114 |
+
if self.shorten_cond_schedule:
|
115 |
+
self.make_cond_schedule()
|
116 |
+
|
117 |
+
def instantiate_first_stage(self, config):
|
118 |
+
model = instantiate_from_config(config)
|
119 |
+
self.first_stage_model = model.eval()
|
120 |
+
self.first_stage_model.train = disabled_train
|
121 |
+
for param in self.first_stage_model.parameters():
|
122 |
+
param.requires_grad = False
|
123 |
+
|
124 |
+
def instantiate_cond_stage(self, config):
|
125 |
+
if not self.cond_stage_trainable:
|
126 |
+
if config == "__is_first_stage__":
|
127 |
+
print("Using first stage also as cond stage.")
|
128 |
+
self.cond_stage_model = self.first_stage_model
|
129 |
+
elif config == "__is_unconditional__":
|
130 |
+
print(f"Training {self.__class__.__name__} as an unconditional model.")
|
131 |
+
self.cond_stage_model = None
|
132 |
+
# self.be_unconditional = True
|
133 |
+
else:
|
134 |
+
model = instantiate_from_config(config)
|
135 |
+
self.cond_stage_model = model.eval()
|
136 |
+
self.cond_stage_model.train = disabled_train
|
137 |
+
for param in self.cond_stage_model.parameters():
|
138 |
+
param.requires_grad = False
|
139 |
+
else:
|
140 |
+
assert config != '__is_first_stage__'
|
141 |
+
assert config != '__is_unconditional__'
|
142 |
+
model = instantiate_from_config(config)
|
143 |
+
self.cond_stage_model = model
|
144 |
+
|
145 |
+
def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
|
146 |
+
denoise_row = []
|
147 |
+
for zd in tqdm(samples, desc=desc):
|
148 |
+
denoise_row.append(self.decode_first_stage(zd.to(self.device),
|
149 |
+
force_not_quantize=force_no_decoder_quantization))
|
150 |
+
n_imgs_per_row = len(denoise_row)
|
151 |
+
denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
|
152 |
+
denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
|
153 |
+
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
154 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
155 |
+
return denoise_grid
|
156 |
+
|
157 |
+
def get_first_stage_encoding(self, encoder_posterior):
|
158 |
+
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
|
159 |
+
z = encoder_posterior.sample()
|
160 |
+
elif isinstance(encoder_posterior, torch.Tensor):
|
161 |
+
z = encoder_posterior
|
162 |
+
else:
|
163 |
+
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
|
164 |
+
return self.scale_factor * z
|
165 |
+
|
166 |
+
def get_learned_conditioning(self, c):
|
167 |
+
if self.cond_stage_forward is None:
|
168 |
+
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
|
169 |
+
c = self.cond_stage_model.encode(c)
|
170 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
171 |
+
c = c.mode()
|
172 |
+
else:
|
173 |
+
c = self.cond_stage_model(c)
|
174 |
+
else:
|
175 |
+
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
|
176 |
+
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
|
177 |
+
return c
|
178 |
+
|
179 |
+
|
180 |
+
@torch.no_grad()
|
181 |
+
def get_unconditional_conditioning(self, batch_size, null_label=None):
|
182 |
+
if null_label is not None:
|
183 |
+
xc = null_label
|
184 |
+
if isinstance(xc, ListConfig):
|
185 |
+
xc = list(xc)
|
186 |
+
if isinstance(xc, dict) or isinstance(xc, list):
|
187 |
+
c = self.get_learned_conditioning(xc)
|
188 |
+
else:
|
189 |
+
if hasattr(xc, "to"):
|
190 |
+
xc = xc.to(self.device)
|
191 |
+
c = self.get_learned_conditioning(xc)
|
192 |
+
else:
|
193 |
+
if self.cond_stage_key in ["class_label", "cls"]:
|
194 |
+
xc = self.cond_stage_model.get_unconditional_conditioning(batch_size, device=self.device)
|
195 |
+
return self.get_learned_conditioning(xc)
|
196 |
+
else:
|
197 |
+
raise NotImplementedError("todo")
|
198 |
+
if isinstance(c, list): # in case the encoder gives us a list
|
199 |
+
for i in range(len(c)):
|
200 |
+
c[i] = repeat(c[i], '1 ... -> b ...', b=batch_size).to(self.device)
|
201 |
+
else:
|
202 |
+
c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device)
|
203 |
+
return c
|
204 |
+
|
205 |
+
def meshgrid(self, h, w):
|
206 |
+
y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
|
207 |
+
x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
|
208 |
+
|
209 |
+
arr = torch.cat([y, x], dim=-1)
|
210 |
+
return arr
|
211 |
+
|
212 |
+
def delta_border(self, h, w):
|
213 |
+
"""
|
214 |
+
:param h: height
|
215 |
+
:param w: width
|
216 |
+
:return: normalized distance to image border,
|
217 |
+
wtith min distance = 0 at border and max dist = 0.5 at image center
|
218 |
+
"""
|
219 |
+
lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
|
220 |
+
arr = self.meshgrid(h, w) / lower_right_corner
|
221 |
+
dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
|
222 |
+
dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
|
223 |
+
edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
|
224 |
+
return edge_dist
|
225 |
+
|
226 |
+
def get_weighting(self, h, w, Ly, Lx, device):
|
227 |
+
weighting = self.delta_border(h, w)
|
228 |
+
weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
|
229 |
+
self.split_input_params["clip_max_weight"], )
|
230 |
+
weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
|
231 |
+
|
232 |
+
if self.split_input_params["tie_braker"]:
|
233 |
+
L_weighting = self.delta_border(Ly, Lx)
|
234 |
+
L_weighting = torch.clip(L_weighting,
|
235 |
+
self.split_input_params["clip_min_tie_weight"],
|
236 |
+
self.split_input_params["clip_max_tie_weight"])
|
237 |
+
|
238 |
+
L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
|
239 |
+
weighting = weighting * L_weighting
|
240 |
+
return weighting
|
241 |
+
|
242 |
+
def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
|
243 |
+
"""
|
244 |
+
:param x: img of size (bs, c, h, w)
|
245 |
+
:return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
|
246 |
+
"""
|
247 |
+
bs, nc, h, w = x.shape
|
248 |
+
|
249 |
+
# number of crops in image
|
250 |
+
Ly = (h - kernel_size[0]) // stride[0] + 1
|
251 |
+
Lx = (w - kernel_size[1]) // stride[1] + 1
|
252 |
+
|
253 |
+
if uf == 1 and df == 1:
|
254 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
255 |
+
unfold = torch.nn.Unfold(**fold_params)
|
256 |
+
|
257 |
+
fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
|
258 |
+
|
259 |
+
weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
|
260 |
+
normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
|
261 |
+
weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
|
262 |
+
|
263 |
+
elif uf > 1 and df == 1:
|
264 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
265 |
+
unfold = torch.nn.Unfold(**fold_params)
|
266 |
+
|
267 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
|
268 |
+
dilation=1, padding=0,
|
269 |
+
stride=(stride[0] * uf, stride[1] * uf))
|
270 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
|
271 |
+
|
272 |
+
weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
|
273 |
+
normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
|
274 |
+
weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
|
275 |
+
|
276 |
+
elif df > 1 and uf == 1:
|
277 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
278 |
+
unfold = torch.nn.Unfold(**fold_params)
|
279 |
+
|
280 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
|
281 |
+
dilation=1, padding=0,
|
282 |
+
stride=(stride[0] // df, stride[1] // df))
|
283 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
|
284 |
+
|
285 |
+
weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
|
286 |
+
normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
|
287 |
+
weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
|
288 |
+
|
289 |
+
else:
|
290 |
+
raise NotImplementedError
|
291 |
+
|
292 |
+
return fold, unfold, normalization, weighting
|
293 |
+
|
294 |
+
@torch.no_grad()
|
295 |
+
def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
|
296 |
+
cond_key=None, return_original_cond=False, bs=None):
|
297 |
+
x = super().get_input(batch, k)
|
298 |
+
if bs is not None:
|
299 |
+
x = x[:bs]
|
300 |
+
x = x.to(self.device)
|
301 |
+
encoder_posterior = self.encode_first_stage(x)
|
302 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
303 |
+
|
304 |
+
if self.model.conditioning_key is not None:
|
305 |
+
if cond_key is None:
|
306 |
+
cond_key = self.cond_stage_key
|
307 |
+
if cond_key != self.first_stage_key:
|
308 |
+
if cond_key in ['caption', 'coordinates_bbox']:
|
309 |
+
xc = batch[cond_key]
|
310 |
+
elif cond_key == 'class_label':
|
311 |
+
xc = batch
|
312 |
+
else:
|
313 |
+
xc = super().get_input(batch, cond_key).to(self.device)
|
314 |
+
else:
|
315 |
+
xc = x
|
316 |
+
if not self.cond_stage_trainable or force_c_encode:
|
317 |
+
if isinstance(xc, dict) or isinstance(xc, list):
|
318 |
+
# import pudb; pudb.set_trace()
|
319 |
+
c = self.get_learned_conditioning(xc)
|
320 |
+
else:
|
321 |
+
c = self.get_learned_conditioning(xc.to(self.device))
|
322 |
+
else:
|
323 |
+
c = xc
|
324 |
+
if bs is not None:
|
325 |
+
c = c[:bs]
|
326 |
+
# Testing #
|
327 |
+
if cond_key == 'masked_image':
|
328 |
+
mask = super().get_input(batch, "mask")
|
329 |
+
cc = torch.nn.functional.interpolate(mask, size=c.shape[-2:]) # [B, 1, 10, 106]
|
330 |
+
c = torch.cat((c, cc), dim=1) # [B, 5, 10, 106]
|
331 |
+
# Testing #
|
332 |
+
if self.use_positional_encodings:
|
333 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
334 |
+
ckey = __conditioning_keys__[self.model.conditioning_key]
|
335 |
+
c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
|
336 |
+
|
337 |
+
else:
|
338 |
+
c = None
|
339 |
+
xc = None
|
340 |
+
if self.use_positional_encodings:
|
341 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
342 |
+
c = {'pos_x': pos_x, 'pos_y': pos_y}
|
343 |
+
out = [z, c]
|
344 |
+
if return_first_stage_outputs:
|
345 |
+
xrec = self.decode_first_stage(z)
|
346 |
+
out.extend([x, xrec])
|
347 |
+
if return_original_cond:
|
348 |
+
out.append(xc)
|
349 |
+
return out
|
350 |
+
|
351 |
+
@torch.no_grad()
|
352 |
+
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
353 |
+
if predict_cids:
|
354 |
+
if z.dim() == 4:
|
355 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
356 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
357 |
+
z = rearrange(z, 'b h w c -> b c h w').contiguous()
|
358 |
+
|
359 |
+
z = 1. / self.scale_factor * z
|
360 |
+
|
361 |
+
if hasattr(self, "split_input_params"):
|
362 |
+
if self.split_input_params["patch_distributed_vq"]:
|
363 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
364 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
365 |
+
uf = self.split_input_params["vqf"]
|
366 |
+
bs, nc, h, w = z.shape
|
367 |
+
if ks[0] > h or ks[1] > w:
|
368 |
+
ks = (min(ks[0], h), min(ks[1], w))
|
369 |
+
print("reducing Kernel")
|
370 |
+
|
371 |
+
if stride[0] > h or stride[1] > w:
|
372 |
+
stride = (min(stride[0], h), min(stride[1], w))
|
373 |
+
print("reducing stride")
|
374 |
+
|
375 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
|
376 |
+
|
377 |
+
z = unfold(z) # (bn, nc * prod(**ks), L)
|
378 |
+
# 1. Reshape to img shape
|
379 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
380 |
+
|
381 |
+
# 2. apply model loop over last dim
|
382 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
383 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
|
384 |
+
force_not_quantize=predict_cids or force_not_quantize)
|
385 |
+
for i in range(z.shape[-1])]
|
386 |
+
else:
|
387 |
+
|
388 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
|
389 |
+
for i in range(z.shape[-1])]
|
390 |
+
|
391 |
+
o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
|
392 |
+
o = o * weighting
|
393 |
+
# Reverse 1. reshape to img shape
|
394 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
395 |
+
# stitch crops together
|
396 |
+
decoded = fold(o)
|
397 |
+
decoded = decoded / normalization # norm is shape (1, 1, h, w)
|
398 |
+
return decoded
|
399 |
+
else:
|
400 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
401 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
402 |
+
else:
|
403 |
+
return self.first_stage_model.decode(z)
|
404 |
+
|
405 |
+
else:
|
406 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
407 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
408 |
+
else:
|
409 |
+
return self.first_stage_model.decode(z)
|
410 |
+
|
411 |
+
# same as above but without decorator
|
412 |
+
def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
413 |
+
if predict_cids:
|
414 |
+
if z.dim() == 4:
|
415 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
416 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
417 |
+
z = rearrange(z, 'b h w c -> b c h w').contiguous()
|
418 |
+
|
419 |
+
z = 1. / self.scale_factor * z
|
420 |
+
|
421 |
+
if hasattr(self, "split_input_params"):
|
422 |
+
if self.split_input_params["patch_distributed_vq"]:
|
423 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
424 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
425 |
+
uf = self.split_input_params["vqf"]
|
426 |
+
bs, nc, h, w = z.shape
|
427 |
+
if ks[0] > h or ks[1] > w:
|
428 |
+
ks = (min(ks[0], h), min(ks[1], w))
|
429 |
+
print("reducing Kernel")
|
430 |
+
|
431 |
+
if stride[0] > h or stride[1] > w:
|
432 |
+
stride = (min(stride[0], h), min(stride[1], w))
|
433 |
+
print("reducing stride")
|
434 |
+
|
435 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
|
436 |
+
|
437 |
+
z = unfold(z) # (bn, nc * prod(**ks), L)
|
438 |
+
# 1. Reshape to img shape
|
439 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
440 |
+
|
441 |
+
# 2. apply model loop over last dim
|
442 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
443 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
|
444 |
+
force_not_quantize=predict_cids or force_not_quantize)
|
445 |
+
for i in range(z.shape[-1])]
|
446 |
+
else:
|
447 |
+
|
448 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
|
449 |
+
for i in range(z.shape[-1])]
|
450 |
+
|
451 |
+
o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
|
452 |
+
o = o * weighting
|
453 |
+
# Reverse 1. reshape to img shape
|
454 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
455 |
+
# stitch crops together
|
456 |
+
decoded = fold(o)
|
457 |
+
decoded = decoded / normalization # norm is shape (1, 1, h, w)
|
458 |
+
return decoded
|
459 |
+
else:
|
460 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
461 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
462 |
+
else:
|
463 |
+
return self.first_stage_model.decode(z)
|
464 |
+
|
465 |
+
else:
|
466 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
467 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
468 |
+
else:
|
469 |
+
return self.first_stage_model.decode(z)
|
470 |
+
|
471 |
+
@torch.no_grad()
|
472 |
+
def encode_first_stage(self, x):
|
473 |
+
if hasattr(self, "split_input_params"):
|
474 |
+
if self.split_input_params["patch_distributed_vq"]:
|
475 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
476 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
477 |
+
df = self.split_input_params["vqf"]
|
478 |
+
self.split_input_params['original_image_size'] = x.shape[-2:]
|
479 |
+
bs, nc, h, w = x.shape
|
480 |
+
if ks[0] > h or ks[1] > w:
|
481 |
+
ks = (min(ks[0], h), min(ks[1], w))
|
482 |
+
print("reducing Kernel")
|
483 |
+
|
484 |
+
if stride[0] > h or stride[1] > w:
|
485 |
+
stride = (min(stride[0], h), min(stride[1], w))
|
486 |
+
print("reducing stride")
|
487 |
+
|
488 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)
|
489 |
+
z = unfold(x) # (bn, nc * prod(**ks), L)
|
490 |
+
# Reshape to img shape
|
491 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
492 |
+
|
493 |
+
output_list = [self.first_stage_model.encode(z[:, :, :, :, i])
|
494 |
+
for i in range(z.shape[-1])]
|
495 |
+
|
496 |
+
o = torch.stack(output_list, axis=-1)
|
497 |
+
o = o * weighting
|
498 |
+
|
499 |
+
# Reverse reshape to img shape
|
500 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
501 |
+
# stitch crops together
|
502 |
+
decoded = fold(o)
|
503 |
+
decoded = decoded / normalization
|
504 |
+
return decoded
|
505 |
+
|
506 |
+
else:
|
507 |
+
return self.first_stage_model.encode(x)
|
508 |
+
else:
|
509 |
+
return self.first_stage_model.encode(x)
|
510 |
+
|
511 |
+
def shared_step(self, batch, **kwargs):
|
512 |
+
x, c = self.get_input(batch, self.first_stage_key)
|
513 |
+
loss = self(x, c)
|
514 |
+
return loss
|
515 |
+
|
516 |
+
def test_step(self,batch,batch_idx):
|
517 |
+
cond = batch[self.cond_stage_key] * self.test_repeat
|
518 |
+
cond = self.get_learned_conditioning(cond) # c: string -> [B, T, Context_dim]
|
519 |
+
batch_size = len(cond)
|
520 |
+
enc_emb = self.sample(cond,batch_size,timesteps=self.test_numsteps)# shape = [batch_size,self.channels,self.mel_dim,self.mel_length]
|
521 |
+
xrec = self.decode_first_stage(enc_emb)
|
522 |
+
reconstructions = (xrec + 1)/2 # to mel scale
|
523 |
+
test_ckpt_path = os.path.basename(self.trainer.tested_ckpt_path)
|
524 |
+
savedir = os.path.join(self.trainer.log_dir,f'output_imgs_{test_ckpt_path}','fake_class')
|
525 |
+
if not os.path.exists(savedir):
|
526 |
+
os.makedirs(savedir)
|
527 |
+
|
528 |
+
file_names = batch['f_name']
|
529 |
+
nfiles = len(file_names)
|
530 |
+
reconstructions = reconstructions.cpu().numpy().squeeze(1) # squuze channel dim
|
531 |
+
for k in range(reconstructions.shape[0]):
|
532 |
+
b,repeat = k % nfiles, k // nfiles
|
533 |
+
vname_num_split_index = file_names[b].rfind('_')# file_names[b]:video_name+'_'+num
|
534 |
+
v_n,num = file_names[b][:vname_num_split_index],file_names[b][vname_num_split_index+1:]
|
535 |
+
save_img_path = os.path.join(savedir,f'{v_n}_sample_{num}_{repeat}.npy')# the num_th caption, the repeat_th repitition
|
536 |
+
np.save(save_img_path,reconstructions[b])
|
537 |
+
|
538 |
+
return None
|
539 |
+
|
540 |
+
def forward(self, x, c, *args, **kwargs):
|
541 |
+
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
542 |
+
if self.model.conditioning_key is not None:
|
543 |
+
assert c is not None
|
544 |
+
if self.cond_stage_trainable:
|
545 |
+
c = self.get_learned_conditioning(c) # c: string -> [B, T, Context_dim]
|
546 |
+
if self.shorten_cond_schedule: # TODO: drop this option
|
547 |
+
tc = self.cond_ids[t].to(self.device)
|
548 |
+
c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
|
549 |
+
return self.p_losses(x, c, t, *args, **kwargs)
|
550 |
+
|
551 |
+
def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset
|
552 |
+
def rescale_bbox(bbox):
|
553 |
+
x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
|
554 |
+
y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
|
555 |
+
w = min(bbox[2] / crop_coordinates[2], 1 - x0)
|
556 |
+
h = min(bbox[3] / crop_coordinates[3], 1 - y0)
|
557 |
+
return x0, y0, w, h
|
558 |
+
|
559 |
+
return [rescale_bbox(b) for b in bboxes]
|
560 |
+
|
561 |
+
def apply_model(self, x_noisy, t, cond, return_ids=False):
|
562 |
+
|
563 |
+
if isinstance(cond, dict):
|
564 |
+
# hybrid case, cond is exptected to be a dict
|
565 |
+
pass
|
566 |
+
else:
|
567 |
+
if not isinstance(cond, list):
|
568 |
+
cond = [cond]
|
569 |
+
key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
|
570 |
+
cond = {key: cond}
|
571 |
+
|
572 |
+
if hasattr(self, "split_input_params"):
|
573 |
+
assert len(cond) == 1 # todo can only deal with one conditioning atm
|
574 |
+
assert not return_ids
|
575 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
576 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
577 |
+
|
578 |
+
h, w = x_noisy.shape[-2:]
|
579 |
+
|
580 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride)
|
581 |
+
|
582 |
+
z = unfold(x_noisy) # (bn, nc * prod(**ks), L)
|
583 |
+
# Reshape to img shape
|
584 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
585 |
+
z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
|
586 |
+
|
587 |
+
if self.cond_stage_key in ["image", "LR_image", "segmentation",
|
588 |
+
'bbox_img'] and self.model.conditioning_key: # todo check for completeness
|
589 |
+
c_key = next(iter(cond.keys())) # get key
|
590 |
+
c = next(iter(cond.values())) # get value
|
591 |
+
assert (len(c) == 1) # todo extend to list with more than one elem
|
592 |
+
c = c[0] # get element
|
593 |
+
|
594 |
+
c = unfold(c)
|
595 |
+
c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
596 |
+
|
597 |
+
cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
|
598 |
+
|
599 |
+
elif self.cond_stage_key == 'coordinates_bbox':
|
600 |
+
assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
|
601 |
+
|
602 |
+
# assuming padding of unfold is always 0 and its dilation is always 1
|
603 |
+
n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
|
604 |
+
full_img_h, full_img_w = self.split_input_params['original_image_size']
|
605 |
+
# as we are operating on latents, we need the factor from the original image size to the
|
606 |
+
# spatial latent size to properly rescale the crops for regenerating the bbox annotations
|
607 |
+
num_downs = self.first_stage_model.encoder.num_resolutions - 1
|
608 |
+
rescale_latent = 2 ** (num_downs)
|
609 |
+
|
610 |
+
# get top left postions of patches as conforming for the bbbox tokenizer, therefore we
|
611 |
+
# need to rescale the tl patch coordinates to be in between (0,1)
|
612 |
+
tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
|
613 |
+
rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
|
614 |
+
for patch_nr in range(z.shape[-1])]
|
615 |
+
|
616 |
+
# patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
|
617 |
+
patch_limits = [(x_tl, y_tl,
|
618 |
+
rescale_latent * ks[0] / full_img_w,
|
619 |
+
rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates]
|
620 |
+
# patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
|
621 |
+
|
622 |
+
# tokenize crop coordinates for the bounding boxes of the respective patches
|
623 |
+
patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device)
|
624 |
+
for bbox in patch_limits] # list of length l with tensors of shape (1, 2)
|
625 |
+
print(patch_limits_tknzd[0].shape)
|
626 |
+
# cut tknzd crop position from conditioning
|
627 |
+
assert isinstance(cond, dict), 'cond must be dict to be fed into model'
|
628 |
+
cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
|
629 |
+
print(cut_cond.shape)
|
630 |
+
|
631 |
+
adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd])
|
632 |
+
adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
|
633 |
+
print(adapted_cond.shape)
|
634 |
+
adapted_cond = self.get_learned_conditioning(adapted_cond)
|
635 |
+
print(adapted_cond.shape)
|
636 |
+
adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1])
|
637 |
+
print(adapted_cond.shape)
|
638 |
+
|
639 |
+
cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
|
640 |
+
|
641 |
+
else:
|
642 |
+
cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient
|
643 |
+
|
644 |
+
# apply model by loop over crops
|
645 |
+
output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])]
|
646 |
+
assert not isinstance(output_list[0],
|
647 |
+
tuple) # todo cant deal with multiple model outputs check this never happens
|
648 |
+
|
649 |
+
o = torch.stack(output_list, axis=-1)
|
650 |
+
o = o * weighting
|
651 |
+
# Reverse reshape to img shape
|
652 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
653 |
+
# stitch crops together
|
654 |
+
x_recon = fold(o) / normalization
|
655 |
+
|
656 |
+
else:
|
657 |
+
x_recon = self.model(x_noisy, t, **cond)
|
658 |
+
|
659 |
+
if isinstance(x_recon, tuple) and not return_ids:
|
660 |
+
return x_recon[0]
|
661 |
+
else:
|
662 |
+
return x_recon
|
663 |
+
|
664 |
+
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
665 |
+
return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
|
666 |
+
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
667 |
+
|
668 |
+
def _prior_bpd(self, x_start):
|
669 |
+
"""
|
670 |
+
Get the prior KL term for the variational lower-bound, measured in
|
671 |
+
bits-per-dim.
|
672 |
+
This term can't be optimized, as it only depends on the encoder.
|
673 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
674 |
+
:return: a batch of [N] KL values (in bits), one per batch element.
|
675 |
+
"""
|
676 |
+
batch_size = x_start.shape[0]
|
677 |
+
t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
|
678 |
+
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
|
679 |
+
kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
|
680 |
+
return mean_flat(kl_prior) / np.log(2.0)
|
681 |
+
|
682 |
+
def p_losses(self, x_start, cond, t, noise=None):
|
683 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
684 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
685 |
+
model_output = self.apply_model(x_noisy, t, cond)
|
686 |
+
|
687 |
+
loss_dict = {}
|
688 |
+
prefix = 'train' if self.training else 'val'
|
689 |
+
|
690 |
+
if self.parameterization == "x0":
|
691 |
+
target = x_start
|
692 |
+
elif self.parameterization == "eps":
|
693 |
+
target = noise
|
694 |
+
else:
|
695 |
+
raise NotImplementedError()
|
696 |
+
|
697 |
+
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
|
698 |
+
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
|
699 |
+
|
700 |
+
logvar_t = self.logvar[t].to(self.device)
|
701 |
+
loss = loss_simple / torch.exp(logvar_t) + logvar_t
|
702 |
+
# loss = loss_simple / torch.exp(self.logvar) + self.logvar
|
703 |
+
if self.learn_logvar:
|
704 |
+
loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
|
705 |
+
loss_dict.update({'logvar': self.logvar.data.mean()})
|
706 |
+
|
707 |
+
loss = self.l_simple_weight * loss.mean()
|
708 |
+
|
709 |
+
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
|
710 |
+
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
|
711 |
+
loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
|
712 |
+
loss += (self.original_elbo_weight * loss_vlb)
|
713 |
+
loss_dict.update({f'{prefix}/loss': loss})
|
714 |
+
|
715 |
+
return loss, loss_dict
|
716 |
+
|
717 |
+
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
|
718 |
+
return_x0=False, score_corrector=None, corrector_kwargs=None):
|
719 |
+
t_in = t
|
720 |
+
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
|
721 |
+
|
722 |
+
if score_corrector is not None:
|
723 |
+
assert self.parameterization == "eps"
|
724 |
+
model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
|
725 |
+
|
726 |
+
if return_codebook_ids:
|
727 |
+
model_out, logits = model_out
|
728 |
+
|
729 |
+
if self.parameterization == "eps":
|
730 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
731 |
+
elif self.parameterization == "x0":
|
732 |
+
x_recon = model_out
|
733 |
+
else:
|
734 |
+
raise NotImplementedError()
|
735 |
+
|
736 |
+
if clip_denoised:
|
737 |
+
x_recon.clamp_(-1., 1.)
|
738 |
+
if quantize_denoised:
|
739 |
+
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
|
740 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
741 |
+
if return_codebook_ids:
|
742 |
+
return model_mean, posterior_variance, posterior_log_variance, logits
|
743 |
+
elif return_x0:
|
744 |
+
return model_mean, posterior_variance, posterior_log_variance, x_recon
|
745 |
+
else:
|
746 |
+
return model_mean, posterior_variance, posterior_log_variance
|
747 |
+
|
748 |
+
@torch.no_grad()
|
749 |
+
def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
|
750 |
+
return_codebook_ids=False, quantize_denoised=False, return_x0=False,
|
751 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
|
752 |
+
b, *_, device = *x.shape, x.device
|
753 |
+
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
|
754 |
+
return_codebook_ids=return_codebook_ids,
|
755 |
+
quantize_denoised=quantize_denoised,
|
756 |
+
return_x0=return_x0,
|
757 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
758 |
+
if return_codebook_ids:
|
759 |
+
raise DeprecationWarning("Support dropped.")
|
760 |
+
model_mean, _, model_log_variance, logits = outputs
|
761 |
+
elif return_x0:
|
762 |
+
model_mean, _, model_log_variance, x0 = outputs
|
763 |
+
else:
|
764 |
+
model_mean, _, model_log_variance = outputs
|
765 |
+
|
766 |
+
noise = noise_like(x.shape, device, repeat_noise) * temperature
|
767 |
+
if noise_dropout > 0.:
|
768 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
769 |
+
# no noise when t == 0
|
770 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
771 |
+
|
772 |
+
if return_codebook_ids:
|
773 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
|
774 |
+
if return_x0:
|
775 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
|
776 |
+
else:
|
777 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
778 |
+
|
779 |
+
@torch.no_grad()
|
780 |
+
def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
|
781 |
+
img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
|
782 |
+
score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
|
783 |
+
log_every_t=None):
|
784 |
+
if not log_every_t:
|
785 |
+
log_every_t = self.log_every_t
|
786 |
+
timesteps = self.num_timesteps
|
787 |
+
if batch_size is not None:
|
788 |
+
b = batch_size if batch_size is not None else shape[0]
|
789 |
+
shape = [batch_size] + list(shape)
|
790 |
+
else:
|
791 |
+
b = batch_size = shape[0]
|
792 |
+
if x_T is None:
|
793 |
+
img = torch.randn(shape, device=self.device)
|
794 |
+
else:
|
795 |
+
img = x_T
|
796 |
+
intermediates = []
|
797 |
+
if cond is not None:
|
798 |
+
if isinstance(cond, dict):
|
799 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
800 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
801 |
+
else:
|
802 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
803 |
+
|
804 |
+
if start_T is not None:
|
805 |
+
timesteps = min(timesteps, start_T)
|
806 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
|
807 |
+
total=timesteps) if verbose else reversed(
|
808 |
+
range(0, timesteps))
|
809 |
+
if type(temperature) == float:
|
810 |
+
temperature = [temperature] * timesteps
|
811 |
+
|
812 |
+
for i in iterator:
|
813 |
+
ts = torch.full((b,), i, device=self.device, dtype=torch.long)
|
814 |
+
if self.shorten_cond_schedule:
|
815 |
+
assert self.model.conditioning_key != 'hybrid'
|
816 |
+
tc = self.cond_ids[ts].to(cond.device)
|
817 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
818 |
+
|
819 |
+
img, x0_partial = self.p_sample(img, cond, ts,
|
820 |
+
clip_denoised=self.clip_denoised,
|
821 |
+
quantize_denoised=quantize_denoised, return_x0=True,
|
822 |
+
temperature=temperature[i], noise_dropout=noise_dropout,
|
823 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
824 |
+
if mask is not None:
|
825 |
+
assert x0 is not None
|
826 |
+
img_orig = self.q_sample(x0, ts)
|
827 |
+
img = img_orig * mask + (1. - mask) * img
|
828 |
+
|
829 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
830 |
+
intermediates.append(x0_partial)
|
831 |
+
if callback: callback(i)
|
832 |
+
if img_callback: img_callback(img, i)
|
833 |
+
return img, intermediates
|
834 |
+
|
835 |
+
@torch.no_grad()
|
836 |
+
def p_sample_loop(self, cond, shape, return_intermediates=False,
|
837 |
+
x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
|
838 |
+
mask=None, x0=None, img_callback=None, start_T=None,
|
839 |
+
log_every_t=None):
|
840 |
+
|
841 |
+
if not log_every_t:
|
842 |
+
log_every_t = self.log_every_t
|
843 |
+
device = self.betas.device
|
844 |
+
b = shape[0]
|
845 |
+
if x_T is None:
|
846 |
+
img = torch.randn(shape, device=device)
|
847 |
+
else:
|
848 |
+
img = x_T
|
849 |
+
|
850 |
+
intermediates = [img]
|
851 |
+
if timesteps is None:
|
852 |
+
timesteps = self.num_timesteps
|
853 |
+
|
854 |
+
if start_T is not None:
|
855 |
+
timesteps = min(timesteps, start_T)
|
856 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
|
857 |
+
range(0, timesteps))
|
858 |
+
|
859 |
+
if mask is not None:
|
860 |
+
assert x0 is not None
|
861 |
+
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
|
862 |
+
|
863 |
+
for i in iterator:
|
864 |
+
ts = torch.full((b,), i, device=device, dtype=torch.long)
|
865 |
+
if self.shorten_cond_schedule:
|
866 |
+
assert self.model.conditioning_key != 'hybrid'
|
867 |
+
tc = self.cond_ids[ts].to(cond.device)
|
868 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
869 |
+
|
870 |
+
img = self.p_sample(img, cond, ts,
|
871 |
+
clip_denoised=self.clip_denoised,
|
872 |
+
quantize_denoised=quantize_denoised)
|
873 |
+
if mask is not None:
|
874 |
+
img_orig = self.q_sample(x0, ts)
|
875 |
+
img = img_orig * mask + (1. - mask) * img
|
876 |
+
|
877 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
878 |
+
intermediates.append(img)
|
879 |
+
if callback: callback(i)
|
880 |
+
if img_callback: img_callback(img, i)
|
881 |
+
|
882 |
+
if return_intermediates:
|
883 |
+
return img, intermediates
|
884 |
+
return img
|
885 |
+
|
886 |
+
@torch.no_grad()
|
887 |
+
def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
|
888 |
+
verbose=True, timesteps=None, quantize_denoised=False,
|
889 |
+
mask=None, x0=None, shape=None,**kwargs):
|
890 |
+
if shape is None:
|
891 |
+
shape = (batch_size, self.channels, self.mel_dim, self.mel_length)
|
892 |
+
if cond is not None:
|
893 |
+
if isinstance(cond, dict):
|
894 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
895 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
896 |
+
else:
|
897 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
898 |
+
return self.p_sample_loop(cond,
|
899 |
+
shape,
|
900 |
+
return_intermediates=return_intermediates, x_T=x_T,
|
901 |
+
verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
|
902 |
+
mask=mask, x0=x0)
|
903 |
+
|
904 |
+
@torch.no_grad()
|
905 |
+
def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs):
|
906 |
+
|
907 |
+
if ddim:
|
908 |
+
ddim_sampler = DDIMSampler(self)
|
909 |
+
shape = (self.channels, self.mel_dim, self.mel_length)
|
910 |
+
samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size,
|
911 |
+
shape,cond,verbose=False,**kwargs)
|
912 |
+
|
913 |
+
else:
|
914 |
+
samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
|
915 |
+
return_intermediates=True,**kwargs)
|
916 |
+
|
917 |
+
return samples, intermediates
|
918 |
+
|
919 |
+
|
920 |
+
@torch.no_grad()
|
921 |
+
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
922 |
+
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
923 |
+
plot_diffusion_rows=True, **kwargs):
|
924 |
+
|
925 |
+
use_ddim = ddim_steps is not None
|
926 |
+
|
927 |
+
log = dict()
|
928 |
+
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
|
929 |
+
return_first_stage_outputs=True,
|
930 |
+
force_c_encode=True,
|
931 |
+
return_original_cond=True,
|
932 |
+
bs=N)
|
933 |
+
N = min(x.shape[0], N)
|
934 |
+
n_row = min(x.shape[0], n_row)
|
935 |
+
log["inputs"] = x
|
936 |
+
log["reconstruction"] = xrec
|
937 |
+
if self.model.conditioning_key is not None:
|
938 |
+
if hasattr(self.cond_stage_model, "decode") and self.cond_stage_key != "masked_image":
|
939 |
+
xc = self.cond_stage_model.decode(c)
|
940 |
+
log["conditioning"] = xc
|
941 |
+
elif self.cond_stage_key == "masked_image":
|
942 |
+
log["mask"] = c[:, -1, :, :][:, None, :, :]
|
943 |
+
xc = self.cond_stage_model.decode(c[:, :self.cond_stage_model.embed_dim, :, :])
|
944 |
+
log["conditioning"] = xc
|
945 |
+
elif self.cond_stage_key in ["caption"]:
|
946 |
+
xc = log_txt_as_img((256, 256), batch["caption"])
|
947 |
+
log["conditioning"] = xc
|
948 |
+
elif self.cond_stage_key == 'class_label':
|
949 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
|
950 |
+
log['conditioning'] = xc
|
951 |
+
elif isimage(xc):
|
952 |
+
log["conditioning"] = xc
|
953 |
+
if ismap(xc):
|
954 |
+
log["original_conditioning"] = self.to_rgb(xc)
|
955 |
+
|
956 |
+
if plot_diffusion_rows:
|
957 |
+
# get diffusion row
|
958 |
+
diffusion_row = list()
|
959 |
+
z_start = z[:n_row]
|
960 |
+
for t in range(self.num_timesteps):
|
961 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
962 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
963 |
+
t = t.to(self.device).long()
|
964 |
+
noise = torch.randn_like(z_start)
|
965 |
+
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
966 |
+
diffusion_row.append(self.decode_first_stage(z_noisy))
|
967 |
+
|
968 |
+
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
969 |
+
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
970 |
+
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
971 |
+
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
972 |
+
log["diffusion_row"] = diffusion_grid
|
973 |
+
|
974 |
+
if sample:
|
975 |
+
# get denoise row
|
976 |
+
with self.ema_scope("Plotting"):
|
977 |
+
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
|
978 |
+
ddim_steps=ddim_steps,eta=ddim_eta)
|
979 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
980 |
+
x_samples = self.decode_first_stage(samples)
|
981 |
+
log["samples"] = x_samples
|
982 |
+
if plot_denoise_rows:
|
983 |
+
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
984 |
+
log["denoise_row"] = denoise_grid
|
985 |
+
|
986 |
+
if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
|
987 |
+
self.first_stage_model, IdentityFirstStage):
|
988 |
+
# also display when quantizing x0 while sampling
|
989 |
+
with self.ema_scope("Plotting Quantized Denoised"):
|
990 |
+
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
|
991 |
+
ddim_steps=ddim_steps,eta=ddim_eta,
|
992 |
+
quantize_denoised=True)
|
993 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
|
994 |
+
# quantize_denoised=True)
|
995 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
996 |
+
log["samples_x0_quantized"] = x_samples
|
997 |
+
|
998 |
+
if inpaint:
|
999 |
+
# make a simple center square
|
1000 |
+
b, h, w = z.shape[0], z.shape[2], z.shape[3]
|
1001 |
+
mask = torch.ones(N, h, w).to(self.device)
|
1002 |
+
# zeros will be filled in
|
1003 |
+
mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
|
1004 |
+
mask = mask[:, None, ...]
|
1005 |
+
with self.ema_scope("Plotting Inpaint"):
|
1006 |
+
|
1007 |
+
samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,
|
1008 |
+
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
1009 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1010 |
+
log["samples_inpainting"] = x_samples
|
1011 |
+
log["mask_inpainting"] = mask
|
1012 |
+
|
1013 |
+
# outpaint
|
1014 |
+
mask = 1 - mask
|
1015 |
+
with self.ema_scope("Plotting Outpaint"):
|
1016 |
+
samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,
|
1017 |
+
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
1018 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1019 |
+
log["samples_outpainting"] = x_samples
|
1020 |
+
log["mask_outpainting"] = mask
|
1021 |
+
|
1022 |
+
if plot_progressive_rows:
|
1023 |
+
with self.ema_scope("Plotting Progressives"):
|
1024 |
+
img, progressives = self.progressive_denoising(c,
|
1025 |
+
shape=(self.channels, self.mel_dim, self.mel_length),
|
1026 |
+
batch_size=N)
|
1027 |
+
prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
|
1028 |
+
log["progressive_row"] = prog_row
|
1029 |
+
|
1030 |
+
if return_keys:
|
1031 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
1032 |
+
return log
|
1033 |
+
else:
|
1034 |
+
return {key: log[key] for key in return_keys}
|
1035 |
+
return log
|
1036 |
+
|
1037 |
+
def configure_optimizers(self):
|
1038 |
+
lr = self.learning_rate
|
1039 |
+
params = list(self.model.parameters())
|
1040 |
+
if self.cond_stage_trainable:
|
1041 |
+
print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
|
1042 |
+
params = params + list(self.cond_stage_model.parameters())
|
1043 |
+
if self.learn_logvar:
|
1044 |
+
print('Diffusion model optimizing logvar')
|
1045 |
+
params.append(self.logvar)
|
1046 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
1047 |
+
if self.use_scheduler:
|
1048 |
+
assert 'target' in self.scheduler_config
|
1049 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
1050 |
+
|
1051 |
+
print("Setting up LambdaLR scheduler...")
|
1052 |
+
scheduler = [
|
1053 |
+
{
|
1054 |
+
'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
|
1055 |
+
'interval': 'step',
|
1056 |
+
'frequency': 1
|
1057 |
+
}]
|
1058 |
+
return [opt], scheduler
|
1059 |
+
return opt
|
1060 |
+
|
1061 |
+
@torch.no_grad()
|
1062 |
+
def to_rgb(self, x):
|
1063 |
+
x = x.float()
|
1064 |
+
if not hasattr(self, "colorize"):
|
1065 |
+
self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
|
1066 |
+
x = nn.functional.conv2d(x, weight=self.colorize)
|
1067 |
+
x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
|
1068 |
+
return x
|
1069 |
+
|
1070 |
+
|
1071 |
+
class LatentFinetuneDiffusion(LatentDiffusion_audio):
|
1072 |
+
"""
|
1073 |
+
Basis for different finetunas, such as inpainting or depth2image
|
1074 |
+
To disable finetuning mode, set finetune_keys to None
|
1075 |
+
"""
|
1076 |
+
|
1077 |
+
def __init__(self,
|
1078 |
+
concat_keys: tuple,
|
1079 |
+
finetune_keys=("model.diffusion_model.input_blocks.0.0.weight",
|
1080 |
+
"model_ema.diffusion_modelinput_blocks00weight"
|
1081 |
+
),
|
1082 |
+
keep_finetune_dims=4,
|
1083 |
+
# if model was trained without concat mode before and we would like to keep these channels
|
1084 |
+
c_concat_log_start=None, # to log reconstruction of c_concat codes
|
1085 |
+
c_concat_log_end=None,
|
1086 |
+
*args, **kwargs
|
1087 |
+
):
|
1088 |
+
ckpt_path = kwargs.pop("ckpt_path", None)
|
1089 |
+
ignore_keys = kwargs.pop("ignore_keys", list())
|
1090 |
+
super().__init__(*args, **kwargs)
|
1091 |
+
self.finetune_keys = finetune_keys
|
1092 |
+
self.concat_keys = concat_keys
|
1093 |
+
self.keep_dims = keep_finetune_dims
|
1094 |
+
self.c_concat_log_start = c_concat_log_start
|
1095 |
+
self.c_concat_log_end = c_concat_log_end
|
1096 |
+
|
1097 |
+
if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint'
|
1098 |
+
if exists(ckpt_path):
|
1099 |
+
self.init_from_ckpt(ckpt_path, ignore_keys)
|
1100 |
+
|
1101 |
+
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
1102 |
+
sd = torch.load(path, map_location="cpu")
|
1103 |
+
if "state_dict" in list(sd.keys()):
|
1104 |
+
sd = sd["state_dict"]
|
1105 |
+
keys = list(sd.keys())
|
1106 |
+
|
1107 |
+
for k in keys:
|
1108 |
+
for ik in ignore_keys:
|
1109 |
+
if k.startswith(ik):
|
1110 |
+
print("Deleting key {} from state_dict.".format(k))
|
1111 |
+
del sd[k]
|
1112 |
+
|
1113 |
+
# make it explicit, finetune by including extra input channels
|
1114 |
+
if exists(self.finetune_keys) and k in self.finetune_keys:
|
1115 |
+
new_entry = None
|
1116 |
+
for name, param in self.named_parameters():
|
1117 |
+
if name in self.finetune_keys:
|
1118 |
+
print(
|
1119 |
+
f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only")
|
1120 |
+
new_entry = torch.zeros_like(param) # zero init
|
1121 |
+
assert exists(new_entry), 'did not find matching parameter to modify'
|
1122 |
+
new_entry[:, :self.keep_dims, ...] = sd[k]
|
1123 |
+
sd[k] = new_entry
|
1124 |
+
|
1125 |
+
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(sd, strict=False)
|
1126 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
1127 |
+
if len(missing) > 0:
|
1128 |
+
print(f"Missing Keys: {missing}")
|
1129 |
+
if len(unexpected) > 0:
|
1130 |
+
print(f"Unexpected Keys: {unexpected}")
|
1131 |
+
|
1132 |
+
@torch.no_grad()
|
1133 |
+
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
1134 |
+
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
1135 |
+
plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
|
1136 |
+
use_ema_scope=True,
|
1137 |
+
**kwargs):
|
1138 |
+
use_ddim = ddim_steps is not None
|
1139 |
+
|
1140 |
+
log = dict()
|
1141 |
+
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True)
|
1142 |
+
c_cat, c = c["c_concat"][0], c["c_crossattn"][0]
|
1143 |
+
N = min(x.shape[0], N)
|
1144 |
+
n_row = min(x.shape[0], n_row)
|
1145 |
+
log["inputs"] = x
|
1146 |
+
log["reconstruction"] = xrec
|
1147 |
+
if self.model.conditioning_key is not None:
|
1148 |
+
if hasattr(self.cond_stage_model, "decode"):
|
1149 |
+
xc = self.cond_stage_model.decode(c)
|
1150 |
+
log["conditioning"] = xc
|
1151 |
+
elif self.cond_stage_key in ["caption"]:
|
1152 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"])
|
1153 |
+
log["conditioning"] = xc
|
1154 |
+
elif self.cond_stage_key == 'class_label':
|
1155 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
|
1156 |
+
log['conditioning'] = xc
|
1157 |
+
elif isimage(xc):
|
1158 |
+
log["conditioning"] = xc
|
1159 |
+
if ismap(xc):
|
1160 |
+
log["original_conditioning"] = self.to_rgb(xc)
|
1161 |
+
|
1162 |
+
if not (self.c_concat_log_start is None and self.c_concat_log_end is None):
|
1163 |
+
log["c_concat_decoded"] = self.decode_first_stage(c_cat[:, self.c_concat_log_start:self.c_concat_log_end])
|
1164 |
+
|
1165 |
+
if plot_diffusion_rows:
|
1166 |
+
# get diffusion row
|
1167 |
+
diffusion_row = list()
|
1168 |
+
z_start = z[:n_row]
|
1169 |
+
for t in range(self.num_timesteps):
|
1170 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
1171 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
1172 |
+
t = t.to(self.device).long()
|
1173 |
+
noise = torch.randn_like(z_start)
|
1174 |
+
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
1175 |
+
diffusion_row.append(self.decode_first_stage(z_noisy))
|
1176 |
+
|
1177 |
+
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
1178 |
+
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
1179 |
+
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
1180 |
+
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
1181 |
+
log["diffusion_row"] = diffusion_grid
|
1182 |
+
|
1183 |
+
if sample:
|
1184 |
+
# get denoise row
|
1185 |
+
with self.ema_scope("Sampling"):
|
1186 |
+
samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
|
1187 |
+
batch_size=N, ddim=use_ddim,
|
1188 |
+
ddim_steps=ddim_steps, eta=ddim_eta)
|
1189 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
1190 |
+
x_samples = self.decode_first_stage(samples)
|
1191 |
+
log["samples"] = x_samples
|
1192 |
+
if plot_denoise_rows:
|
1193 |
+
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
1194 |
+
log["denoise_row"] = denoise_grid
|
1195 |
+
|
1196 |
+
if unconditional_guidance_scale > 1.0:
|
1197 |
+
uc_cross = self.get_unconditional_conditioning(N, unconditional_guidance_label)
|
1198 |
+
uc_cat = c_cat
|
1199 |
+
uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
|
1200 |
+
with self.ema_scope("Sampling with classifier-free guidance"):
|
1201 |
+
samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
|
1202 |
+
batch_size=N, ddim=use_ddim,
|
1203 |
+
ddim_steps=ddim_steps, eta=ddim_eta,
|
1204 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
1205 |
+
unconditional_conditioning=uc_full,
|
1206 |
+
)
|
1207 |
+
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
1208 |
+
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
|
1209 |
+
|
1210 |
+
return log
|
1211 |
+
|
1212 |
+
|
1213 |
+
class LatentInpaintDiffusion(LatentFinetuneDiffusion):
|
1214 |
+
"""
|
1215 |
+
can either run as pure inpainting model (only concat mode) or with mixed conditionings,
|
1216 |
+
e.g. mask as concat and text via cross-attn.
|
1217 |
+
To disable finetuning mode, set finetune_keys to None
|
1218 |
+
"""
|
1219 |
+
|
1220 |
+
def __init__(self,
|
1221 |
+
concat_keys=("mask", "masked_image"),
|
1222 |
+
masked_image_key="masked_image",
|
1223 |
+
*args, **kwargs
|
1224 |
+
):
|
1225 |
+
super().__init__(concat_keys, *args, **kwargs)
|
1226 |
+
self.masked_image_key = masked_image_key
|
1227 |
+
assert self.masked_image_key in concat_keys
|
1228 |
+
|
1229 |
+
@torch.no_grad()
|
1230 |
+
def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
|
1231 |
+
# note: restricted to non-trainable encoders currently
|
1232 |
+
assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for inpainting'
|
1233 |
+
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
|
1234 |
+
force_c_encode=True, return_original_cond=True, bs=bs)
|
1235 |
+
|
1236 |
+
assert exists(self.concat_keys)
|
1237 |
+
c_cat = list()
|
1238 |
+
for ck in self.concat_keys:
|
1239 |
+
if len(batch[ck].shape) == 3:
|
1240 |
+
batch[ck] = batch[ck][..., None]
|
1241 |
+
cc = rearrange(batch[ck], 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
|
1242 |
+
if bs is not None:
|
1243 |
+
cc = cc[:bs]
|
1244 |
+
cc = cc.to(self.device)
|
1245 |
+
bchw = z.shape
|
1246 |
+
if ck != self.masked_image_key:
|
1247 |
+
cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
|
1248 |
+
else:
|
1249 |
+
cc = self.get_first_stage_encoding(self.encode_first_stage(cc))
|
1250 |
+
c_cat.append(cc)
|
1251 |
+
c_cat = torch.cat(c_cat, dim=1)
|
1252 |
+
all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
|
1253 |
+
if return_first_stage_outputs:
|
1254 |
+
return z, all_conds, x, xrec, xc
|
1255 |
+
return z, all_conds
|
1256 |
+
|
1257 |
+
@torch.no_grad()
|
1258 |
+
def log_images(self, *args, **kwargs):
|
1259 |
+
log = super(LatentInpaintDiffusion, self).log_images(*args, **kwargs)
|
1260 |
+
log["masked_image"] = rearrange(args[0]["masked_image"],
|
1261 |
+
'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
|
1262 |
+
return log
|
ldm/models/diffusion/ddpm_audio_inpaint.py
ADDED
@@ -0,0 +1,1081 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
wild mixture of
|
3 |
+
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
4 |
+
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
|
5 |
+
https://github.com/CompVis/taming-transformers
|
6 |
+
-- merci
|
7 |
+
"""
|
8 |
+
import os
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import numpy as np
|
12 |
+
import pytorch_lightning as pl
|
13 |
+
from torch.optim.lr_scheduler import LambdaLR
|
14 |
+
from einops import rearrange, repeat
|
15 |
+
from contextlib import contextmanager
|
16 |
+
from functools import partial
|
17 |
+
from tqdm import tqdm
|
18 |
+
from torchvision.utils import make_grid
|
19 |
+
from pytorch_lightning.utilities.distributed import rank_zero_only
|
20 |
+
|
21 |
+
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
|
22 |
+
from ldm.modules.ema import LitEma
|
23 |
+
from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
|
24 |
+
from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
|
25 |
+
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
|
26 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
27 |
+
from ldm.models.diffusion.ddpm import DDPM, disabled_train
|
28 |
+
|
29 |
+
__conditioning_keys__ = {'concat': 'c_concat',
|
30 |
+
'crossattn': 'c_crossattn',
|
31 |
+
'adm': 'y'}
|
32 |
+
|
33 |
+
# add mel_dim and mel_length params to ensure correct shape
|
34 |
+
class LatentDiffusion_audioinpaint(DDPM):
|
35 |
+
"""main class"""
|
36 |
+
def __init__(self,
|
37 |
+
first_stage_config,
|
38 |
+
cond_stage_config,
|
39 |
+
num_timesteps_cond=None,
|
40 |
+
mel_dim=80,
|
41 |
+
mel_length=848,
|
42 |
+
cond_stage_key="image",
|
43 |
+
cond_stage_trainable=False,
|
44 |
+
concat_mode=True,
|
45 |
+
cond_stage_forward=None,
|
46 |
+
conditioning_key=None,
|
47 |
+
scale_factor=1.0,
|
48 |
+
scale_by_std=False,
|
49 |
+
test_repeat=1,
|
50 |
+
test_numsteps = None,
|
51 |
+
*args, **kwargs):
|
52 |
+
self.num_timesteps_cond = default(num_timesteps_cond, 1)
|
53 |
+
self.scale_by_std = scale_by_std
|
54 |
+
assert self.num_timesteps_cond <= kwargs['timesteps']
|
55 |
+
# for backwards compatibility after implementation of DiffusionWrapper
|
56 |
+
if conditioning_key is None:
|
57 |
+
conditioning_key = 'concat' if concat_mode else 'crossattn'
|
58 |
+
if cond_stage_config == '__is_unconditional__':
|
59 |
+
conditioning_key = None
|
60 |
+
ckpt_path = kwargs.pop("ckpt_path", None)
|
61 |
+
ignore_keys = kwargs.pop("ignore_keys", [])
|
62 |
+
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
|
63 |
+
self.test_repeat = test_repeat
|
64 |
+
if test_numsteps == None:
|
65 |
+
self.test_numsteps = self.num_timesteps
|
66 |
+
self.concat_mode = concat_mode
|
67 |
+
self.mel_dim = mel_dim
|
68 |
+
self.mel_length = mel_length
|
69 |
+
self.cond_stage_trainable = cond_stage_trainable
|
70 |
+
self.cond_stage_key = cond_stage_key
|
71 |
+
try:
|
72 |
+
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
|
73 |
+
except:
|
74 |
+
self.num_downs = 0
|
75 |
+
if not scale_by_std:
|
76 |
+
self.scale_factor = scale_factor
|
77 |
+
else:
|
78 |
+
self.register_buffer('scale_factor', torch.tensor(scale_factor))
|
79 |
+
self.instantiate_first_stage(first_stage_config)
|
80 |
+
self.instantiate_cond_stage(cond_stage_config)
|
81 |
+
self.cond_stage_forward = cond_stage_forward
|
82 |
+
self.clip_denoised = False
|
83 |
+
self.bbox_tokenizer = None
|
84 |
+
|
85 |
+
self.restarted_from_ckpt = False
|
86 |
+
if ckpt_path is not None:
|
87 |
+
self.init_from_ckpt(ckpt_path, ignore_keys)
|
88 |
+
self.restarted_from_ckpt = True
|
89 |
+
|
90 |
+
def make_cond_schedule(self, ):
|
91 |
+
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
|
92 |
+
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
|
93 |
+
self.cond_ids[:self.num_timesteps_cond] = ids
|
94 |
+
|
95 |
+
@rank_zero_only
|
96 |
+
@torch.no_grad()
|
97 |
+
def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
|
98 |
+
# only for very first batch
|
99 |
+
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
|
100 |
+
assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
|
101 |
+
# set rescale weight to 1./std of encodings
|
102 |
+
print("### USING STD-RESCALING ###")
|
103 |
+
x = super().get_input(batch, self.first_stage_key)
|
104 |
+
x = x.to(self.device)
|
105 |
+
encoder_posterior = self.encode_first_stage(x)
|
106 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
107 |
+
del self.scale_factor
|
108 |
+
self.register_buffer('scale_factor', 1. / z.flatten().std())
|
109 |
+
print(f"setting self.scale_factor to {self.scale_factor}")
|
110 |
+
print("### USING STD-RESCALING ###")
|
111 |
+
|
112 |
+
def register_schedule(self,
|
113 |
+
given_betas=None, beta_schedule="linear", timesteps=1000,
|
114 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
115 |
+
super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
|
116 |
+
|
117 |
+
self.shorten_cond_schedule = self.num_timesteps_cond > 1
|
118 |
+
if self.shorten_cond_schedule:
|
119 |
+
self.make_cond_schedule()
|
120 |
+
|
121 |
+
def instantiate_first_stage(self, config):
|
122 |
+
model = instantiate_from_config(config)
|
123 |
+
self.first_stage_model = model.eval()
|
124 |
+
self.first_stage_model.train = disabled_train
|
125 |
+
for param in self.first_stage_model.parameters():
|
126 |
+
param.requires_grad = False
|
127 |
+
|
128 |
+
def instantiate_cond_stage(self, config):
|
129 |
+
if not self.cond_stage_trainable:
|
130 |
+
if config == "__is_first_stage__":# for no_text inpainting task
|
131 |
+
print("Using first stage also as cond stage.")
|
132 |
+
self.cond_stage_model = self.first_stage_model
|
133 |
+
elif config == "__is_unconditional__":# for unconditional image generation such as human face、ImageNet
|
134 |
+
print(f"Training {self.__class__.__name__} as an unconditional model.")
|
135 |
+
self.cond_stage_model = None
|
136 |
+
# self.be_unconditional = True
|
137 |
+
else:
|
138 |
+
model = instantiate_from_config(config)
|
139 |
+
self.cond_stage_model = model.eval()
|
140 |
+
self.cond_stage_model.train = disabled_train
|
141 |
+
for param in self.cond_stage_model.parameters():
|
142 |
+
param.requires_grad = False
|
143 |
+
else:
|
144 |
+
assert config != '__is_first_stage__'
|
145 |
+
assert config != '__is_unconditional__'
|
146 |
+
model = instantiate_from_config(config)
|
147 |
+
self.cond_stage_model = model
|
148 |
+
|
149 |
+
def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
|
150 |
+
denoise_row = []
|
151 |
+
for zd in tqdm(samples, desc=desc):
|
152 |
+
denoise_row.append(self.decode_first_stage(zd.to(self.device),
|
153 |
+
force_not_quantize=force_no_decoder_quantization))
|
154 |
+
n_imgs_per_row = len(denoise_row)
|
155 |
+
denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
|
156 |
+
denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
|
157 |
+
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
158 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
159 |
+
return denoise_grid
|
160 |
+
|
161 |
+
def get_first_stage_encoding(self, encoder_posterior):# encode_emb from autoencoder
|
162 |
+
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
|
163 |
+
z = encoder_posterior.sample()
|
164 |
+
elif isinstance(encoder_posterior, torch.Tensor):
|
165 |
+
z = encoder_posterior
|
166 |
+
else:
|
167 |
+
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
|
168 |
+
return self.scale_factor * z
|
169 |
+
|
170 |
+
def get_learned_conditioning(self, c):
|
171 |
+
if self.cond_stage_forward is None:
|
172 |
+
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
|
173 |
+
c = self.cond_stage_model.encode(c)
|
174 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
175 |
+
c = c.mode()
|
176 |
+
else:
|
177 |
+
c = self.cond_stage_model(c)
|
178 |
+
else:
|
179 |
+
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
|
180 |
+
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
|
181 |
+
return c
|
182 |
+
|
183 |
+
def meshgrid(self, h, w):
|
184 |
+
y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
|
185 |
+
x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
|
186 |
+
|
187 |
+
arr = torch.cat([y, x], dim=-1)
|
188 |
+
return arr
|
189 |
+
|
190 |
+
def delta_border(self, h, w):
|
191 |
+
"""
|
192 |
+
:param h: height
|
193 |
+
:param w: width
|
194 |
+
:return: normalized distance to image border,
|
195 |
+
wtith min distance = 0 at border and max dist = 0.5 at image center
|
196 |
+
"""
|
197 |
+
lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
|
198 |
+
arr = self.meshgrid(h, w) / lower_right_corner
|
199 |
+
dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
|
200 |
+
dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
|
201 |
+
edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
|
202 |
+
return edge_dist
|
203 |
+
|
204 |
+
def get_weighting(self, h, w, Ly, Lx, device):
|
205 |
+
weighting = self.delta_border(h, w)
|
206 |
+
weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
|
207 |
+
self.split_input_params["clip_max_weight"], )
|
208 |
+
weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
|
209 |
+
|
210 |
+
if self.split_input_params["tie_braker"]:
|
211 |
+
L_weighting = self.delta_border(Ly, Lx)
|
212 |
+
L_weighting = torch.clip(L_weighting,
|
213 |
+
self.split_input_params["clip_min_tie_weight"],
|
214 |
+
self.split_input_params["clip_max_tie_weight"])
|
215 |
+
|
216 |
+
L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
|
217 |
+
weighting = weighting * L_weighting
|
218 |
+
return weighting
|
219 |
+
|
220 |
+
def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
|
221 |
+
"""
|
222 |
+
:param x: img of size (bs, c, h, w)
|
223 |
+
:return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
|
224 |
+
"""
|
225 |
+
bs, nc, h, w = x.shape
|
226 |
+
|
227 |
+
# number of crops in image
|
228 |
+
Ly = (h - kernel_size[0]) // stride[0] + 1
|
229 |
+
Lx = (w - kernel_size[1]) // stride[1] + 1
|
230 |
+
|
231 |
+
if uf == 1 and df == 1:
|
232 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
233 |
+
unfold = torch.nn.Unfold(**fold_params)
|
234 |
+
|
235 |
+
fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
|
236 |
+
|
237 |
+
weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
|
238 |
+
normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
|
239 |
+
weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
|
240 |
+
|
241 |
+
elif uf > 1 and df == 1:
|
242 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
243 |
+
unfold = torch.nn.Unfold(**fold_params)
|
244 |
+
|
245 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
|
246 |
+
dilation=1, padding=0,
|
247 |
+
stride=(stride[0] * uf, stride[1] * uf))
|
248 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
|
249 |
+
|
250 |
+
weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
|
251 |
+
normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
|
252 |
+
weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
|
253 |
+
|
254 |
+
elif df > 1 and uf == 1:
|
255 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
256 |
+
unfold = torch.nn.Unfold(**fold_params)
|
257 |
+
|
258 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
|
259 |
+
dilation=1, padding=0,
|
260 |
+
stride=(stride[0] // df, stride[1] // df))
|
261 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
|
262 |
+
|
263 |
+
weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
|
264 |
+
normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
|
265 |
+
weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
|
266 |
+
|
267 |
+
else:
|
268 |
+
raise NotImplementedError
|
269 |
+
|
270 |
+
return fold, unfold, normalization, weighting
|
271 |
+
|
272 |
+
@torch.no_grad()
|
273 |
+
def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
|
274 |
+
cond_key=None, return_original_cond=False, bs=None):
|
275 |
+
x = super().get_input(batch, k)
|
276 |
+
if bs is not None:
|
277 |
+
x = x[:bs]
|
278 |
+
x = x.to(self.device)
|
279 |
+
encoder_posterior = self.encode_first_stage(x)
|
280 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
281 |
+
|
282 |
+
if self.model.conditioning_key is not None:# 'crossattn' for txt2image, 'hybird' for txt_inpaint
|
283 |
+
if cond_key is None:
|
284 |
+
cond_key = self.cond_stage_key # 'caption' for txt_inpaint
|
285 |
+
if self.model.conditioning_key == 'hybrid':
|
286 |
+
xc = {}
|
287 |
+
assert cond_key == 'caption' # only txt_inpaint is implemented now
|
288 |
+
assert 'masked_image' in batch.keys()
|
289 |
+
assert 'mask' in batch.keys()
|
290 |
+
masked_image = super().get_input(batch,'masked_image')
|
291 |
+
mask = super().get_input(batch,'mask')
|
292 |
+
if bs is not None:
|
293 |
+
masked_image,mask = masked_image[:bs],mask[:bs]
|
294 |
+
masked_image,mask = masked_image.to(self.device),mask.to(self.device)
|
295 |
+
masked_image = self.get_first_stage_encoding(self.encode_first_stage(masked_image)).detach()
|
296 |
+
resized_mask = torch.nn.functional.interpolate(mask,size=masked_image.shape[-2:])
|
297 |
+
xc['c_concat'] = torch.cat((masked_image,resized_mask),dim = 1)
|
298 |
+
xc[cond_key] = batch[cond_key]
|
299 |
+
else:
|
300 |
+
if cond_key != self.first_stage_key:
|
301 |
+
if cond_key in ['caption', 'coordinates_bbox']:
|
302 |
+
xc = batch[cond_key]
|
303 |
+
elif cond_key == 'class_label':
|
304 |
+
xc = batch
|
305 |
+
else:
|
306 |
+
xc = super().get_input(batch, cond_key).to(self.device)
|
307 |
+
else:# cond_key == 'image'
|
308 |
+
xc = x
|
309 |
+
if not self.cond_stage_trainable or force_c_encode:# cond_stage_trainable is true for txt2img,force_c_encoder = True,when called in log_images
|
310 |
+
if isinstance(xc, list):
|
311 |
+
# import pudb; pudb.set_trace()
|
312 |
+
c = self.get_learned_conditioning(xc)# 因为log_images内接下来要调用sample_log,所以需要预先得到处理好的c
|
313 |
+
if isinstance(xc, dict):
|
314 |
+
c = {}
|
315 |
+
c['c_concat'] = xc['c_concat']
|
316 |
+
c['c_crossattn'] = self.get_learned_conditioning(xc[cond_key])
|
317 |
+
else:
|
318 |
+
c = self.get_learned_conditioning(xc.to(self.device))
|
319 |
+
else:
|
320 |
+
c = xc
|
321 |
+
if bs is not None:
|
322 |
+
if isinstance(c,dict):
|
323 |
+
for k in c.keys():
|
324 |
+
c[k] = c[k][:bs]
|
325 |
+
else:
|
326 |
+
c = c[:bs]
|
327 |
+
|
328 |
+
if self.use_positional_encodings:
|
329 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
330 |
+
ckey = __conditioning_keys__[self.model.conditioning_key]
|
331 |
+
c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
|
332 |
+
|
333 |
+
else:
|
334 |
+
c = None
|
335 |
+
xc = None
|
336 |
+
if self.use_positional_encodings:
|
337 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
338 |
+
c = {'pos_x': pos_x, 'pos_y': pos_y}
|
339 |
+
out = [z, c]
|
340 |
+
if return_first_stage_outputs:
|
341 |
+
xrec = self.decode_first_stage(z)
|
342 |
+
out.extend([x, xrec])
|
343 |
+
if return_original_cond:
|
344 |
+
out.append(xc)
|
345 |
+
return out
|
346 |
+
|
347 |
+
@torch.no_grad()
|
348 |
+
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
349 |
+
if predict_cids:
|
350 |
+
if z.dim() == 4:
|
351 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
352 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
353 |
+
z = rearrange(z, 'b h w c -> b c h w').contiguous()
|
354 |
+
|
355 |
+
z = 1. / self.scale_factor * z
|
356 |
+
|
357 |
+
if hasattr(self, "split_input_params"):
|
358 |
+
if self.split_input_params["patch_distributed_vq"]:
|
359 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
360 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
361 |
+
uf = self.split_input_params["vqf"]
|
362 |
+
bs, nc, h, w = z.shape
|
363 |
+
if ks[0] > h or ks[1] > w:
|
364 |
+
ks = (min(ks[0], h), min(ks[1], w))
|
365 |
+
print("reducing Kernel")
|
366 |
+
|
367 |
+
if stride[0] > h or stride[1] > w:
|
368 |
+
stride = (min(stride[0], h), min(stride[1], w))
|
369 |
+
print("reducing stride")
|
370 |
+
|
371 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
|
372 |
+
|
373 |
+
z = unfold(z) # (bn, nc * prod(**ks), L)
|
374 |
+
# 1. Reshape to img shape
|
375 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
376 |
+
|
377 |
+
# 2. apply model loop over last dim
|
378 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
379 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
|
380 |
+
force_not_quantize=predict_cids or force_not_quantize)
|
381 |
+
for i in range(z.shape[-1])]
|
382 |
+
else:
|
383 |
+
|
384 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
|
385 |
+
for i in range(z.shape[-1])]
|
386 |
+
|
387 |
+
o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
|
388 |
+
o = o * weighting
|
389 |
+
# Reverse 1. reshape to img shape
|
390 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
391 |
+
# stitch crops together
|
392 |
+
decoded = fold(o)
|
393 |
+
decoded = decoded / normalization # norm is shape (1, 1, h, w)
|
394 |
+
return decoded
|
395 |
+
else:
|
396 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
397 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
398 |
+
else:
|
399 |
+
return self.first_stage_model.decode(z)
|
400 |
+
|
401 |
+
else:
|
402 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
403 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
404 |
+
else:
|
405 |
+
return self.first_stage_model.decode(z)
|
406 |
+
|
407 |
+
# same as above but without decorator
|
408 |
+
def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
409 |
+
if predict_cids:
|
410 |
+
if z.dim() == 4:
|
411 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
412 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
413 |
+
z = rearrange(z, 'b h w c -> b c h w').contiguous()
|
414 |
+
|
415 |
+
z = 1. / self.scale_factor * z
|
416 |
+
|
417 |
+
if hasattr(self, "split_input_params"):
|
418 |
+
if self.split_input_params["patch_distributed_vq"]:
|
419 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
420 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
421 |
+
uf = self.split_input_params["vqf"]
|
422 |
+
bs, nc, h, w = z.shape
|
423 |
+
if ks[0] > h or ks[1] > w:
|
424 |
+
ks = (min(ks[0], h), min(ks[1], w))
|
425 |
+
print("reducing Kernel")
|
426 |
+
|
427 |
+
if stride[0] > h or stride[1] > w:
|
428 |
+
stride = (min(stride[0], h), min(stride[1], w))
|
429 |
+
print("reducing stride")
|
430 |
+
|
431 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
|
432 |
+
|
433 |
+
z = unfold(z) # (bn, nc * prod(**ks), L)
|
434 |
+
# 1. Reshape to img shape
|
435 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
436 |
+
|
437 |
+
# 2. apply model loop over last dim
|
438 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
439 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
|
440 |
+
force_not_quantize=predict_cids or force_not_quantize)
|
441 |
+
for i in range(z.shape[-1])]
|
442 |
+
else:
|
443 |
+
|
444 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
|
445 |
+
for i in range(z.shape[-1])]
|
446 |
+
|
447 |
+
o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
|
448 |
+
o = o * weighting
|
449 |
+
# Reverse 1. reshape to img shape
|
450 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
451 |
+
# stitch crops together
|
452 |
+
decoded = fold(o)
|
453 |
+
decoded = decoded / normalization # norm is shape (1, 1, h, w)
|
454 |
+
return decoded
|
455 |
+
else:
|
456 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
457 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
458 |
+
else:
|
459 |
+
return self.first_stage_model.decode(z)
|
460 |
+
|
461 |
+
else:
|
462 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
463 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
464 |
+
else:
|
465 |
+
return self.first_stage_model.decode(z)
|
466 |
+
|
467 |
+
@torch.no_grad()
|
468 |
+
def encode_first_stage(self, x):
|
469 |
+
if hasattr(self, "split_input_params"):
|
470 |
+
if self.split_input_params["patch_distributed_vq"]:
|
471 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
472 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
473 |
+
df = self.split_input_params["vqf"]
|
474 |
+
self.split_input_params['original_image_size'] = x.shape[-2:]
|
475 |
+
bs, nc, h, w = x.shape
|
476 |
+
if ks[0] > h or ks[1] > w:
|
477 |
+
ks = (min(ks[0], h), min(ks[1], w))
|
478 |
+
print("reducing Kernel")
|
479 |
+
|
480 |
+
if stride[0] > h or stride[1] > w:
|
481 |
+
stride = (min(stride[0], h), min(stride[1], w))
|
482 |
+
print("reducing stride")
|
483 |
+
|
484 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)
|
485 |
+
z = unfold(x) # (bn, nc * prod(**ks), L)
|
486 |
+
# Reshape to img shape
|
487 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
488 |
+
|
489 |
+
output_list = [self.first_stage_model.encode(z[:, :, :, :, i])
|
490 |
+
for i in range(z.shape[-1])]
|
491 |
+
|
492 |
+
o = torch.stack(output_list, axis=-1)
|
493 |
+
o = o * weighting
|
494 |
+
|
495 |
+
# Reverse reshape to img shape
|
496 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
497 |
+
# stitch crops together
|
498 |
+
decoded = fold(o)
|
499 |
+
decoded = decoded / normalization
|
500 |
+
return decoded
|
501 |
+
|
502 |
+
else:
|
503 |
+
return self.first_stage_model.encode(x)
|
504 |
+
else:
|
505 |
+
return self.first_stage_model.encode(x)
|
506 |
+
|
507 |
+
def shared_step(self, batch, **kwargs):
|
508 |
+
x, c = self.get_input(batch, self.first_stage_key)# get latent and condition
|
509 |
+
loss = self(x, c)
|
510 |
+
return loss
|
511 |
+
|
512 |
+
def test_step(self,batch,batch_idx):
|
513 |
+
# TODO make self.test_repeat work
|
514 |
+
cond = {}
|
515 |
+
cond[self.cond_stage_key] = batch[self.cond_stage_key]
|
516 |
+
cond[self.cond_stage_key] = self.get_learned_conditioning(cond[self.cond_stage_key]) # c: string -> [B, T, Context_dim]
|
517 |
+
cond['c_crossattn'] = cond.pop(self.cond_stage_key)
|
518 |
+
masked_image = super().get_input(batch,'masked_image')
|
519 |
+
mask = super().get_input(batch,'mask')
|
520 |
+
masked_image,mask = masked_image.to(self.device),mask.to(self.device)
|
521 |
+
masked_image = self.get_first_stage_encoding(self.encode_first_stage(masked_image)).detach()
|
522 |
+
resized_mask = torch.nn.functional.interpolate(mask,size=masked_image.shape[-2:])
|
523 |
+
cond['c_concat'] = torch.cat((masked_image,resized_mask),dim = 1)
|
524 |
+
batch_size = len(batch[self.cond_stage_key])
|
525 |
+
# shape = [batch_size,self.channels,self.mel_dim,self.mel_length]
|
526 |
+
enc_emb = self.sample(cond,batch_size,timesteps=self.test_numsteps)
|
527 |
+
xrec = self.decode_first_stage(enc_emb)
|
528 |
+
reconstructions = (xrec + 1)/2 # to mel scale
|
529 |
+
test_ckpt_path = os.path.basename(self.trainer.tested_ckpt_path)
|
530 |
+
savedir = os.path.join(self.trainer.log_dir,f'output_imgs_{test_ckpt_path}','fake_class')
|
531 |
+
if not os.path.exists(savedir):
|
532 |
+
os.makedirs(savedir)
|
533 |
+
|
534 |
+
file_names = batch['f_name']
|
535 |
+
nfiles = len(file_names)
|
536 |
+
reconstructions = reconstructions.cpu().numpy().squeeze(1) # squuze channel dim
|
537 |
+
for k in range(reconstructions.shape[0]):
|
538 |
+
b,repeat = k % nfiles, k // nfiles
|
539 |
+
vname_num_split_index = file_names[b].rfind('_')# file_names[b]:video_name+'_'+num
|
540 |
+
v_n,num = file_names[b][:vname_num_split_index],file_names[b][vname_num_split_index+1:]
|
541 |
+
save_img_path = os.path.join(savedir,f'{v_n}_sample_{num}_{repeat}.npy')# the num_th caption, the repeat_th repitition
|
542 |
+
np.save(save_img_path,reconstructions[b])
|
543 |
+
|
544 |
+
return None
|
545 |
+
|
546 |
+
def forward(self, x, c, *args, **kwargs):
|
547 |
+
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
548 |
+
if self.model.conditioning_key is not None:
|
549 |
+
assert c is not None
|
550 |
+
if self.cond_stage_trainable:
|
551 |
+
if isinstance(c,dict):
|
552 |
+
c[self.cond_stage_key] = self.get_learned_conditioning(c[self.cond_stage_key])
|
553 |
+
c['c_crossattn'] = c.pop(self.cond_stage_key)
|
554 |
+
else:
|
555 |
+
c = self.get_learned_conditioning(c) # c: string -> [B, T, Context_dim]
|
556 |
+
if self.shorten_cond_schedule: # TODO: drop this option
|
557 |
+
tc = self.cond_ids[t].to(self.device)
|
558 |
+
c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
|
559 |
+
return self.p_losses(x, c, t, *args, **kwargs)
|
560 |
+
|
561 |
+
def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset
|
562 |
+
def rescale_bbox(bbox):
|
563 |
+
x0 = torch.clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
|
564 |
+
y0 = torch.clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
|
565 |
+
w = min(bbox[2] / crop_coordinates[2], 1 - x0)
|
566 |
+
h = min(bbox[3] / crop_coordinates[3], 1 - y0)
|
567 |
+
return x0, y0, w, h
|
568 |
+
|
569 |
+
return [rescale_bbox(b) for b in bboxes]
|
570 |
+
|
571 |
+
def apply_model(self, x_noisy, t, cond, return_ids=False):
|
572 |
+
# make values to list to enable concat operation in
|
573 |
+
if isinstance(cond, dict):
|
574 |
+
# hybrid case, cond is exptected to be a dict. (txt2inpaint)
|
575 |
+
cond_tmp = {}# use cond_tmp to avoid inplace edit
|
576 |
+
for k,v in cond.items():
|
577 |
+
if not isinstance(v, list):
|
578 |
+
cond_tmp[k] = [cond[k]]
|
579 |
+
else:
|
580 |
+
cond_tmp[k] = cond[k]
|
581 |
+
cond = cond_tmp
|
582 |
+
else:
|
583 |
+
if not isinstance(cond, list):
|
584 |
+
cond = [cond]
|
585 |
+
key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
|
586 |
+
cond = {key: cond}
|
587 |
+
|
588 |
+
if hasattr(self, "split_input_params"):
|
589 |
+
assert len(cond) == 1 # todo can only deal with one conditioning atm
|
590 |
+
assert not return_ids
|
591 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
592 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
593 |
+
|
594 |
+
h, w = x_noisy.shape[-2:]
|
595 |
+
|
596 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride)
|
597 |
+
|
598 |
+
z = unfold(x_noisy) # (bn, nc * prod(**ks), L)
|
599 |
+
# Reshape to img shape
|
600 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
601 |
+
z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
|
602 |
+
|
603 |
+
if self.cond_stage_key in ["image", "LR_image", "segmentation",
|
604 |
+
'bbox_img'] and self.model.conditioning_key: # todo check for completeness
|
605 |
+
c_key = next(iter(cond.keys())) # get key
|
606 |
+
c = next(iter(cond.values())) # get value
|
607 |
+
assert (len(c) == 1) # todo extend to list with more than one elem
|
608 |
+
c = c[0] # get element
|
609 |
+
|
610 |
+
c = unfold(c)
|
611 |
+
c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
612 |
+
|
613 |
+
cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
|
614 |
+
|
615 |
+
elif self.cond_stage_key == 'coordinates_bbox':
|
616 |
+
assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
|
617 |
+
|
618 |
+
# assuming padding of unfold is always 0 and its dilation is always 1
|
619 |
+
n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
|
620 |
+
full_img_h, full_img_w = self.split_input_params['original_image_size']
|
621 |
+
# as we are operating on latents, we need the factor from the original image size to the
|
622 |
+
# spatial latent size to properly rescale the crops for regenerating the bbox annotations
|
623 |
+
num_downs = self.first_stage_model.encoder.num_resolutions - 1
|
624 |
+
rescale_latent = 2 ** (num_downs)
|
625 |
+
|
626 |
+
# get top left postions of patches as conforming for the bbbox tokenizer, therefore we
|
627 |
+
# need to rescale the tl patch coordinates to be in between (0,1)
|
628 |
+
tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
|
629 |
+
rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
|
630 |
+
for patch_nr in range(z.shape[-1])]
|
631 |
+
|
632 |
+
# patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
|
633 |
+
patch_limits = [(x_tl, y_tl,
|
634 |
+
rescale_latent * ks[0] / full_img_w,
|
635 |
+
rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates]
|
636 |
+
# patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
|
637 |
+
|
638 |
+
# tokenize crop coordinates for the bounding boxes of the respective patches
|
639 |
+
patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device)
|
640 |
+
for bbox in patch_limits] # list of length l with tensors of shape (1, 2)
|
641 |
+
print(patch_limits_tknzd[0].shape)
|
642 |
+
# cut tknzd crop position from conditioning
|
643 |
+
assert isinstance(cond, dict), 'cond must be dict to be fed into model'
|
644 |
+
cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
|
645 |
+
print(cut_cond.shape)
|
646 |
+
|
647 |
+
adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd])
|
648 |
+
adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
|
649 |
+
print(adapted_cond.shape)
|
650 |
+
adapted_cond = self.get_learned_conditioning(adapted_cond)
|
651 |
+
print(adapted_cond.shape)
|
652 |
+
adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1])
|
653 |
+
print(adapted_cond.shape)
|
654 |
+
|
655 |
+
cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
|
656 |
+
|
657 |
+
else:
|
658 |
+
cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient
|
659 |
+
|
660 |
+
# apply model by loop over crops
|
661 |
+
output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])]
|
662 |
+
assert not isinstance(output_list[0],
|
663 |
+
tuple) # todo cant deal with multiple model outputs check this never happens
|
664 |
+
|
665 |
+
o = torch.stack(output_list, axis=-1)
|
666 |
+
o = o * weighting
|
667 |
+
# Reverse reshape to img shape
|
668 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
669 |
+
# stitch crops together
|
670 |
+
x_recon = fold(o) / normalization
|
671 |
+
|
672 |
+
else:
|
673 |
+
# x_noisy is tensor with shape [b,c,mel_len,T]
|
674 |
+
# if condition is caption ,cond['c_crossattn'] is a list, each item shape is [1, 77, 1280]
|
675 |
+
x_recon = self.model(x_noisy, t, **cond)# tensor with shape [b,c,mel_len,T]
|
676 |
+
|
677 |
+
if isinstance(x_recon, tuple) and not return_ids:
|
678 |
+
return x_recon[0]
|
679 |
+
else:
|
680 |
+
return x_recon
|
681 |
+
|
682 |
+
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
683 |
+
return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
|
684 |
+
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
685 |
+
|
686 |
+
def _prior_bpd(self, x_start):
|
687 |
+
"""
|
688 |
+
Get the prior KL term for the variational lower-bound, measured in
|
689 |
+
bits-per-dim.
|
690 |
+
This term can't be optimized, as it only depends on the encoder.
|
691 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
692 |
+
:return: a batch of [N] KL values (in bits), one per batch element.
|
693 |
+
"""
|
694 |
+
batch_size = x_start.shape[0]
|
695 |
+
t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
|
696 |
+
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
|
697 |
+
kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
|
698 |
+
return mean_flat(kl_prior) / np.log(2.0)
|
699 |
+
|
700 |
+
def p_losses(self, x_start, cond, t, noise=None):
|
701 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
702 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
703 |
+
model_output = self.apply_model(x_noisy, t, cond)
|
704 |
+
|
705 |
+
loss_dict = {}
|
706 |
+
prefix = 'train' if self.training else 'val'
|
707 |
+
|
708 |
+
if self.parameterization == "x0":
|
709 |
+
target = x_start
|
710 |
+
elif self.parameterization == "eps":
|
711 |
+
target = noise
|
712 |
+
else:
|
713 |
+
raise NotImplementedError()
|
714 |
+
|
715 |
+
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
|
716 |
+
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
|
717 |
+
|
718 |
+
logvar_t = self.logvar[t].to(self.device)
|
719 |
+
loss = loss_simple / torch.exp(logvar_t) + logvar_t
|
720 |
+
# loss = loss_simple / torch.exp(self.logvar) + self.logvar
|
721 |
+
if self.learn_logvar:
|
722 |
+
loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
|
723 |
+
loss_dict.update({'logvar': self.logvar.data.mean()})
|
724 |
+
|
725 |
+
loss = self.l_simple_weight * loss.mean()
|
726 |
+
|
727 |
+
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
|
728 |
+
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
|
729 |
+
loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
|
730 |
+
loss += (self.original_elbo_weight * loss_vlb)
|
731 |
+
loss_dict.update({f'{prefix}/loss': loss})
|
732 |
+
|
733 |
+
return loss, loss_dict
|
734 |
+
|
735 |
+
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
|
736 |
+
return_x0=False, score_corrector=None, corrector_kwargs=None):
|
737 |
+
t_in = t
|
738 |
+
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
|
739 |
+
|
740 |
+
if score_corrector is not None:
|
741 |
+
assert self.parameterization == "eps"
|
742 |
+
model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
|
743 |
+
|
744 |
+
if return_codebook_ids:
|
745 |
+
model_out, logits = model_out
|
746 |
+
|
747 |
+
if self.parameterization == "eps":
|
748 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
749 |
+
elif self.parameterization == "x0":
|
750 |
+
x_recon = model_out
|
751 |
+
else:
|
752 |
+
raise NotImplementedError()
|
753 |
+
|
754 |
+
if clip_denoised:
|
755 |
+
x_recon.clamp_(-1., 1.)
|
756 |
+
if quantize_denoised:
|
757 |
+
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
|
758 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
759 |
+
if return_codebook_ids:
|
760 |
+
return model_mean, posterior_variance, posterior_log_variance, logits
|
761 |
+
elif return_x0:
|
762 |
+
return model_mean, posterior_variance, posterior_log_variance, x_recon
|
763 |
+
else:
|
764 |
+
return model_mean, posterior_variance, posterior_log_variance
|
765 |
+
|
766 |
+
@torch.no_grad()
|
767 |
+
def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
|
768 |
+
return_codebook_ids=False, quantize_denoised=False, return_x0=False,
|
769 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
|
770 |
+
b, *_, device = *x.shape, x.device
|
771 |
+
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
|
772 |
+
return_codebook_ids=return_codebook_ids,
|
773 |
+
quantize_denoised=quantize_denoised,
|
774 |
+
return_x0=return_x0,
|
775 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
776 |
+
if return_codebook_ids:
|
777 |
+
raise DeprecationWarning("Support dropped.")
|
778 |
+
model_mean, _, model_log_variance, logits = outputs
|
779 |
+
elif return_x0:
|
780 |
+
model_mean, _, model_log_variance, x0 = outputs
|
781 |
+
else:
|
782 |
+
model_mean, _, model_log_variance = outputs
|
783 |
+
|
784 |
+
noise = noise_like(x.shape, device, repeat_noise) * temperature
|
785 |
+
if noise_dropout > 0.:
|
786 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
787 |
+
# no noise when t == 0
|
788 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
789 |
+
|
790 |
+
if return_codebook_ids:
|
791 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
|
792 |
+
if return_x0:
|
793 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
|
794 |
+
else:
|
795 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
796 |
+
|
797 |
+
@torch.no_grad()
|
798 |
+
def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
|
799 |
+
img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
|
800 |
+
score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
|
801 |
+
log_every_t=None):
|
802 |
+
if not log_every_t:
|
803 |
+
log_every_t = self.log_every_t
|
804 |
+
timesteps = self.num_timesteps
|
805 |
+
if batch_size is not None:
|
806 |
+
b = batch_size if batch_size is not None else shape[0]
|
807 |
+
shape = [batch_size] + list(shape)
|
808 |
+
else:
|
809 |
+
b = batch_size = shape[0]
|
810 |
+
if x_T is None:
|
811 |
+
img = torch.randn(shape, device=self.device)
|
812 |
+
else:
|
813 |
+
img = x_T
|
814 |
+
intermediates = []
|
815 |
+
if cond is not None:
|
816 |
+
if isinstance(cond, dict):
|
817 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
818 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
819 |
+
else:
|
820 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
821 |
+
|
822 |
+
if start_T is not None:
|
823 |
+
timesteps = min(timesteps, start_T)
|
824 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
|
825 |
+
total=timesteps) if verbose else reversed(
|
826 |
+
range(0, timesteps))
|
827 |
+
if type(temperature) == float:
|
828 |
+
temperature = [temperature] * timesteps
|
829 |
+
|
830 |
+
for i in iterator:
|
831 |
+
ts = torch.full((b,), i, device=self.device, dtype=torch.long)
|
832 |
+
if self.shorten_cond_schedule:
|
833 |
+
assert self.model.conditioning_key != 'hybrid'
|
834 |
+
tc = self.cond_ids[ts].to(cond.device)
|
835 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
836 |
+
|
837 |
+
img, x0_partial = self.p_sample(img, cond, ts,
|
838 |
+
clip_denoised=self.clip_denoised,
|
839 |
+
quantize_denoised=quantize_denoised, return_x0=True,
|
840 |
+
temperature=temperature[i], noise_dropout=noise_dropout,
|
841 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
842 |
+
if mask is not None:
|
843 |
+
assert x0 is not None
|
844 |
+
img_orig = self.q_sample(x0, ts)
|
845 |
+
img = img_orig * mask + (1. - mask) * img
|
846 |
+
|
847 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
848 |
+
intermediates.append(x0_partial)
|
849 |
+
if callback: callback(i)
|
850 |
+
if img_callback: img_callback(img, i)
|
851 |
+
return img, intermediates
|
852 |
+
|
853 |
+
@torch.no_grad()
|
854 |
+
def p_sample_loop(self, cond, shape, return_intermediates=False,
|
855 |
+
x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
|
856 |
+
mask=None, x0=None, img_callback=None, start_T=None,
|
857 |
+
log_every_t=None):
|
858 |
+
|
859 |
+
if not log_every_t:
|
860 |
+
log_every_t = self.log_every_t
|
861 |
+
device = self.betas.device
|
862 |
+
b = shape[0]
|
863 |
+
if x_T is None:
|
864 |
+
img = torch.randn(shape, device=device)
|
865 |
+
else:
|
866 |
+
img = x_T
|
867 |
+
|
868 |
+
intermediates = [img]
|
869 |
+
if timesteps is None:
|
870 |
+
timesteps = self.num_timesteps
|
871 |
+
|
872 |
+
if start_T is not None:
|
873 |
+
timesteps = min(timesteps, start_T)
|
874 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
|
875 |
+
range(0, timesteps))
|
876 |
+
|
877 |
+
if mask is not None:
|
878 |
+
assert x0 is not None
|
879 |
+
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
|
880 |
+
|
881 |
+
for i in iterator:
|
882 |
+
ts = torch.full((b,), i, device=device, dtype=torch.long)
|
883 |
+
if self.shorten_cond_schedule:
|
884 |
+
assert self.model.conditioning_key != 'hybrid'
|
885 |
+
tc = self.cond_ids[ts].to(cond.device)
|
886 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
887 |
+
|
888 |
+
img = self.p_sample(img, cond, ts,
|
889 |
+
clip_denoised=self.clip_denoised,
|
890 |
+
quantize_denoised=quantize_denoised)
|
891 |
+
if mask is not None:
|
892 |
+
img_orig = self.q_sample(x0, ts)
|
893 |
+
img = img_orig * mask + (1. - mask) * img
|
894 |
+
|
895 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
896 |
+
intermediates.append(img)
|
897 |
+
if callback: callback(i)
|
898 |
+
if img_callback: img_callback(img, i)
|
899 |
+
|
900 |
+
if return_intermediates:
|
901 |
+
return img, intermediates
|
902 |
+
return img
|
903 |
+
|
904 |
+
@torch.no_grad()
|
905 |
+
def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
|
906 |
+
verbose=True, timesteps=None, quantize_denoised=False,
|
907 |
+
mask=None, x0=None, shape=None,**kwargs):
|
908 |
+
if shape is None:
|
909 |
+
shape = (batch_size, self.channels, self.mel_dim, self.mel_length)
|
910 |
+
if cond is not None:
|
911 |
+
if isinstance(cond, dict):
|
912 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
913 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
914 |
+
else:
|
915 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
916 |
+
return self.p_sample_loop(cond,
|
917 |
+
shape,
|
918 |
+
return_intermediates=return_intermediates, x_T=x_T,
|
919 |
+
verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
|
920 |
+
mask=mask, x0=x0)
|
921 |
+
|
922 |
+
@torch.no_grad()
|
923 |
+
def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs):
|
924 |
+
if ddim:
|
925 |
+
ddim_sampler = DDIMSampler(self)
|
926 |
+
shape = (self.channels, self.mel_dim, self.mel_length)
|
927 |
+
samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size,
|
928 |
+
shape,cond,verbose=False,**kwargs)
|
929 |
+
|
930 |
+
else:
|
931 |
+
samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
|
932 |
+
return_intermediates=True,**kwargs)
|
933 |
+
|
934 |
+
return samples, intermediates
|
935 |
+
|
936 |
+
@torch.no_grad()
|
937 |
+
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
938 |
+
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
939 |
+
plot_diffusion_rows=True, **kwargs):
|
940 |
+
|
941 |
+
use_ddim = ddim_steps is not None
|
942 |
+
|
943 |
+
log = dict()
|
944 |
+
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
|
945 |
+
return_first_stage_outputs=True,
|
946 |
+
force_c_encode=True,
|
947 |
+
return_original_cond=True,
|
948 |
+
bs=N)
|
949 |
+
|
950 |
+
N = min(x.shape[0], N)
|
951 |
+
n_row = min(x.shape[0], n_row)
|
952 |
+
log["inputs"] = x # 原始输入图像
|
953 |
+
log["reconstruction"] = xrec # 重建得到的图像
|
954 |
+
if self.model.conditioning_key is not None:
|
955 |
+
if hasattr(self.cond_stage_model, "decode"):# when cond_stage is first_stage. (bert embedder doesnot have decode)
|
956 |
+
xc = self.cond_stage_model.decode(c)# decoded masked image
|
957 |
+
log["conditioning"] = xc # 重建后的图像
|
958 |
+
elif self.cond_stage_key in ["caption"]:
|
959 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"])
|
960 |
+
log["conditioning"] = xc # 含有文本的图像
|
961 |
+
if self.model.conditioning_key == 'hybrid':
|
962 |
+
log["decoded_maskedimg"] = self.first_stage_model.decode(c['c_concat'][:,:self.first_stage_model.embed_dim])# c_concat is the concat result of masked_img latent and resized mask. get latent here to decode
|
963 |
+
elif self.cond_stage_key == 'class_label':
|
964 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
|
965 |
+
log['conditioning'] = xc # 文本为类标签的图像
|
966 |
+
elif isimage(xc):
|
967 |
+
log["conditioning"] = xc
|
968 |
+
if ismap(xc):
|
969 |
+
log["original_conditioning"] = self.to_rgb(xc)
|
970 |
+
|
971 |
+
if plot_diffusion_rows:# diffusion每一步的图像
|
972 |
+
# get diffusion row
|
973 |
+
diffusion_row = list()
|
974 |
+
z_start = z[:n_row]
|
975 |
+
for t in range(self.num_timesteps):
|
976 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
977 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
978 |
+
t = t.to(self.device).long()
|
979 |
+
noise = torch.randn_like(z_start)
|
980 |
+
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
981 |
+
diffusion_row.append(self.decode_first_stage(z_noisy))
|
982 |
+
|
983 |
+
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
984 |
+
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
985 |
+
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
986 |
+
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
987 |
+
log["diffusion_row"] = diffusion_grid
|
988 |
+
|
989 |
+
if sample:#
|
990 |
+
# get denoise row
|
991 |
+
with self.ema_scope("Plotting"):
|
992 |
+
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
|
993 |
+
ddim_steps=ddim_steps,eta=ddim_eta)
|
994 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
995 |
+
x_samples = self.decode_first_stage(samples)
|
996 |
+
log["samples"] = x_samples
|
997 |
+
if plot_denoise_rows:
|
998 |
+
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
999 |
+
log["denoise_row"] = denoise_grid
|
1000 |
+
|
1001 |
+
if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
|
1002 |
+
self.first_stage_model, IdentityFirstStage):
|
1003 |
+
# also display when quantizing x0 while sampling
|
1004 |
+
with self.ema_scope("Plotting Quantized Denoised"):
|
1005 |
+
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
|
1006 |
+
ddim_steps=ddim_steps,eta=ddim_eta,
|
1007 |
+
quantize_denoised=True)
|
1008 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
|
1009 |
+
# quantize_denoised=True)
|
1010 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1011 |
+
log["samples_x0_quantized"] = x_samples
|
1012 |
+
|
1013 |
+
if inpaint:
|
1014 |
+
# make a simple center square
|
1015 |
+
b, h, w = z.shape[0], z.shape[2], z.shape[3]
|
1016 |
+
mask = torch.ones(N, h, w).to(self.device)
|
1017 |
+
# zeros will be filled in
|
1018 |
+
mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
|
1019 |
+
mask = mask[:, None, ...]# N,1,H,W
|
1020 |
+
with self.ema_scope("Plotting Inpaint"):
|
1021 |
+
samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,
|
1022 |
+
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
1023 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1024 |
+
log["samples_inpainting"] = x_samples
|
1025 |
+
log["mask"] = mask
|
1026 |
+
|
1027 |
+
# outpaint
|
1028 |
+
with self.ema_scope("Plotting Outpaint"):
|
1029 |
+
samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,
|
1030 |
+
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
1031 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1032 |
+
log["samples_outpainting"] = x_samples
|
1033 |
+
|
1034 |
+
if plot_progressive_rows:
|
1035 |
+
with self.ema_scope("Plotting Progressives"):
|
1036 |
+
img, progressives = self.progressive_denoising(c,
|
1037 |
+
shape=(self.channels, self.mel_dim, self.mel_length),
|
1038 |
+
batch_size=N)
|
1039 |
+
prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
|
1040 |
+
log["progressive_row"] = prog_row
|
1041 |
+
|
1042 |
+
if return_keys:
|
1043 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
1044 |
+
return log
|
1045 |
+
else:
|
1046 |
+
return {key: log[key] for key in return_keys}
|
1047 |
+
return log
|
1048 |
+
|
1049 |
+
def configure_optimizers(self):
|
1050 |
+
lr = self.learning_rate
|
1051 |
+
params = list(self.model.parameters())
|
1052 |
+
if self.cond_stage_trainable:
|
1053 |
+
print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
|
1054 |
+
params = params + list(self.cond_stage_model.parameters())
|
1055 |
+
if self.learn_logvar:
|
1056 |
+
print('Diffusion model optimizing logvar')
|
1057 |
+
params.append(self.logvar)
|
1058 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
1059 |
+
if self.use_scheduler:
|
1060 |
+
assert 'target' in self.scheduler_config
|
1061 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
1062 |
+
|
1063 |
+
print("Setting up LambdaLR scheduler...")
|
1064 |
+
scheduler = [
|
1065 |
+
{
|
1066 |
+
'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
|
1067 |
+
'interval': 'step',
|
1068 |
+
'frequency': 1
|
1069 |
+
}]
|
1070 |
+
return [opt], scheduler
|
1071 |
+
return opt
|
1072 |
+
|
1073 |
+
@torch.no_grad()
|
1074 |
+
def to_rgb(self, x):
|
1075 |
+
x = x.float()
|
1076 |
+
if not hasattr(self, "colorize"):
|
1077 |
+
self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
|
1078 |
+
x = nn.functional.conv2d(x, weight=self.colorize)
|
1079 |
+
x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
|
1080 |
+
return x
|
1081 |
+
|
ldm/models/diffusion/plms.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""SAMPLING ONLY."""
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from tqdm import tqdm
|
6 |
+
from functools import partial
|
7 |
+
|
8 |
+
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
|
9 |
+
|
10 |
+
|
11 |
+
class PLMSSampler(object):
|
12 |
+
def __init__(self, model, schedule="linear", **kwargs):
|
13 |
+
super().__init__()
|
14 |
+
self.model = model
|
15 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
16 |
+
self.schedule = schedule
|
17 |
+
|
18 |
+
def register_buffer(self, name, attr):
|
19 |
+
if type(attr) == torch.Tensor:
|
20 |
+
if attr.device != torch.device("cuda"):
|
21 |
+
attr = attr.to(torch.device("cuda"))
|
22 |
+
setattr(self, name, attr)
|
23 |
+
|
24 |
+
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
25 |
+
if ddim_eta != 0:
|
26 |
+
raise ValueError('ddim_eta must be 0 for PLMS')
|
27 |
+
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
28 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
29 |
+
alphas_cumprod = self.model.alphas_cumprod
|
30 |
+
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
31 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
32 |
+
|
33 |
+
self.register_buffer('betas', to_torch(self.model.betas))
|
34 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
35 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
36 |
+
|
37 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
38 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
39 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
40 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
41 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
42 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
43 |
+
|
44 |
+
# ddim sampling parameters
|
45 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
46 |
+
ddim_timesteps=self.ddim_timesteps,
|
47 |
+
eta=ddim_eta,verbose=verbose)
|
48 |
+
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
49 |
+
self.register_buffer('ddim_alphas', ddim_alphas)
|
50 |
+
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
51 |
+
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
52 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
53 |
+
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
54 |
+
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
55 |
+
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
56 |
+
|
57 |
+
@torch.no_grad()
|
58 |
+
def sample(self,
|
59 |
+
S,
|
60 |
+
batch_size,
|
61 |
+
shape,
|
62 |
+
conditioning=None,
|
63 |
+
callback=None,
|
64 |
+
normals_sequence=None,
|
65 |
+
img_callback=None,
|
66 |
+
quantize_x0=False,
|
67 |
+
eta=0.,
|
68 |
+
mask=None,
|
69 |
+
x0=None,
|
70 |
+
temperature=1.,
|
71 |
+
noise_dropout=0.,
|
72 |
+
score_corrector=None,
|
73 |
+
corrector_kwargs=None,
|
74 |
+
verbose=True,
|
75 |
+
x_T=None,
|
76 |
+
log_every_t=100,
|
77 |
+
unconditional_guidance_scale=1.,
|
78 |
+
unconditional_conditioning=None,
|
79 |
+
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
80 |
+
**kwargs
|
81 |
+
):
|
82 |
+
if conditioning is not None:
|
83 |
+
if isinstance(conditioning, dict):
|
84 |
+
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
85 |
+
if cbs != batch_size:
|
86 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
87 |
+
else:
|
88 |
+
if conditioning.shape[0] != batch_size:
|
89 |
+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
90 |
+
|
91 |
+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
92 |
+
# sampling
|
93 |
+
C, H, W = shape
|
94 |
+
size = (batch_size, C, H, W)
|
95 |
+
print(f'Data shape for PLMS sampling is {size}')
|
96 |
+
|
97 |
+
samples, intermediates = self.plms_sampling(conditioning, size,
|
98 |
+
callback=callback,
|
99 |
+
img_callback=img_callback,
|
100 |
+
quantize_denoised=quantize_x0,
|
101 |
+
mask=mask, x0=x0,
|
102 |
+
ddim_use_original_steps=False,
|
103 |
+
noise_dropout=noise_dropout,
|
104 |
+
temperature=temperature,
|
105 |
+
score_corrector=score_corrector,
|
106 |
+
corrector_kwargs=corrector_kwargs,
|
107 |
+
x_T=x_T,
|
108 |
+
log_every_t=log_every_t,
|
109 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
110 |
+
unconditional_conditioning=unconditional_conditioning,
|
111 |
+
)
|
112 |
+
return samples, intermediates
|
113 |
+
|
114 |
+
@torch.no_grad()
|
115 |
+
def plms_sampling(self, cond, shape,
|
116 |
+
x_T=None, ddim_use_original_steps=False,
|
117 |
+
callback=None, timesteps=None, quantize_denoised=False,
|
118 |
+
mask=None, x0=None, img_callback=None, log_every_t=100,
|
119 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
120 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None,):
|
121 |
+
device = self.model.betas.device
|
122 |
+
b = shape[0]
|
123 |
+
if x_T is None:
|
124 |
+
img = torch.randn(shape, device=device)
|
125 |
+
else:
|
126 |
+
img = x_T
|
127 |
+
|
128 |
+
if timesteps is None:
|
129 |
+
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
130 |
+
elif timesteps is not None and not ddim_use_original_steps:
|
131 |
+
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
132 |
+
timesteps = self.ddim_timesteps[:subset_end]
|
133 |
+
|
134 |
+
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
135 |
+
time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
|
136 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
137 |
+
print(f"Running PLMS Sampling with {total_steps} timesteps")
|
138 |
+
|
139 |
+
iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
|
140 |
+
old_eps = []
|
141 |
+
|
142 |
+
for i, step in enumerate(iterator):
|
143 |
+
index = total_steps - i - 1
|
144 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
145 |
+
ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
|
146 |
+
|
147 |
+
if mask is not None:
|
148 |
+
assert x0 is not None
|
149 |
+
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
150 |
+
img = img_orig * mask + (1. - mask) * img
|
151 |
+
|
152 |
+
outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
153 |
+
quantize_denoised=quantize_denoised, temperature=temperature,
|
154 |
+
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
155 |
+
corrector_kwargs=corrector_kwargs,
|
156 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
157 |
+
unconditional_conditioning=unconditional_conditioning,
|
158 |
+
old_eps=old_eps, t_next=ts_next)
|
159 |
+
img, pred_x0, e_t = outs
|
160 |
+
old_eps.append(e_t)
|
161 |
+
if len(old_eps) >= 4:
|
162 |
+
old_eps.pop(0)
|
163 |
+
if callback: callback(i)
|
164 |
+
if img_callback: img_callback(pred_x0, i)
|
165 |
+
|
166 |
+
if index % log_every_t == 0 or index == total_steps - 1:
|
167 |
+
intermediates['x_inter'].append(img)
|
168 |
+
intermediates['pred_x0'].append(pred_x0)
|
169 |
+
|
170 |
+
return img, intermediates
|
171 |
+
|
172 |
+
@torch.no_grad()
|
173 |
+
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
174 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
175 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None):
|
176 |
+
b, *_, device = *x.shape, x.device
|
177 |
+
|
178 |
+
def get_model_output(x, t):
|
179 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
180 |
+
e_t = self.model.apply_model(x, t, c)
|
181 |
+
else:
|
182 |
+
x_in = torch.cat([x] * 2)
|
183 |
+
t_in = torch.cat([t] * 2)
|
184 |
+
c_in = torch.cat([unconditional_conditioning, c])
|
185 |
+
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
186 |
+
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
187 |
+
|
188 |
+
if score_corrector is not None:
|
189 |
+
assert self.model.parameterization == "eps"
|
190 |
+
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
191 |
+
|
192 |
+
return e_t
|
193 |
+
|
194 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
195 |
+
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
196 |
+
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
197 |
+
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
198 |
+
|
199 |
+
def get_x_prev_and_pred_x0(e_t, index):
|
200 |
+
# select parameters corresponding to the currently considered timestep
|
201 |
+
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
202 |
+
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
203 |
+
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
204 |
+
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
205 |
+
|
206 |
+
# current prediction for x_0
|
207 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
208 |
+
if quantize_denoised:
|
209 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
210 |
+
# direction pointing to x_t
|
211 |
+
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
212 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
213 |
+
if noise_dropout > 0.:
|
214 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
215 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
216 |
+
return x_prev, pred_x0
|
217 |
+
|
218 |
+
e_t = get_model_output(x, t)
|
219 |
+
if len(old_eps) == 0:
|
220 |
+
# Pseudo Improved Euler (2nd order)
|
221 |
+
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
|
222 |
+
e_t_next = get_model_output(x_prev, t_next)
|
223 |
+
e_t_prime = (e_t + e_t_next) / 2
|
224 |
+
elif len(old_eps) == 1:
|
225 |
+
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
|
226 |
+
e_t_prime = (3 * e_t - old_eps[-1]) / 2
|
227 |
+
elif len(old_eps) == 2:
|
228 |
+
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
|
229 |
+
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
|
230 |
+
elif len(old_eps) >= 3:
|
231 |
+
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
|
232 |
+
e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
|
233 |
+
|
234 |
+
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
|
235 |
+
|
236 |
+
return x_prev, pred_x0, e_t
|
ldm/modules/attention.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from inspect import isfunction
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torch import nn, einsum
|
6 |
+
from einops import rearrange, repeat
|
7 |
+
|
8 |
+
from ldm.modules.diffusionmodules.util import checkpoint
|
9 |
+
|
10 |
+
|
11 |
+
def exists(val):
|
12 |
+
return val is not None
|
13 |
+
|
14 |
+
|
15 |
+
def uniq(arr):
|
16 |
+
return{el: True for el in arr}.keys()
|
17 |
+
|
18 |
+
|
19 |
+
def default(val, d):
|
20 |
+
if exists(val):
|
21 |
+
return val
|
22 |
+
return d() if isfunction(d) else d
|
23 |
+
|
24 |
+
|
25 |
+
def max_neg_value(t):
|
26 |
+
return -torch.finfo(t.dtype).max
|
27 |
+
|
28 |
+
|
29 |
+
def init_(tensor):
|
30 |
+
dim = tensor.shape[-1]
|
31 |
+
std = 1 / math.sqrt(dim)
|
32 |
+
tensor.uniform_(-std, std)
|
33 |
+
return tensor
|
34 |
+
|
35 |
+
|
36 |
+
# feedforward
|
37 |
+
class GEGLU(nn.Module):
|
38 |
+
def __init__(self, dim_in, dim_out):
|
39 |
+
super().__init__()
|
40 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
41 |
+
|
42 |
+
def forward(self, x):
|
43 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
44 |
+
return x * F.gelu(gate)
|
45 |
+
|
46 |
+
|
47 |
+
class FeedForward(nn.Module):
|
48 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
49 |
+
super().__init__()
|
50 |
+
inner_dim = int(dim * mult)
|
51 |
+
dim_out = default(dim_out, dim)
|
52 |
+
project_in = nn.Sequential(
|
53 |
+
nn.Linear(dim, inner_dim),
|
54 |
+
nn.GELU()
|
55 |
+
) if not glu else GEGLU(dim, inner_dim)
|
56 |
+
|
57 |
+
self.net = nn.Sequential(
|
58 |
+
project_in,
|
59 |
+
nn.Dropout(dropout),
|
60 |
+
nn.Linear(inner_dim, dim_out)
|
61 |
+
)
|
62 |
+
|
63 |
+
def forward(self, x):
|
64 |
+
return self.net(x)
|
65 |
+
|
66 |
+
|
67 |
+
def zero_module(module):
|
68 |
+
"""
|
69 |
+
Zero out the parameters of a module and return it.
|
70 |
+
"""
|
71 |
+
for p in module.parameters():
|
72 |
+
p.detach().zero_()
|
73 |
+
return module
|
74 |
+
|
75 |
+
|
76 |
+
def Normalize(in_channels):
|
77 |
+
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
78 |
+
|
79 |
+
|
80 |
+
class LinearAttention(nn.Module):
|
81 |
+
def __init__(self, dim, heads=4, dim_head=32):
|
82 |
+
super().__init__()
|
83 |
+
self.heads = heads
|
84 |
+
hidden_dim = dim_head * heads
|
85 |
+
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
|
86 |
+
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
|
87 |
+
|
88 |
+
def forward(self, x):
|
89 |
+
b, c, h, w = x.shape
|
90 |
+
qkv = self.to_qkv(x)
|
91 |
+
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
|
92 |
+
k = k.softmax(dim=-1)
|
93 |
+
context = torch.einsum('bhdn,bhen->bhde', k, v)
|
94 |
+
out = torch.einsum('bhde,bhdn->bhen', context, q)
|
95 |
+
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
|
96 |
+
return self.to_out(out)
|
97 |
+
|
98 |
+
|
99 |
+
class SpatialSelfAttention(nn.Module):
|
100 |
+
def __init__(self, in_channels):
|
101 |
+
super().__init__()
|
102 |
+
self.in_channels = in_channels
|
103 |
+
|
104 |
+
self.norm = Normalize(in_channels)
|
105 |
+
self.q = torch.nn.Conv2d(in_channels,
|
106 |
+
in_channels,
|
107 |
+
kernel_size=1,
|
108 |
+
stride=1,
|
109 |
+
padding=0)
|
110 |
+
self.k = torch.nn.Conv2d(in_channels,
|
111 |
+
in_channels,
|
112 |
+
kernel_size=1,
|
113 |
+
stride=1,
|
114 |
+
padding=0)
|
115 |
+
self.v = torch.nn.Conv2d(in_channels,
|
116 |
+
in_channels,
|
117 |
+
kernel_size=1,
|
118 |
+
stride=1,
|
119 |
+
padding=0)
|
120 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
121 |
+
in_channels,
|
122 |
+
kernel_size=1,
|
123 |
+
stride=1,
|
124 |
+
padding=0)
|
125 |
+
|
126 |
+
def forward(self, x):
|
127 |
+
h_ = x
|
128 |
+
h_ = self.norm(h_)
|
129 |
+
q = self.q(h_)
|
130 |
+
k = self.k(h_)
|
131 |
+
v = self.v(h_)
|
132 |
+
|
133 |
+
# compute attention
|
134 |
+
b,c,h,w = q.shape
|
135 |
+
q = rearrange(q, 'b c h w -> b (h w) c')
|
136 |
+
k = rearrange(k, 'b c h w -> b c (h w)')
|
137 |
+
w_ = torch.einsum('bij,bjk->bik', q, k)
|
138 |
+
|
139 |
+
w_ = w_ * (int(c)**(-0.5))
|
140 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
141 |
+
|
142 |
+
# attend to values
|
143 |
+
v = rearrange(v, 'b c h w -> b c (h w)')
|
144 |
+
w_ = rearrange(w_, 'b i j -> b j i')
|
145 |
+
h_ = torch.einsum('bij,bjk->bik', v, w_)
|
146 |
+
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
|
147 |
+
h_ = self.proj_out(h_)
|
148 |
+
|
149 |
+
return x+h_
|
150 |
+
|
151 |
+
|
152 |
+
class CrossAttention(nn.Module):
|
153 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):# 如果设置了context_dim就不是自注意力了
|
154 |
+
super().__init__()
|
155 |
+
inner_dim = dim_head * heads # inner_dim == SpatialTransformer.model_channels
|
156 |
+
context_dim = default(context_dim, query_dim)
|
157 |
+
|
158 |
+
self.scale = dim_head ** -0.5
|
159 |
+
self.heads = heads
|
160 |
+
|
161 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
162 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
163 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
164 |
+
|
165 |
+
self.to_out = nn.Sequential(
|
166 |
+
nn.Linear(inner_dim, query_dim),
|
167 |
+
nn.Dropout(dropout)
|
168 |
+
)
|
169 |
+
|
170 |
+
def forward(self, x, context=None, mask=None):# x:(b,h*w,c), context:(b,seq_len,context_dim)
|
171 |
+
h = self.heads
|
172 |
+
|
173 |
+
q = self.to_q(x)# q:(b,h*w,inner_dim)
|
174 |
+
context = default(context, x)
|
175 |
+
k = self.to_k(context)# (b,seq_len,inner_dim)
|
176 |
+
v = self.to_v(context)# (b,seq_len,inner_dim)
|
177 |
+
|
178 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))# n is seq_len for k and v
|
179 |
+
|
180 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale # (b*head,h*w,seq_len)
|
181 |
+
|
182 |
+
if exists(mask):# false
|
183 |
+
mask = rearrange(mask, 'b ... -> b (...)')
|
184 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
185 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
186 |
+
sim.masked_fill_(~mask, max_neg_value)
|
187 |
+
|
188 |
+
# attention, what we cannot get enough of
|
189 |
+
attn = sim.softmax(dim=-1)
|
190 |
+
|
191 |
+
out = einsum('b i j, b j d -> b i d', attn, v)# (b*head,h*w,inner_dim/head)
|
192 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)# (b,h*w,inner_dim)
|
193 |
+
return self.to_out(out)
|
194 |
+
|
195 |
+
|
196 |
+
class BasicTransformerBlock(nn.Module):
|
197 |
+
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True):
|
198 |
+
super().__init__()
|
199 |
+
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is a self-attention
|
200 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
201 |
+
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
|
202 |
+
heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
|
203 |
+
self.norm1 = nn.LayerNorm(dim)
|
204 |
+
self.norm2 = nn.LayerNorm(dim)
|
205 |
+
self.norm3 = nn.LayerNorm(dim)
|
206 |
+
self.checkpoint = checkpoint
|
207 |
+
|
208 |
+
def forward(self, x, context=None):
|
209 |
+
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
|
210 |
+
|
211 |
+
def _forward(self, x, context=None):
|
212 |
+
x = self.attn1(self.norm1(x)) + x
|
213 |
+
x = self.attn2(self.norm2(x), context=context) + x
|
214 |
+
x = self.ff(self.norm3(x)) + x
|
215 |
+
return x
|
216 |
+
|
217 |
+
|
218 |
+
class SpatialTransformer(nn.Module):
|
219 |
+
"""
|
220 |
+
Transformer block for image-like data.
|
221 |
+
First, project the input (aka embedding)
|
222 |
+
and reshape to b, t, d.
|
223 |
+
Then apply standard transformer action.
|
224 |
+
Finally, reshape to image
|
225 |
+
"""
|
226 |
+
def __init__(self, in_channels, n_heads, d_head,
|
227 |
+
depth=1, dropout=0., context_dim=None):
|
228 |
+
super().__init__()
|
229 |
+
self.in_channels = in_channels
|
230 |
+
inner_dim = n_heads * d_head
|
231 |
+
self.norm = Normalize(in_channels)
|
232 |
+
|
233 |
+
self.proj_in = nn.Conv2d(in_channels,
|
234 |
+
inner_dim,
|
235 |
+
kernel_size=1,
|
236 |
+
stride=1,
|
237 |
+
padding=0)
|
238 |
+
|
239 |
+
self.transformer_blocks = nn.ModuleList(
|
240 |
+
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
|
241 |
+
for d in range(depth)]
|
242 |
+
)
|
243 |
+
|
244 |
+
self.proj_out = zero_module(nn.Conv2d(inner_dim,
|
245 |
+
in_channels,
|
246 |
+
kernel_size=1,
|
247 |
+
stride=1,
|
248 |
+
padding=0))
|
249 |
+
|
250 |
+
def forward(self, x, context=None):
|
251 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
252 |
+
b, c, h, w = x.shape # such as [2,320,10,106]
|
253 |
+
x_in = x
|
254 |
+
x = self.norm(x)# group norm
|
255 |
+
x = self.proj_in(x)# no shape change
|
256 |
+
x = rearrange(x, 'b c h w -> b (h w) c')
|
257 |
+
for block in self.transformer_blocks:
|
258 |
+
x = block(x, context=context)# context shape [b,seq_len=77,context_dim]
|
259 |
+
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
|
260 |
+
x = self.proj_out(x)
|
261 |
+
return x + x_in
|
ldm/modules/diffusionmodules/__init__.py
ADDED
File without changes
|
ldm/modules/diffusionmodules/custom_openaimodel.py
ADDED
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import abstractmethod
|
2 |
+
from functools import partial
|
3 |
+
import math
|
4 |
+
from typing import Iterable
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch as th
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
from ldm.modules.diffusionmodules.util import (
|
12 |
+
checkpoint,
|
13 |
+
conv_nd,
|
14 |
+
linear,
|
15 |
+
avg_pool_nd,
|
16 |
+
zero_module,
|
17 |
+
normalization,
|
18 |
+
timestep_embedding,
|
19 |
+
)
|
20 |
+
from ldm.modules.attention import SpatialTransformer
|
21 |
+
from ldm.modules.diffusionmodules.openaimodel import convert_module_to_f16, convert_module_to_f32, AttentionPool2d, \
|
22 |
+
TimestepBlock, TimestepEmbedSequential, Upsample, TransposedUpsample, Downsample, ResBlock, AttentionBlock, count_flops_attn, \
|
23 |
+
QKVAttentionLegacy, QKVAttention
|
24 |
+
|
25 |
+
|
26 |
+
class UNetModel(nn.Module):
|
27 |
+
"""
|
28 |
+
The full UNet model with attention and timestep embedding.
|
29 |
+
:param in_channels: channels in the input Tensor.
|
30 |
+
:param model_channels: base channel count for the model.
|
31 |
+
:param out_channels: channels in the output Tensor.
|
32 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
33 |
+
:param attention_resolutions: a collection of downsample rates at which
|
34 |
+
attention will take place. May be a set, list, or tuple.
|
35 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
36 |
+
will be used.
|
37 |
+
:param dropout: the dropout probability.
|
38 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
39 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
40 |
+
downsampling.
|
41 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
42 |
+
:param num_classes: if specified (as an int), then this model will be
|
43 |
+
class-conditional with `num_classes` classes.
|
44 |
+
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
45 |
+
:param num_heads: the number of attention heads in each attention layer.
|
46 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
47 |
+
a fixed channel width per attention head.
|
48 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
49 |
+
of heads for upsampling. Deprecated.
|
50 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
51 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
52 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
53 |
+
increased efficiency.
|
54 |
+
"""
|
55 |
+
|
56 |
+
def __init__(
|
57 |
+
self,
|
58 |
+
image_size,
|
59 |
+
in_channels,
|
60 |
+
model_channels,
|
61 |
+
out_channels,
|
62 |
+
num_res_blocks,
|
63 |
+
attention_resolutions,
|
64 |
+
dropout=0,
|
65 |
+
channel_mult=(1, 2, 4, 8),
|
66 |
+
conv_resample=True,
|
67 |
+
dims=2,
|
68 |
+
num_classes=None,
|
69 |
+
use_checkpoint=False,
|
70 |
+
use_fp16=False,
|
71 |
+
num_heads=-1,
|
72 |
+
num_head_channels=-1,
|
73 |
+
num_heads_upsample=-1,
|
74 |
+
use_scale_shift_norm=False,
|
75 |
+
resblock_updown=False,
|
76 |
+
use_new_attention_order=False,
|
77 |
+
use_spatial_transformer=False, # custom transformer support
|
78 |
+
transformer_depth=1, # custom transformer support
|
79 |
+
context_dim=None, # custom transformer support
|
80 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
81 |
+
legacy=True,
|
82 |
+
use_context_project=False, # custom text to audio support
|
83 |
+
use_context_attn=True # custom text to audio support
|
84 |
+
):
|
85 |
+
super().__init__()
|
86 |
+
if use_spatial_transformer:
|
87 |
+
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
88 |
+
|
89 |
+
if context_dim is not None and not use_context_project:
|
90 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
91 |
+
from omegaconf.listconfig import ListConfig
|
92 |
+
if type(context_dim) == ListConfig:
|
93 |
+
context_dim = list(context_dim)
|
94 |
+
|
95 |
+
if num_heads_upsample == -1:
|
96 |
+
num_heads_upsample = num_heads
|
97 |
+
|
98 |
+
if num_heads == -1:
|
99 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
100 |
+
|
101 |
+
if num_head_channels == -1:
|
102 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
103 |
+
|
104 |
+
self.image_size = image_size
|
105 |
+
self.in_channels = in_channels
|
106 |
+
self.model_channels = model_channels
|
107 |
+
self.out_channels = out_channels
|
108 |
+
self.num_res_blocks = num_res_blocks
|
109 |
+
self.attention_resolutions = attention_resolutions
|
110 |
+
self.dropout = dropout
|
111 |
+
self.channel_mult = channel_mult
|
112 |
+
self.conv_resample = conv_resample
|
113 |
+
self.num_classes = num_classes
|
114 |
+
self.use_checkpoint = use_checkpoint
|
115 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
116 |
+
self.num_heads = num_heads
|
117 |
+
self.num_head_channels = num_head_channels
|
118 |
+
self.num_heads_upsample = num_heads_upsample
|
119 |
+
self.predict_codebook_ids = n_embed is not None
|
120 |
+
|
121 |
+
time_embed_dim = model_channels * 4
|
122 |
+
self.time_embed = nn.Sequential(
|
123 |
+
linear(model_channels, time_embed_dim),
|
124 |
+
nn.SiLU(),
|
125 |
+
linear(time_embed_dim, time_embed_dim),
|
126 |
+
)
|
127 |
+
|
128 |
+
if self.num_classes is not None:
|
129 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
130 |
+
|
131 |
+
self.input_blocks = nn.ModuleList(
|
132 |
+
[
|
133 |
+
TimestepEmbedSequential(
|
134 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
135 |
+
)
|
136 |
+
]
|
137 |
+
)
|
138 |
+
self._feature_size = model_channels
|
139 |
+
input_block_chans = [model_channels]
|
140 |
+
ch = model_channels
|
141 |
+
ds = 1
|
142 |
+
for level, mult in enumerate(channel_mult):
|
143 |
+
for _ in range(num_res_blocks):
|
144 |
+
layers = [
|
145 |
+
ResBlock(
|
146 |
+
ch,
|
147 |
+
time_embed_dim,
|
148 |
+
dropout,
|
149 |
+
out_channels=mult * model_channels,
|
150 |
+
dims=dims,
|
151 |
+
use_checkpoint=use_checkpoint,
|
152 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
153 |
+
)
|
154 |
+
]
|
155 |
+
ch = mult * model_channels
|
156 |
+
if ds in attention_resolutions:
|
157 |
+
if num_head_channels == -1:
|
158 |
+
dim_head = ch // num_heads
|
159 |
+
else:
|
160 |
+
num_heads = ch // num_head_channels
|
161 |
+
dim_head = num_head_channels
|
162 |
+
if legacy:
|
163 |
+
#num_heads = 1
|
164 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
165 |
+
layers.append(
|
166 |
+
AttentionBlock(
|
167 |
+
ch,
|
168 |
+
use_checkpoint=use_checkpoint,
|
169 |
+
num_heads=num_heads,
|
170 |
+
num_head_channels=dim_head,
|
171 |
+
use_new_attention_order=use_new_attention_order,
|
172 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
173 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
|
174 |
+
)
|
175 |
+
)
|
176 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
177 |
+
self._feature_size += ch
|
178 |
+
input_block_chans.append(ch)
|
179 |
+
if level != len(channel_mult) - 1:
|
180 |
+
out_ch = ch
|
181 |
+
self.input_blocks.append(
|
182 |
+
TimestepEmbedSequential(
|
183 |
+
ResBlock(
|
184 |
+
ch,
|
185 |
+
time_embed_dim,
|
186 |
+
dropout,
|
187 |
+
out_channels=out_ch,
|
188 |
+
dims=dims,
|
189 |
+
use_checkpoint=use_checkpoint,
|
190 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
191 |
+
down=True,
|
192 |
+
)
|
193 |
+
if resblock_updown
|
194 |
+
else Downsample(
|
195 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
196 |
+
)
|
197 |
+
)
|
198 |
+
)
|
199 |
+
ch = out_ch
|
200 |
+
input_block_chans.append(ch)
|
201 |
+
ds *= 2
|
202 |
+
self._feature_size += ch
|
203 |
+
|
204 |
+
if num_head_channels == -1:
|
205 |
+
dim_head = ch // num_heads
|
206 |
+
else:
|
207 |
+
num_heads = ch // num_head_channels
|
208 |
+
dim_head = num_head_channels
|
209 |
+
if legacy:
|
210 |
+
#num_heads = 1
|
211 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
212 |
+
self.middle_block = TimestepEmbedSequential(
|
213 |
+
ResBlock(
|
214 |
+
ch,
|
215 |
+
time_embed_dim,
|
216 |
+
dropout,
|
217 |
+
dims=dims,
|
218 |
+
use_checkpoint=use_checkpoint,
|
219 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
220 |
+
),
|
221 |
+
AttentionBlock(
|
222 |
+
ch,
|
223 |
+
use_checkpoint=use_checkpoint,
|
224 |
+
num_heads=num_heads,
|
225 |
+
num_head_channels=dim_head,
|
226 |
+
use_new_attention_order=use_new_attention_order,
|
227 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
228 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
|
229 |
+
),
|
230 |
+
ResBlock(
|
231 |
+
ch,
|
232 |
+
time_embed_dim,
|
233 |
+
dropout,
|
234 |
+
dims=dims,
|
235 |
+
use_checkpoint=use_checkpoint,
|
236 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
237 |
+
),
|
238 |
+
)
|
239 |
+
self._feature_size += ch
|
240 |
+
|
241 |
+
self.output_blocks = nn.ModuleList([])
|
242 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
243 |
+
for i in range(num_res_blocks + 1):
|
244 |
+
ich = input_block_chans.pop()
|
245 |
+
layers = [
|
246 |
+
ResBlock(
|
247 |
+
ch + ich,
|
248 |
+
time_embed_dim,
|
249 |
+
dropout,
|
250 |
+
out_channels=model_channels * mult,
|
251 |
+
dims=dims,
|
252 |
+
use_checkpoint=use_checkpoint,
|
253 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
254 |
+
)
|
255 |
+
]
|
256 |
+
ch = model_channels * mult
|
257 |
+
if ds in attention_resolutions:
|
258 |
+
if num_head_channels == -1:
|
259 |
+
dim_head = ch // num_heads
|
260 |
+
else:
|
261 |
+
num_heads = ch // num_head_channels
|
262 |
+
dim_head = num_head_channels
|
263 |
+
if legacy:
|
264 |
+
#num_heads = 1
|
265 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
266 |
+
layers.append(
|
267 |
+
AttentionBlock(
|
268 |
+
ch,
|
269 |
+
use_checkpoint=use_checkpoint,
|
270 |
+
num_heads=num_heads_upsample,
|
271 |
+
num_head_channels=dim_head,
|
272 |
+
use_new_attention_order=use_new_attention_order,
|
273 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
274 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
|
275 |
+
)
|
276 |
+
)
|
277 |
+
if level and i == num_res_blocks:
|
278 |
+
out_ch = ch
|
279 |
+
layers.append(
|
280 |
+
ResBlock(
|
281 |
+
ch,
|
282 |
+
time_embed_dim,
|
283 |
+
dropout,
|
284 |
+
out_channels=out_ch,
|
285 |
+
dims=dims,
|
286 |
+
use_checkpoint=use_checkpoint,
|
287 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
288 |
+
up=True,
|
289 |
+
)
|
290 |
+
if resblock_updown
|
291 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
292 |
+
)
|
293 |
+
ds //= 2
|
294 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
295 |
+
self._feature_size += ch
|
296 |
+
|
297 |
+
self.out = nn.Sequential(
|
298 |
+
normalization(ch),
|
299 |
+
nn.SiLU(),
|
300 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
301 |
+
)
|
302 |
+
if self.predict_codebook_ids:
|
303 |
+
self.id_predictor = nn.Sequential(
|
304 |
+
normalization(ch),
|
305 |
+
conv_nd(dims, model_channels, n_embed, 1),
|
306 |
+
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
307 |
+
)
|
308 |
+
|
309 |
+
self.use_context_project = use_context_project
|
310 |
+
if use_context_project:
|
311 |
+
self.context_project = linear(context_dim, time_embed_dim)
|
312 |
+
self.use_context_attn = use_context_attn
|
313 |
+
|
314 |
+
|
315 |
+
def convert_to_fp16(self):
|
316 |
+
"""
|
317 |
+
Convert the torso of the model to float16.
|
318 |
+
"""
|
319 |
+
self.input_blocks.apply(convert_module_to_f16)
|
320 |
+
self.middle_block.apply(convert_module_to_f16)
|
321 |
+
self.output_blocks.apply(convert_module_to_f16)
|
322 |
+
|
323 |
+
def convert_to_fp32(self):
|
324 |
+
"""
|
325 |
+
Convert the torso of the model to float32.
|
326 |
+
"""
|
327 |
+
self.input_blocks.apply(convert_module_to_f32)
|
328 |
+
self.middle_block.apply(convert_module_to_f32)
|
329 |
+
self.output_blocks.apply(convert_module_to_f32)
|
330 |
+
|
331 |
+
def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
|
332 |
+
"""
|
333 |
+
Apply the model to an input batch.
|
334 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
335 |
+
:param timesteps: a 1-D batch of timesteps.
|
336 |
+
:param context: conditioning plugged in via crossattn
|
337 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
338 |
+
:return: an [N x C x ...] Tensor of outputs.
|
339 |
+
"""
|
340 |
+
assert (y is not None) == (
|
341 |
+
self.num_classes is not None
|
342 |
+
), "must specify y if and only if the model is class-conditional"
|
343 |
+
hs = []
|
344 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
345 |
+
emb = self.time_embed(t_emb)
|
346 |
+
|
347 |
+
if self.num_classes is not None:
|
348 |
+
assert y.shape == (x.shape[0],)
|
349 |
+
emb = emb + self.label_emb(y)
|
350 |
+
|
351 |
+
# For text-to-audio using global CLIP
|
352 |
+
if self.use_context_project:
|
353 |
+
context = self.context_project(context)
|
354 |
+
emb = emb + context.squeeze(1)
|
355 |
+
|
356 |
+
h = x.type(self.dtype)
|
357 |
+
for module in self.input_blocks:
|
358 |
+
h = module(h, emb, context if self.use_context_attn else None)
|
359 |
+
hs.append(h)
|
360 |
+
h = self.middle_block(h, emb, context if self.use_context_attn else None)
|
361 |
+
for module in self.output_blocks:
|
362 |
+
h = th.cat([h, hs.pop()], dim=1)
|
363 |
+
h = module(h, emb, context if self.use_context_attn else None)
|
364 |
+
h = h.type(x.dtype)
|
365 |
+
if self.predict_codebook_ids:
|
366 |
+
return self.id_predictor(h)
|
367 |
+
else:
|
368 |
+
return self.out(h)
|
ldm/modules/diffusionmodules/model.py
ADDED
@@ -0,0 +1,835 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pytorch_diffusion + derived encoder decoder
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import numpy as np
|
6 |
+
from einops import rearrange
|
7 |
+
|
8 |
+
from ldm.util import instantiate_from_config
|
9 |
+
from ldm.modules.attention import LinearAttention
|
10 |
+
|
11 |
+
|
12 |
+
def get_timestep_embedding(timesteps, embedding_dim):
|
13 |
+
"""
|
14 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
15 |
+
From Fairseq.
|
16 |
+
Build sinusoidal embeddings.
|
17 |
+
This matches the implementation in tensor2tensor, but differs slightly
|
18 |
+
from the description in Section 3.5 of "Attention Is All You Need".
|
19 |
+
"""
|
20 |
+
assert len(timesteps.shape) == 1
|
21 |
+
|
22 |
+
half_dim = embedding_dim // 2
|
23 |
+
emb = math.log(10000) / (half_dim - 1)
|
24 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
25 |
+
emb = emb.to(device=timesteps.device)
|
26 |
+
emb = timesteps.float()[:, None] * emb[None, :]
|
27 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
28 |
+
if embedding_dim % 2 == 1: # zero pad
|
29 |
+
emb = torch.nn.functional.pad(emb, (0,1,0,0))
|
30 |
+
return emb
|
31 |
+
|
32 |
+
|
33 |
+
def nonlinearity(x):
|
34 |
+
# swish
|
35 |
+
return x*torch.sigmoid(x)
|
36 |
+
|
37 |
+
|
38 |
+
def Normalize(in_channels, num_groups=32):
|
39 |
+
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
40 |
+
|
41 |
+
|
42 |
+
class Upsample(nn.Module):
|
43 |
+
def __init__(self, in_channels, with_conv):
|
44 |
+
super().__init__()
|
45 |
+
self.with_conv = with_conv
|
46 |
+
if self.with_conv:
|
47 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
48 |
+
in_channels,
|
49 |
+
kernel_size=3,
|
50 |
+
stride=1,
|
51 |
+
padding=1)
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
55 |
+
if self.with_conv:
|
56 |
+
x = self.conv(x)
|
57 |
+
return x
|
58 |
+
|
59 |
+
|
60 |
+
class Downsample(nn.Module):
|
61 |
+
def __init__(self, in_channels, with_conv):
|
62 |
+
super().__init__()
|
63 |
+
self.with_conv = with_conv
|
64 |
+
if self.with_conv:
|
65 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
66 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
67 |
+
in_channels,
|
68 |
+
kernel_size=3,
|
69 |
+
stride=2,
|
70 |
+
padding=0)
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
if self.with_conv:
|
74 |
+
pad = (0,1,0,1)
|
75 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
76 |
+
x = self.conv(x)
|
77 |
+
else:
|
78 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
79 |
+
return x
|
80 |
+
|
81 |
+
|
82 |
+
class ResnetBlock(nn.Module):
|
83 |
+
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
84 |
+
dropout, temb_channels=512):
|
85 |
+
super().__init__()
|
86 |
+
self.in_channels = in_channels
|
87 |
+
out_channels = in_channels if out_channels is None else out_channels
|
88 |
+
self.out_channels = out_channels
|
89 |
+
self.use_conv_shortcut = conv_shortcut
|
90 |
+
|
91 |
+
self.norm1 = Normalize(in_channels)
|
92 |
+
self.conv1 = torch.nn.Conv2d(in_channels,
|
93 |
+
out_channels,
|
94 |
+
kernel_size=3,
|
95 |
+
stride=1,
|
96 |
+
padding=1)
|
97 |
+
if temb_channels > 0:
|
98 |
+
self.temb_proj = torch.nn.Linear(temb_channels,
|
99 |
+
out_channels)
|
100 |
+
self.norm2 = Normalize(out_channels)
|
101 |
+
self.dropout = torch.nn.Dropout(dropout)
|
102 |
+
self.conv2 = torch.nn.Conv2d(out_channels,
|
103 |
+
out_channels,
|
104 |
+
kernel_size=3,
|
105 |
+
stride=1,
|
106 |
+
padding=1)
|
107 |
+
if self.in_channels != self.out_channels:
|
108 |
+
if self.use_conv_shortcut:
|
109 |
+
self.conv_shortcut = torch.nn.Conv2d(in_channels,
|
110 |
+
out_channels,
|
111 |
+
kernel_size=3,
|
112 |
+
stride=1,
|
113 |
+
padding=1)
|
114 |
+
else:
|
115 |
+
self.nin_shortcut = torch.nn.Conv2d(in_channels,
|
116 |
+
out_channels,
|
117 |
+
kernel_size=1,
|
118 |
+
stride=1,
|
119 |
+
padding=0)
|
120 |
+
|
121 |
+
def forward(self, x, temb):
|
122 |
+
h = x
|
123 |
+
h = self.norm1(h)
|
124 |
+
h = nonlinearity(h)
|
125 |
+
h = self.conv1(h)
|
126 |
+
|
127 |
+
if temb is not None:
|
128 |
+
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
|
129 |
+
|
130 |
+
h = self.norm2(h)
|
131 |
+
h = nonlinearity(h)
|
132 |
+
h = self.dropout(h)
|
133 |
+
h = self.conv2(h)
|
134 |
+
|
135 |
+
if self.in_channels != self.out_channels:
|
136 |
+
if self.use_conv_shortcut:
|
137 |
+
x = self.conv_shortcut(x)
|
138 |
+
else:
|
139 |
+
x = self.nin_shortcut(x)
|
140 |
+
|
141 |
+
return x+h
|
142 |
+
|
143 |
+
|
144 |
+
class LinAttnBlock(LinearAttention):
|
145 |
+
"""to match AttnBlock usage"""
|
146 |
+
def __init__(self, in_channels):
|
147 |
+
super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
|
148 |
+
|
149 |
+
|
150 |
+
class AttnBlock(nn.Module):
|
151 |
+
def __init__(self, in_channels):
|
152 |
+
super().__init__()
|
153 |
+
self.in_channels = in_channels
|
154 |
+
|
155 |
+
self.norm = Normalize(in_channels)
|
156 |
+
self.q = torch.nn.Conv2d(in_channels,
|
157 |
+
in_channels,
|
158 |
+
kernel_size=1,
|
159 |
+
stride=1,
|
160 |
+
padding=0)
|
161 |
+
self.k = torch.nn.Conv2d(in_channels,
|
162 |
+
in_channels,
|
163 |
+
kernel_size=1,
|
164 |
+
stride=1,
|
165 |
+
padding=0)
|
166 |
+
self.v = torch.nn.Conv2d(in_channels,
|
167 |
+
in_channels,
|
168 |
+
kernel_size=1,
|
169 |
+
stride=1,
|
170 |
+
padding=0)
|
171 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
172 |
+
in_channels,
|
173 |
+
kernel_size=1,
|
174 |
+
stride=1,
|
175 |
+
padding=0)
|
176 |
+
|
177 |
+
|
178 |
+
def forward(self, x):
|
179 |
+
h_ = x
|
180 |
+
h_ = self.norm(h_)
|
181 |
+
q = self.q(h_)
|
182 |
+
k = self.k(h_)
|
183 |
+
v = self.v(h_)
|
184 |
+
|
185 |
+
# compute attention
|
186 |
+
b,c,h,w = q.shape
|
187 |
+
q = q.reshape(b,c,h*w)
|
188 |
+
q = q.permute(0,2,1) # b,hw,c
|
189 |
+
k = k.reshape(b,c,h*w) # b,c,hw
|
190 |
+
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
191 |
+
w_ = w_ * (int(c)**(-0.5))
|
192 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
193 |
+
|
194 |
+
# attend to values
|
195 |
+
v = v.reshape(b,c,h*w)
|
196 |
+
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
|
197 |
+
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
198 |
+
h_ = h_.reshape(b,c,h,w)
|
199 |
+
|
200 |
+
h_ = self.proj_out(h_)
|
201 |
+
|
202 |
+
return x+h_
|
203 |
+
|
204 |
+
|
205 |
+
def make_attn(in_channels, attn_type="vanilla"):
|
206 |
+
assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
|
207 |
+
print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
|
208 |
+
if attn_type == "vanilla":
|
209 |
+
return AttnBlock(in_channels)
|
210 |
+
elif attn_type == "none":
|
211 |
+
return nn.Identity(in_channels)
|
212 |
+
else:
|
213 |
+
return LinAttnBlock(in_channels)
|
214 |
+
|
215 |
+
|
216 |
+
class Model(nn.Module):
|
217 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
218 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
219 |
+
resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
|
220 |
+
super().__init__()
|
221 |
+
if use_linear_attn: attn_type = "linear"
|
222 |
+
self.ch = ch
|
223 |
+
self.temb_ch = self.ch*4
|
224 |
+
self.num_resolutions = len(ch_mult)
|
225 |
+
self.num_res_blocks = num_res_blocks
|
226 |
+
self.resolution = resolution
|
227 |
+
self.in_channels = in_channels
|
228 |
+
|
229 |
+
self.use_timestep = use_timestep
|
230 |
+
if self.use_timestep:
|
231 |
+
# timestep embedding
|
232 |
+
self.temb = nn.Module()
|
233 |
+
self.temb.dense = nn.ModuleList([
|
234 |
+
torch.nn.Linear(self.ch,
|
235 |
+
self.temb_ch),
|
236 |
+
torch.nn.Linear(self.temb_ch,
|
237 |
+
self.temb_ch),
|
238 |
+
])
|
239 |
+
|
240 |
+
# downsampling
|
241 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
242 |
+
self.ch,
|
243 |
+
kernel_size=3,
|
244 |
+
stride=1,
|
245 |
+
padding=1)
|
246 |
+
|
247 |
+
curr_res = resolution
|
248 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
249 |
+
self.down = nn.ModuleList()
|
250 |
+
for i_level in range(self.num_resolutions):
|
251 |
+
block = nn.ModuleList()
|
252 |
+
attn = nn.ModuleList()
|
253 |
+
block_in = ch*in_ch_mult[i_level]
|
254 |
+
block_out = ch*ch_mult[i_level]
|
255 |
+
for i_block in range(self.num_res_blocks):
|
256 |
+
block.append(ResnetBlock(in_channels=block_in,
|
257 |
+
out_channels=block_out,
|
258 |
+
temb_channels=self.temb_ch,
|
259 |
+
dropout=dropout))
|
260 |
+
block_in = block_out
|
261 |
+
if curr_res in attn_resolutions:
|
262 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
263 |
+
down = nn.Module()
|
264 |
+
down.block = block
|
265 |
+
down.attn = attn
|
266 |
+
if i_level != self.num_resolutions-1:
|
267 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
268 |
+
curr_res = curr_res // 2
|
269 |
+
self.down.append(down)
|
270 |
+
|
271 |
+
# middle
|
272 |
+
self.mid = nn.Module()
|
273 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
274 |
+
out_channels=block_in,
|
275 |
+
temb_channels=self.temb_ch,
|
276 |
+
dropout=dropout)
|
277 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
278 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
279 |
+
out_channels=block_in,
|
280 |
+
temb_channels=self.temb_ch,
|
281 |
+
dropout=dropout)
|
282 |
+
|
283 |
+
# upsampling
|
284 |
+
self.up = nn.ModuleList()
|
285 |
+
for i_level in reversed(range(self.num_resolutions)):
|
286 |
+
block = nn.ModuleList()
|
287 |
+
attn = nn.ModuleList()
|
288 |
+
block_out = ch*ch_mult[i_level]
|
289 |
+
skip_in = ch*ch_mult[i_level]
|
290 |
+
for i_block in range(self.num_res_blocks+1):
|
291 |
+
if i_block == self.num_res_blocks:
|
292 |
+
skip_in = ch*in_ch_mult[i_level]
|
293 |
+
block.append(ResnetBlock(in_channels=block_in+skip_in,
|
294 |
+
out_channels=block_out,
|
295 |
+
temb_channels=self.temb_ch,
|
296 |
+
dropout=dropout))
|
297 |
+
block_in = block_out
|
298 |
+
if curr_res in attn_resolutions:
|
299 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
300 |
+
up = nn.Module()
|
301 |
+
up.block = block
|
302 |
+
up.attn = attn
|
303 |
+
if i_level != 0:
|
304 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
305 |
+
curr_res = curr_res * 2
|
306 |
+
self.up.insert(0, up) # prepend to get consistent order
|
307 |
+
|
308 |
+
# end
|
309 |
+
self.norm_out = Normalize(block_in)
|
310 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
311 |
+
out_ch,
|
312 |
+
kernel_size=3,
|
313 |
+
stride=1,
|
314 |
+
padding=1)
|
315 |
+
|
316 |
+
def forward(self, x, t=None, context=None):
|
317 |
+
#assert x.shape[2] == x.shape[3] == self.resolution
|
318 |
+
if context is not None:
|
319 |
+
# assume aligned context, cat along channel axis
|
320 |
+
x = torch.cat((x, context), dim=1)
|
321 |
+
if self.use_timestep:
|
322 |
+
# timestep embedding
|
323 |
+
assert t is not None
|
324 |
+
temb = get_timestep_embedding(t, self.ch)
|
325 |
+
temb = self.temb.dense[0](temb)
|
326 |
+
temb = nonlinearity(temb)
|
327 |
+
temb = self.temb.dense[1](temb)
|
328 |
+
else:
|
329 |
+
temb = None
|
330 |
+
|
331 |
+
# downsampling
|
332 |
+
hs = [self.conv_in(x)]
|
333 |
+
for i_level in range(self.num_resolutions):
|
334 |
+
for i_block in range(self.num_res_blocks):
|
335 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
336 |
+
if len(self.down[i_level].attn) > 0:
|
337 |
+
h = self.down[i_level].attn[i_block](h)
|
338 |
+
hs.append(h)
|
339 |
+
if i_level != self.num_resolutions-1:
|
340 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
341 |
+
|
342 |
+
# middle
|
343 |
+
h = hs[-1]
|
344 |
+
h = self.mid.block_1(h, temb)
|
345 |
+
h = self.mid.attn_1(h)
|
346 |
+
h = self.mid.block_2(h, temb)
|
347 |
+
|
348 |
+
# upsampling
|
349 |
+
for i_level in reversed(range(self.num_resolutions)):
|
350 |
+
for i_block in range(self.num_res_blocks+1):
|
351 |
+
h = self.up[i_level].block[i_block](
|
352 |
+
torch.cat([h, hs.pop()], dim=1), temb)
|
353 |
+
if len(self.up[i_level].attn) > 0:
|
354 |
+
h = self.up[i_level].attn[i_block](h)
|
355 |
+
if i_level != 0:
|
356 |
+
h = self.up[i_level].upsample(h)
|
357 |
+
|
358 |
+
# end
|
359 |
+
h = self.norm_out(h)
|
360 |
+
h = nonlinearity(h)
|
361 |
+
h = self.conv_out(h)
|
362 |
+
return h
|
363 |
+
|
364 |
+
def get_last_layer(self):
|
365 |
+
return self.conv_out.weight
|
366 |
+
|
367 |
+
|
368 |
+
class Encoder(nn.Module):
|
369 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
370 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
371 |
+
resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
|
372 |
+
**ignore_kwargs):
|
373 |
+
super().__init__()
|
374 |
+
if use_linear_attn: attn_type = "linear"
|
375 |
+
self.ch = ch
|
376 |
+
self.temb_ch = 0
|
377 |
+
self.num_resolutions = len(ch_mult)
|
378 |
+
self.num_res_blocks = num_res_blocks
|
379 |
+
self.resolution = resolution
|
380 |
+
self.in_channels = in_channels
|
381 |
+
|
382 |
+
# downsampling
|
383 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
384 |
+
self.ch,
|
385 |
+
kernel_size=3,
|
386 |
+
stride=1,
|
387 |
+
padding=1)
|
388 |
+
|
389 |
+
curr_res = resolution
|
390 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
391 |
+
self.in_ch_mult = in_ch_mult
|
392 |
+
self.down = nn.ModuleList()
|
393 |
+
for i_level in range(self.num_resolutions):
|
394 |
+
block = nn.ModuleList()
|
395 |
+
attn = nn.ModuleList()
|
396 |
+
block_in = ch*in_ch_mult[i_level]
|
397 |
+
block_out = ch*ch_mult[i_level]
|
398 |
+
for i_block in range(self.num_res_blocks):
|
399 |
+
block.append(ResnetBlock(in_channels=block_in,
|
400 |
+
out_channels=block_out,
|
401 |
+
temb_channels=self.temb_ch,
|
402 |
+
dropout=dropout))
|
403 |
+
block_in = block_out
|
404 |
+
if curr_res in attn_resolutions:
|
405 |
+
attn.append(make_attn(block_in, attn_type=attn_type))# vanilla attention
|
406 |
+
down = nn.Module()
|
407 |
+
down.block = block
|
408 |
+
down.attn = attn
|
409 |
+
if i_level != self.num_resolutions-1:
|
410 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
411 |
+
curr_res = curr_res // 2
|
412 |
+
self.down.append(down)
|
413 |
+
|
414 |
+
# middle
|
415 |
+
self.mid = nn.Module()
|
416 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
417 |
+
out_channels=block_in,
|
418 |
+
temb_channels=self.temb_ch,
|
419 |
+
dropout=dropout)
|
420 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
421 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
422 |
+
out_channels=block_in,
|
423 |
+
temb_channels=self.temb_ch,
|
424 |
+
dropout=dropout)
|
425 |
+
|
426 |
+
# end
|
427 |
+
self.norm_out = Normalize(block_in)# GroupNorm
|
428 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
429 |
+
2*z_channels if double_z else z_channels,
|
430 |
+
kernel_size=3,
|
431 |
+
stride=1,
|
432 |
+
padding=1)
|
433 |
+
|
434 |
+
def forward(self, x):
|
435 |
+
# timestep embedding
|
436 |
+
temb = None
|
437 |
+
|
438 |
+
# downsampling
|
439 |
+
hs = [self.conv_in(x)]
|
440 |
+
for i_level in range(self.num_resolutions):
|
441 |
+
for i_block in range(self.num_res_blocks):
|
442 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
443 |
+
if len(self.down[i_level].attn) > 0:
|
444 |
+
h = self.down[i_level].attn[i_block](h)
|
445 |
+
hs.append(h)
|
446 |
+
if i_level != self.num_resolutions-1:
|
447 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
448 |
+
|
449 |
+
# middle
|
450 |
+
h = hs[-1]
|
451 |
+
h = self.mid.block_1(h, temb)
|
452 |
+
h = self.mid.attn_1(h)
|
453 |
+
h = self.mid.block_2(h, temb)
|
454 |
+
|
455 |
+
# end
|
456 |
+
h = self.norm_out(h)
|
457 |
+
h = nonlinearity(h)
|
458 |
+
h = self.conv_out(h)
|
459 |
+
return h
|
460 |
+
|
461 |
+
|
462 |
+
class Decoder(nn.Module):
|
463 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
464 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
465 |
+
resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
|
466 |
+
attn_type="vanilla", **ignorekwargs):
|
467 |
+
super().__init__()
|
468 |
+
if use_linear_attn: attn_type = "linear"
|
469 |
+
self.ch = ch
|
470 |
+
self.temb_ch = 0
|
471 |
+
self.num_resolutions = len(ch_mult)
|
472 |
+
self.num_res_blocks = num_res_blocks
|
473 |
+
self.resolution = resolution
|
474 |
+
self.in_channels = in_channels
|
475 |
+
self.give_pre_end = give_pre_end
|
476 |
+
self.tanh_out = tanh_out
|
477 |
+
|
478 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
479 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
480 |
+
block_in = ch*ch_mult[self.num_resolutions-1]
|
481 |
+
curr_res = resolution // 2**(self.num_resolutions-1)
|
482 |
+
self.z_shape = (1,z_channels,curr_res,curr_res)
|
483 |
+
print("Working with z of shape {} = {} dimensions.".format(
|
484 |
+
self.z_shape, np.prod(self.z_shape)))
|
485 |
+
|
486 |
+
# z to block_in
|
487 |
+
self.conv_in = torch.nn.Conv2d(z_channels,
|
488 |
+
block_in,
|
489 |
+
kernel_size=3,
|
490 |
+
stride=1,
|
491 |
+
padding=1)
|
492 |
+
|
493 |
+
# middle
|
494 |
+
self.mid = nn.Module()
|
495 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
496 |
+
out_channels=block_in,
|
497 |
+
temb_channels=self.temb_ch,
|
498 |
+
dropout=dropout)
|
499 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
500 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
501 |
+
out_channels=block_in,
|
502 |
+
temb_channels=self.temb_ch,
|
503 |
+
dropout=dropout)
|
504 |
+
|
505 |
+
# upsampling
|
506 |
+
self.up = nn.ModuleList()
|
507 |
+
for i_level in reversed(range(self.num_resolutions)):
|
508 |
+
block = nn.ModuleList()
|
509 |
+
attn = nn.ModuleList()
|
510 |
+
block_out = ch*ch_mult[i_level]
|
511 |
+
for i_block in range(self.num_res_blocks+1):
|
512 |
+
block.append(ResnetBlock(in_channels=block_in,
|
513 |
+
out_channels=block_out,
|
514 |
+
temb_channels=self.temb_ch,
|
515 |
+
dropout=dropout))
|
516 |
+
block_in = block_out
|
517 |
+
if curr_res in attn_resolutions:
|
518 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
519 |
+
up = nn.Module()
|
520 |
+
up.block = block
|
521 |
+
up.attn = attn
|
522 |
+
if i_level != 0:
|
523 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
524 |
+
curr_res = curr_res * 2
|
525 |
+
self.up.insert(0, up) # prepend to get consistent order
|
526 |
+
|
527 |
+
# end
|
528 |
+
self.norm_out = Normalize(block_in)
|
529 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
530 |
+
out_ch,
|
531 |
+
kernel_size=3,
|
532 |
+
stride=1,
|
533 |
+
padding=1)
|
534 |
+
|
535 |
+
def forward(self, z):
|
536 |
+
#assert z.shape[1:] == self.z_shape[1:]
|
537 |
+
self.last_z_shape = z.shape
|
538 |
+
|
539 |
+
# timestep embedding
|
540 |
+
temb = None
|
541 |
+
|
542 |
+
# z to block_in
|
543 |
+
h = self.conv_in(z)
|
544 |
+
|
545 |
+
# middle
|
546 |
+
h = self.mid.block_1(h, temb)
|
547 |
+
h = self.mid.attn_1(h)
|
548 |
+
h = self.mid.block_2(h, temb)
|
549 |
+
|
550 |
+
# upsampling
|
551 |
+
for i_level in reversed(range(self.num_resolutions)):
|
552 |
+
for i_block in range(self.num_res_blocks+1):
|
553 |
+
h = self.up[i_level].block[i_block](h, temb)
|
554 |
+
if len(self.up[i_level].attn) > 0:
|
555 |
+
h = self.up[i_level].attn[i_block](h)
|
556 |
+
if i_level != 0:
|
557 |
+
h = self.up[i_level].upsample(h)
|
558 |
+
|
559 |
+
# end
|
560 |
+
if self.give_pre_end:
|
561 |
+
return h
|
562 |
+
|
563 |
+
h = self.norm_out(h)
|
564 |
+
h = nonlinearity(h)
|
565 |
+
h = self.conv_out(h)
|
566 |
+
if self.tanh_out:
|
567 |
+
h = torch.tanh(h)
|
568 |
+
return h
|
569 |
+
|
570 |
+
|
571 |
+
class SimpleDecoder(nn.Module):
|
572 |
+
def __init__(self, in_channels, out_channels, *args, **kwargs):
|
573 |
+
super().__init__()
|
574 |
+
self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
|
575 |
+
ResnetBlock(in_channels=in_channels,
|
576 |
+
out_channels=2 * in_channels,
|
577 |
+
temb_channels=0, dropout=0.0),
|
578 |
+
ResnetBlock(in_channels=2 * in_channels,
|
579 |
+
out_channels=4 * in_channels,
|
580 |
+
temb_channels=0, dropout=0.0),
|
581 |
+
ResnetBlock(in_channels=4 * in_channels,
|
582 |
+
out_channels=2 * in_channels,
|
583 |
+
temb_channels=0, dropout=0.0),
|
584 |
+
nn.Conv2d(2*in_channels, in_channels, 1),
|
585 |
+
Upsample(in_channels, with_conv=True)])
|
586 |
+
# end
|
587 |
+
self.norm_out = Normalize(in_channels)
|
588 |
+
self.conv_out = torch.nn.Conv2d(in_channels,
|
589 |
+
out_channels,
|
590 |
+
kernel_size=3,
|
591 |
+
stride=1,
|
592 |
+
padding=1)
|
593 |
+
|
594 |
+
def forward(self, x):
|
595 |
+
for i, layer in enumerate(self.model):
|
596 |
+
if i in [1,2,3]:
|
597 |
+
x = layer(x, None)
|
598 |
+
else:
|
599 |
+
x = layer(x)
|
600 |
+
|
601 |
+
h = self.norm_out(x)
|
602 |
+
h = nonlinearity(h)
|
603 |
+
x = self.conv_out(h)
|
604 |
+
return x
|
605 |
+
|
606 |
+
|
607 |
+
class UpsampleDecoder(nn.Module):
|
608 |
+
def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
|
609 |
+
ch_mult=(2,2), dropout=0.0):
|
610 |
+
super().__init__()
|
611 |
+
# upsampling
|
612 |
+
self.temb_ch = 0
|
613 |
+
self.num_resolutions = len(ch_mult)
|
614 |
+
self.num_res_blocks = num_res_blocks
|
615 |
+
block_in = in_channels
|
616 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
617 |
+
self.res_blocks = nn.ModuleList()
|
618 |
+
self.upsample_blocks = nn.ModuleList()
|
619 |
+
for i_level in range(self.num_resolutions):
|
620 |
+
res_block = []
|
621 |
+
block_out = ch * ch_mult[i_level]
|
622 |
+
for i_block in range(self.num_res_blocks + 1):
|
623 |
+
res_block.append(ResnetBlock(in_channels=block_in,
|
624 |
+
out_channels=block_out,
|
625 |
+
temb_channels=self.temb_ch,
|
626 |
+
dropout=dropout))
|
627 |
+
block_in = block_out
|
628 |
+
self.res_blocks.append(nn.ModuleList(res_block))
|
629 |
+
if i_level != self.num_resolutions - 1:
|
630 |
+
self.upsample_blocks.append(Upsample(block_in, True))
|
631 |
+
curr_res = curr_res * 2
|
632 |
+
|
633 |
+
# end
|
634 |
+
self.norm_out = Normalize(block_in)
|
635 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
636 |
+
out_channels,
|
637 |
+
kernel_size=3,
|
638 |
+
stride=1,
|
639 |
+
padding=1)
|
640 |
+
|
641 |
+
def forward(self, x):
|
642 |
+
# upsampling
|
643 |
+
h = x
|
644 |
+
for k, i_level in enumerate(range(self.num_resolutions)):
|
645 |
+
for i_block in range(self.num_res_blocks + 1):
|
646 |
+
h = self.res_blocks[i_level][i_block](h, None)
|
647 |
+
if i_level != self.num_resolutions - 1:
|
648 |
+
h = self.upsample_blocks[k](h)
|
649 |
+
h = self.norm_out(h)
|
650 |
+
h = nonlinearity(h)
|
651 |
+
h = self.conv_out(h)
|
652 |
+
return h
|
653 |
+
|
654 |
+
|
655 |
+
class LatentRescaler(nn.Module):
|
656 |
+
def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
|
657 |
+
super().__init__()
|
658 |
+
# residual block, interpolate, residual block
|
659 |
+
self.factor = factor
|
660 |
+
self.conv_in = nn.Conv2d(in_channels,
|
661 |
+
mid_channels,
|
662 |
+
kernel_size=3,
|
663 |
+
stride=1,
|
664 |
+
padding=1)
|
665 |
+
self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
666 |
+
out_channels=mid_channels,
|
667 |
+
temb_channels=0,
|
668 |
+
dropout=0.0) for _ in range(depth)])
|
669 |
+
self.attn = AttnBlock(mid_channels)
|
670 |
+
self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
671 |
+
out_channels=mid_channels,
|
672 |
+
temb_channels=0,
|
673 |
+
dropout=0.0) for _ in range(depth)])
|
674 |
+
|
675 |
+
self.conv_out = nn.Conv2d(mid_channels,
|
676 |
+
out_channels,
|
677 |
+
kernel_size=1,
|
678 |
+
)
|
679 |
+
|
680 |
+
def forward(self, x):
|
681 |
+
x = self.conv_in(x)
|
682 |
+
for block in self.res_block1:
|
683 |
+
x = block(x, None)
|
684 |
+
x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
|
685 |
+
x = self.attn(x)
|
686 |
+
for block in self.res_block2:
|
687 |
+
x = block(x, None)
|
688 |
+
x = self.conv_out(x)
|
689 |
+
return x
|
690 |
+
|
691 |
+
|
692 |
+
class MergedRescaleEncoder(nn.Module):
|
693 |
+
def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
|
694 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True,
|
695 |
+
ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
|
696 |
+
super().__init__()
|
697 |
+
intermediate_chn = ch * ch_mult[-1]
|
698 |
+
self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
|
699 |
+
z_channels=intermediate_chn, double_z=False, resolution=resolution,
|
700 |
+
attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
|
701 |
+
out_ch=None)
|
702 |
+
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
|
703 |
+
mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
|
704 |
+
|
705 |
+
def forward(self, x):
|
706 |
+
x = self.encoder(x)
|
707 |
+
x = self.rescaler(x)
|
708 |
+
return x
|
709 |
+
|
710 |
+
|
711 |
+
class MergedRescaleDecoder(nn.Module):
|
712 |
+
def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
|
713 |
+
dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
|
714 |
+
super().__init__()
|
715 |
+
tmp_chn = z_channels*ch_mult[-1]
|
716 |
+
self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
|
717 |
+
resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
|
718 |
+
ch_mult=ch_mult, resolution=resolution, ch=ch)
|
719 |
+
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
|
720 |
+
out_channels=tmp_chn, depth=rescale_module_depth)
|
721 |
+
|
722 |
+
def forward(self, x):
|
723 |
+
x = self.rescaler(x)
|
724 |
+
x = self.decoder(x)
|
725 |
+
return x
|
726 |
+
|
727 |
+
|
728 |
+
class Upsampler(nn.Module):
|
729 |
+
def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
|
730 |
+
super().__init__()
|
731 |
+
assert out_size >= in_size
|
732 |
+
num_blocks = int(np.log2(out_size//in_size))+1
|
733 |
+
factor_up = 1.+ (out_size % in_size)
|
734 |
+
print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
|
735 |
+
self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
|
736 |
+
out_channels=in_channels)
|
737 |
+
self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
|
738 |
+
attn_resolutions=[], in_channels=None, ch=in_channels,
|
739 |
+
ch_mult=[ch_mult for _ in range(num_blocks)])
|
740 |
+
|
741 |
+
def forward(self, x):
|
742 |
+
x = self.rescaler(x)
|
743 |
+
x = self.decoder(x)
|
744 |
+
return x
|
745 |
+
|
746 |
+
|
747 |
+
class Resize(nn.Module):
|
748 |
+
def __init__(self, in_channels=None, learned=False, mode="bilinear"):
|
749 |
+
super().__init__()
|
750 |
+
self.with_conv = learned
|
751 |
+
self.mode = mode
|
752 |
+
if self.with_conv:
|
753 |
+
print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
|
754 |
+
raise NotImplementedError()
|
755 |
+
assert in_channels is not None
|
756 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
757 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
758 |
+
in_channels,
|
759 |
+
kernel_size=4,
|
760 |
+
stride=2,
|
761 |
+
padding=1)
|
762 |
+
|
763 |
+
def forward(self, x, scale_factor=1.0):
|
764 |
+
if scale_factor==1.0:
|
765 |
+
return x
|
766 |
+
else:
|
767 |
+
x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
|
768 |
+
return x
|
769 |
+
|
770 |
+
class FirstStagePostProcessor(nn.Module):
|
771 |
+
|
772 |
+
def __init__(self, ch_mult:list, in_channels,
|
773 |
+
pretrained_model:nn.Module=None,
|
774 |
+
reshape=False,
|
775 |
+
n_channels=None,
|
776 |
+
dropout=0.,
|
777 |
+
pretrained_config=None):
|
778 |
+
super().__init__()
|
779 |
+
if pretrained_config is None:
|
780 |
+
assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
|
781 |
+
self.pretrained_model = pretrained_model
|
782 |
+
else:
|
783 |
+
assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
|
784 |
+
self.instantiate_pretrained(pretrained_config)
|
785 |
+
|
786 |
+
self.do_reshape = reshape
|
787 |
+
|
788 |
+
if n_channels is None:
|
789 |
+
n_channels = self.pretrained_model.encoder.ch
|
790 |
+
|
791 |
+
self.proj_norm = Normalize(in_channels,num_groups=in_channels//2)
|
792 |
+
self.proj = nn.Conv2d(in_channels,n_channels,kernel_size=3,
|
793 |
+
stride=1,padding=1)
|
794 |
+
|
795 |
+
blocks = []
|
796 |
+
downs = []
|
797 |
+
ch_in = n_channels
|
798 |
+
for m in ch_mult:
|
799 |
+
blocks.append(ResnetBlock(in_channels=ch_in,out_channels=m*n_channels,dropout=dropout))
|
800 |
+
ch_in = m * n_channels
|
801 |
+
downs.append(Downsample(ch_in, with_conv=False))
|
802 |
+
|
803 |
+
self.model = nn.ModuleList(blocks)
|
804 |
+
self.downsampler = nn.ModuleList(downs)
|
805 |
+
|
806 |
+
|
807 |
+
def instantiate_pretrained(self, config):
|
808 |
+
model = instantiate_from_config(config)
|
809 |
+
self.pretrained_model = model.eval()
|
810 |
+
# self.pretrained_model.train = False
|
811 |
+
for param in self.pretrained_model.parameters():
|
812 |
+
param.requires_grad = False
|
813 |
+
|
814 |
+
|
815 |
+
@torch.no_grad()
|
816 |
+
def encode_with_pretrained(self,x):
|
817 |
+
c = self.pretrained_model.encode(x)
|
818 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
819 |
+
c = c.mode()
|
820 |
+
return c
|
821 |
+
|
822 |
+
def forward(self,x):
|
823 |
+
z_fs = self.encode_with_pretrained(x)
|
824 |
+
z = self.proj_norm(z_fs)
|
825 |
+
z = self.proj(z)
|
826 |
+
z = nonlinearity(z)
|
827 |
+
|
828 |
+
for submodel, downmodel in zip(self.model,self.downsampler):
|
829 |
+
z = submodel(z,temb=None)
|
830 |
+
z = downmodel(z)
|
831 |
+
|
832 |
+
if self.do_reshape:
|
833 |
+
z = rearrange(z,'b c h w -> b (h w) c')
|
834 |
+
return z
|
835 |
+
|
ldm/modules/diffusionmodules/openaimodel.py
ADDED
@@ -0,0 +1,963 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import abstractmethod
|
2 |
+
from functools import partial
|
3 |
+
import math
|
4 |
+
from typing import Iterable
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch as th
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
from ldm.modules.diffusionmodules.util import (
|
12 |
+
checkpoint,
|
13 |
+
conv_nd,
|
14 |
+
linear,
|
15 |
+
avg_pool_nd,
|
16 |
+
zero_module,
|
17 |
+
normalization,
|
18 |
+
timestep_embedding,
|
19 |
+
)
|
20 |
+
from ldm.modules.attention import SpatialTransformer
|
21 |
+
|
22 |
+
|
23 |
+
# dummy replace
|
24 |
+
def convert_module_to_f16(x):
|
25 |
+
pass
|
26 |
+
|
27 |
+
def convert_module_to_f32(x):
|
28 |
+
pass
|
29 |
+
|
30 |
+
|
31 |
+
## go
|
32 |
+
class AttentionPool2d(nn.Module):
|
33 |
+
"""
|
34 |
+
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
35 |
+
"""
|
36 |
+
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
spacial_dim: int,
|
40 |
+
embed_dim: int,
|
41 |
+
num_heads_channels: int,
|
42 |
+
output_dim: int = None,
|
43 |
+
):
|
44 |
+
super().__init__()
|
45 |
+
self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
|
46 |
+
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
47 |
+
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
48 |
+
self.num_heads = embed_dim // num_heads_channels
|
49 |
+
self.attention = QKVAttention(self.num_heads)
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
b, c, *_spatial = x.shape
|
53 |
+
x = x.reshape(b, c, -1) # NC(HW)
|
54 |
+
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
|
55 |
+
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
|
56 |
+
x = self.qkv_proj(x)
|
57 |
+
x = self.attention(x)
|
58 |
+
x = self.c_proj(x)
|
59 |
+
return x[:, :, 0]
|
60 |
+
|
61 |
+
|
62 |
+
class TimestepBlock(nn.Module):
|
63 |
+
"""
|
64 |
+
Any module where forward() takes timestep embeddings as a second argument.
|
65 |
+
"""
|
66 |
+
|
67 |
+
@abstractmethod
|
68 |
+
def forward(self, x, emb):
|
69 |
+
"""
|
70 |
+
Apply the module to `x` given `emb` timestep embeddings.
|
71 |
+
"""
|
72 |
+
|
73 |
+
|
74 |
+
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
75 |
+
"""
|
76 |
+
A sequential module that passes timestep embeddings to the children that
|
77 |
+
support it as an extra input.
|
78 |
+
"""
|
79 |
+
|
80 |
+
def forward(self, x, emb, context=None):
|
81 |
+
for layer in self:
|
82 |
+
if isinstance(layer, TimestepBlock):
|
83 |
+
x = layer(x, emb)
|
84 |
+
elif isinstance(layer, SpatialTransformer):
|
85 |
+
x = layer(x, context)
|
86 |
+
else:
|
87 |
+
x = layer(x)
|
88 |
+
return x
|
89 |
+
|
90 |
+
|
91 |
+
class Upsample(nn.Module):
|
92 |
+
"""
|
93 |
+
An upsampling layer with an optional convolution.
|
94 |
+
:param channels: channels in the inputs and outputs.
|
95 |
+
:param use_conv: a bool determining if a convolution is applied.
|
96 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
97 |
+
upsampling occurs in the inner-two dimensions.
|
98 |
+
"""
|
99 |
+
|
100 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
101 |
+
super().__init__()
|
102 |
+
self.channels = channels
|
103 |
+
self.out_channels = out_channels or channels
|
104 |
+
self.use_conv = use_conv
|
105 |
+
self.dims = dims
|
106 |
+
if use_conv:
|
107 |
+
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
|
108 |
+
|
109 |
+
def forward(self, x):
|
110 |
+
assert x.shape[1] == self.channels
|
111 |
+
if self.dims == 3:
|
112 |
+
x = F.interpolate(
|
113 |
+
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
114 |
+
)
|
115 |
+
else:
|
116 |
+
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
117 |
+
if self.use_conv:
|
118 |
+
x = self.conv(x)
|
119 |
+
return x
|
120 |
+
|
121 |
+
class TransposedUpsample(nn.Module):
|
122 |
+
'Learned 2x upsampling without padding'
|
123 |
+
def __init__(self, channels, out_channels=None, ks=5):
|
124 |
+
super().__init__()
|
125 |
+
self.channels = channels
|
126 |
+
self.out_channels = out_channels or channels
|
127 |
+
|
128 |
+
self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
|
129 |
+
|
130 |
+
def forward(self,x):
|
131 |
+
return self.up(x)
|
132 |
+
|
133 |
+
|
134 |
+
class Downsample(nn.Module):
|
135 |
+
"""
|
136 |
+
A downsampling layer with an optional convolution.
|
137 |
+
:param channels: channels in the inputs and outputs.
|
138 |
+
:param use_conv: a bool determining if a convolution is applied.
|
139 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
140 |
+
downsampling occurs in the inner-two dimensions.
|
141 |
+
"""
|
142 |
+
|
143 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
|
144 |
+
super().__init__()
|
145 |
+
self.channels = channels
|
146 |
+
self.out_channels = out_channels or channels
|
147 |
+
self.use_conv = use_conv
|
148 |
+
self.dims = dims
|
149 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
150 |
+
if use_conv:
|
151 |
+
self.op = conv_nd(
|
152 |
+
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
|
153 |
+
)
|
154 |
+
else:
|
155 |
+
assert self.channels == self.out_channels
|
156 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
157 |
+
|
158 |
+
def forward(self, x):
|
159 |
+
assert x.shape[1] == self.channels
|
160 |
+
return self.op(x)
|
161 |
+
|
162 |
+
|
163 |
+
class ResBlock(TimestepBlock):
|
164 |
+
"""
|
165 |
+
A residual block that can optionally change the number of channels.
|
166 |
+
:param channels: the number of input channels.
|
167 |
+
:param emb_channels: the number of timestep embedding channels.
|
168 |
+
:param dropout: the rate of dropout.
|
169 |
+
:param out_channels: if specified, the number of out channels.
|
170 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
171 |
+
convolution instead of a smaller 1x1 convolution to change the
|
172 |
+
channels in the skip connection.
|
173 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
174 |
+
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
175 |
+
:param up: if True, use this block for upsampling.
|
176 |
+
:param down: if True, use this block for downsampling.
|
177 |
+
"""
|
178 |
+
|
179 |
+
def __init__(
|
180 |
+
self,
|
181 |
+
channels,
|
182 |
+
emb_channels,
|
183 |
+
dropout,
|
184 |
+
out_channels=None,
|
185 |
+
use_conv=False,
|
186 |
+
use_scale_shift_norm=False,
|
187 |
+
dims=2,
|
188 |
+
use_checkpoint=False,
|
189 |
+
up=False,
|
190 |
+
down=False,
|
191 |
+
):
|
192 |
+
super().__init__()
|
193 |
+
self.channels = channels
|
194 |
+
self.emb_channels = emb_channels
|
195 |
+
self.dropout = dropout
|
196 |
+
self.out_channels = out_channels or channels
|
197 |
+
self.use_conv = use_conv
|
198 |
+
self.use_checkpoint = use_checkpoint
|
199 |
+
self.use_scale_shift_norm = use_scale_shift_norm
|
200 |
+
|
201 |
+
self.in_layers = nn.Sequential(
|
202 |
+
normalization(channels),
|
203 |
+
nn.SiLU(),
|
204 |
+
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
205 |
+
)
|
206 |
+
|
207 |
+
self.updown = up or down
|
208 |
+
|
209 |
+
if up:
|
210 |
+
self.h_upd = Upsample(channels, False, dims)
|
211 |
+
self.x_upd = Upsample(channels, False, dims)
|
212 |
+
elif down:
|
213 |
+
self.h_upd = Downsample(channels, False, dims)
|
214 |
+
self.x_upd = Downsample(channels, False, dims)
|
215 |
+
else:
|
216 |
+
self.h_upd = self.x_upd = nn.Identity()
|
217 |
+
|
218 |
+
self.emb_layers = nn.Sequential(
|
219 |
+
nn.SiLU(),
|
220 |
+
linear(
|
221 |
+
emb_channels,
|
222 |
+
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
223 |
+
),
|
224 |
+
)
|
225 |
+
self.out_layers = nn.Sequential(
|
226 |
+
normalization(self.out_channels),
|
227 |
+
nn.SiLU(),
|
228 |
+
nn.Dropout(p=dropout),
|
229 |
+
zero_module(
|
230 |
+
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
231 |
+
),
|
232 |
+
)
|
233 |
+
|
234 |
+
if self.out_channels == channels:
|
235 |
+
self.skip_connection = nn.Identity()
|
236 |
+
elif use_conv:
|
237 |
+
self.skip_connection = conv_nd(
|
238 |
+
dims, channels, self.out_channels, 3, padding=1
|
239 |
+
)
|
240 |
+
else:
|
241 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
242 |
+
|
243 |
+
def forward(self, x, emb):
|
244 |
+
"""
|
245 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
246 |
+
:param x: an [N x C x ...] Tensor of features.
|
247 |
+
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
248 |
+
:return: an [N x C x ...] Tensor of outputs.
|
249 |
+
"""
|
250 |
+
return checkpoint(
|
251 |
+
self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
252 |
+
)
|
253 |
+
|
254 |
+
|
255 |
+
def _forward(self, x, emb):
|
256 |
+
if self.updown:
|
257 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
258 |
+
h = in_rest(x)
|
259 |
+
h = self.h_upd(h)
|
260 |
+
x = self.x_upd(x)
|
261 |
+
h = in_conv(h)
|
262 |
+
else:
|
263 |
+
h = self.in_layers(x)
|
264 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
265 |
+
while len(emb_out.shape) < len(h.shape):
|
266 |
+
emb_out = emb_out[..., None]
|
267 |
+
if self.use_scale_shift_norm:
|
268 |
+
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
269 |
+
scale, shift = th.chunk(emb_out, 2, dim=1)
|
270 |
+
h = out_norm(h) * (1 + scale) + shift
|
271 |
+
h = out_rest(h)
|
272 |
+
else:
|
273 |
+
h = h + emb_out
|
274 |
+
h = self.out_layers(h)
|
275 |
+
return self.skip_connection(x) + h
|
276 |
+
|
277 |
+
|
278 |
+
class AttentionBlock(nn.Module):
|
279 |
+
"""
|
280 |
+
An attention block that allows spatial positions to attend to each other.
|
281 |
+
Originally ported from here, but adapted to the N-d case.
|
282 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
283 |
+
"""
|
284 |
+
|
285 |
+
def __init__(
|
286 |
+
self,
|
287 |
+
channels,
|
288 |
+
num_heads=1,
|
289 |
+
num_head_channels=-1,
|
290 |
+
use_checkpoint=False,
|
291 |
+
use_new_attention_order=False,
|
292 |
+
):
|
293 |
+
super().__init__()
|
294 |
+
self.channels = channels
|
295 |
+
if num_head_channels == -1:
|
296 |
+
self.num_heads = num_heads
|
297 |
+
else:
|
298 |
+
assert (
|
299 |
+
channels % num_head_channels == 0
|
300 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
301 |
+
self.num_heads = channels // num_head_channels
|
302 |
+
self.use_checkpoint = use_checkpoint
|
303 |
+
self.norm = normalization(channels)
|
304 |
+
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
305 |
+
if use_new_attention_order:
|
306 |
+
# split qkv before split heads
|
307 |
+
self.attention = QKVAttention(self.num_heads)
|
308 |
+
else:
|
309 |
+
# split heads before split qkv
|
310 |
+
self.attention = QKVAttentionLegacy(self.num_heads)
|
311 |
+
|
312 |
+
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
313 |
+
|
314 |
+
def forward(self, x):
|
315 |
+
return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
316 |
+
#return pt_checkpoint(self._forward, x) # pytorch
|
317 |
+
|
318 |
+
def _forward(self, x):
|
319 |
+
b, c, *spatial = x.shape
|
320 |
+
x = x.reshape(b, c, -1)
|
321 |
+
qkv = self.qkv(self.norm(x))
|
322 |
+
h = self.attention(qkv)
|
323 |
+
h = self.proj_out(h)
|
324 |
+
return (x + h).reshape(b, c, *spatial)
|
325 |
+
|
326 |
+
|
327 |
+
def count_flops_attn(model, _x, y):
|
328 |
+
"""
|
329 |
+
A counter for the `thop` package to count the operations in an
|
330 |
+
attention operation.
|
331 |
+
Meant to be used like:
|
332 |
+
macs, params = thop.profile(
|
333 |
+
model,
|
334 |
+
inputs=(inputs, timestamps),
|
335 |
+
custom_ops={QKVAttention: QKVAttention.count_flops},
|
336 |
+
)
|
337 |
+
"""
|
338 |
+
b, c, *spatial = y[0].shape
|
339 |
+
num_spatial = int(np.prod(spatial))
|
340 |
+
# We perform two matmuls with the same number of ops.
|
341 |
+
# The first computes the weight matrix, the second computes
|
342 |
+
# the combination of the value vectors.
|
343 |
+
matmul_ops = 2 * b * (num_spatial ** 2) * c
|
344 |
+
model.total_ops += th.DoubleTensor([matmul_ops])
|
345 |
+
|
346 |
+
|
347 |
+
class QKVAttentionLegacy(nn.Module):
|
348 |
+
"""
|
349 |
+
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
350 |
+
"""
|
351 |
+
|
352 |
+
def __init__(self, n_heads):
|
353 |
+
super().__init__()
|
354 |
+
self.n_heads = n_heads
|
355 |
+
|
356 |
+
def forward(self, qkv):
|
357 |
+
"""
|
358 |
+
Apply QKV attention.
|
359 |
+
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
360 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
361 |
+
"""
|
362 |
+
bs, width, length = qkv.shape
|
363 |
+
assert width % (3 * self.n_heads) == 0
|
364 |
+
ch = width // (3 * self.n_heads)
|
365 |
+
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
366 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
367 |
+
weight = th.einsum(
|
368 |
+
"bct,bcs->bts", q * scale, k * scale
|
369 |
+
) # More stable with f16 than dividing afterwards
|
370 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
371 |
+
a = th.einsum("bts,bcs->bct", weight, v)
|
372 |
+
return a.reshape(bs, -1, length)
|
373 |
+
|
374 |
+
@staticmethod
|
375 |
+
def count_flops(model, _x, y):
|
376 |
+
return count_flops_attn(model, _x, y)
|
377 |
+
|
378 |
+
|
379 |
+
class QKVAttention(nn.Module):
|
380 |
+
"""
|
381 |
+
A module which performs QKV attention and splits in a different order.
|
382 |
+
"""
|
383 |
+
|
384 |
+
def __init__(self, n_heads):
|
385 |
+
super().__init__()
|
386 |
+
self.n_heads = n_heads
|
387 |
+
|
388 |
+
def forward(self, qkv):
|
389 |
+
"""
|
390 |
+
Apply QKV attention.
|
391 |
+
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
392 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
393 |
+
"""
|
394 |
+
bs, width, length = qkv.shape
|
395 |
+
assert width % (3 * self.n_heads) == 0
|
396 |
+
ch = width // (3 * self.n_heads)
|
397 |
+
q, k, v = qkv.chunk(3, dim=1)
|
398 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
399 |
+
weight = th.einsum(
|
400 |
+
"bct,bcs->bts",
|
401 |
+
(q * scale).view(bs * self.n_heads, ch, length),
|
402 |
+
(k * scale).view(bs * self.n_heads, ch, length),
|
403 |
+
) # More stable with f16 than dividing afterwards
|
404 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
405 |
+
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
|
406 |
+
return a.reshape(bs, -1, length)
|
407 |
+
|
408 |
+
@staticmethod
|
409 |
+
def count_flops(model, _x, y):
|
410 |
+
return count_flops_attn(model, _x, y)
|
411 |
+
|
412 |
+
|
413 |
+
class UNetModel(nn.Module):
|
414 |
+
"""
|
415 |
+
The full UNet model with attention and timestep embedding.
|
416 |
+
:param in_channels: channels in the input Tensor.
|
417 |
+
:param model_channels: base channel count for the model.
|
418 |
+
:param out_channels: channels in the output Tensor.
|
419 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
420 |
+
:param attention_resolutions: a collection of downsample rates at which
|
421 |
+
attention will take place. May be a set, list, or tuple.
|
422 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
423 |
+
will be used.
|
424 |
+
:param dropout: the dropout probability.
|
425 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
426 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
427 |
+
downsampling.
|
428 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
429 |
+
:param num_classes: if specified (as an int), then this model will be
|
430 |
+
class-conditional with `num_classes` classes.
|
431 |
+
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
432 |
+
:param num_heads: the number of attention heads in each attention layer.
|
433 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
434 |
+
a fixed channel width per attention head.
|
435 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
436 |
+
of heads for upsampling. Deprecated.
|
437 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
438 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
439 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
440 |
+
increased efficiency.
|
441 |
+
"""
|
442 |
+
|
443 |
+
def __init__(
|
444 |
+
self,
|
445 |
+
image_size,
|
446 |
+
in_channels,
|
447 |
+
model_channels,
|
448 |
+
out_channels,
|
449 |
+
num_res_blocks,
|
450 |
+
attention_resolutions,
|
451 |
+
dropout=0,
|
452 |
+
channel_mult=(1, 2, 4, 8),
|
453 |
+
conv_resample=True,
|
454 |
+
dims=2,
|
455 |
+
num_classes=None,
|
456 |
+
use_checkpoint=False,
|
457 |
+
use_fp16=False,
|
458 |
+
num_heads=-1,
|
459 |
+
num_head_channels=-1,
|
460 |
+
num_heads_upsample=-1,
|
461 |
+
use_scale_shift_norm=False,
|
462 |
+
resblock_updown=False,
|
463 |
+
use_new_attention_order=False,
|
464 |
+
use_spatial_transformer=False, # custom transformer support
|
465 |
+
transformer_depth=1, # custom transformer support
|
466 |
+
context_dim=None, # custom transformer support
|
467 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
468 |
+
legacy=True,
|
469 |
+
):
|
470 |
+
super().__init__()
|
471 |
+
if use_spatial_transformer:
|
472 |
+
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
473 |
+
|
474 |
+
if context_dim is not None:
|
475 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
476 |
+
from omegaconf.listconfig import ListConfig
|
477 |
+
if type(context_dim) == ListConfig:
|
478 |
+
context_dim = list(context_dim)
|
479 |
+
|
480 |
+
if num_heads_upsample == -1:
|
481 |
+
num_heads_upsample = num_heads
|
482 |
+
|
483 |
+
if num_heads == -1:
|
484 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
485 |
+
|
486 |
+
if num_head_channels == -1:
|
487 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
488 |
+
|
489 |
+
self.image_size = image_size
|
490 |
+
self.in_channels = in_channels
|
491 |
+
self.model_channels = model_channels
|
492 |
+
self.out_channels = out_channels
|
493 |
+
self.num_res_blocks = num_res_blocks
|
494 |
+
self.attention_resolutions = attention_resolutions
|
495 |
+
self.dropout = dropout
|
496 |
+
self.channel_mult = channel_mult
|
497 |
+
self.conv_resample = conv_resample
|
498 |
+
self.num_classes = num_classes
|
499 |
+
self.use_checkpoint = use_checkpoint
|
500 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
501 |
+
self.num_heads = num_heads
|
502 |
+
self.num_head_channels = num_head_channels
|
503 |
+
self.num_heads_upsample = num_heads_upsample
|
504 |
+
self.predict_codebook_ids = n_embed is not None
|
505 |
+
|
506 |
+
time_embed_dim = model_channels * 4
|
507 |
+
self.time_embed = nn.Sequential(
|
508 |
+
linear(model_channels, time_embed_dim),
|
509 |
+
nn.SiLU(),
|
510 |
+
linear(time_embed_dim, time_embed_dim),
|
511 |
+
)
|
512 |
+
|
513 |
+
if self.num_classes is not None:
|
514 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
515 |
+
|
516 |
+
self.input_blocks = nn.ModuleList(
|
517 |
+
[
|
518 |
+
TimestepEmbedSequential(
|
519 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)# conv2d for txt2img/audio
|
520 |
+
)
|
521 |
+
]
|
522 |
+
)
|
523 |
+
self._feature_size = model_channels
|
524 |
+
input_block_chans = [model_channels]
|
525 |
+
ch = model_channels
|
526 |
+
ds = 1
|
527 |
+
# downsample blocks
|
528 |
+
for level, mult in enumerate(channel_mult):
|
529 |
+
for _ in range(num_res_blocks):
|
530 |
+
layers = [
|
531 |
+
ResBlock(
|
532 |
+
ch,
|
533 |
+
time_embed_dim,
|
534 |
+
dropout,
|
535 |
+
out_channels=mult * model_channels,
|
536 |
+
dims=dims,
|
537 |
+
use_checkpoint=use_checkpoint,
|
538 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
539 |
+
)
|
540 |
+
]
|
541 |
+
ch = mult * model_channels
|
542 |
+
if ds in attention_resolutions:
|
543 |
+
if num_head_channels == -1:
|
544 |
+
dim_head = ch // num_heads
|
545 |
+
else:
|
546 |
+
num_heads = ch // num_head_channels
|
547 |
+
dim_head = num_head_channels
|
548 |
+
if legacy:
|
549 |
+
#num_heads = 1
|
550 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
551 |
+
layers.append(
|
552 |
+
AttentionBlock(
|
553 |
+
ch,
|
554 |
+
use_checkpoint=use_checkpoint,
|
555 |
+
num_heads=num_heads,
|
556 |
+
num_head_channels=dim_head,
|
557 |
+
use_new_attention_order=use_new_attention_order,
|
558 |
+
) if not use_spatial_transformer else SpatialTransformer(# transformer_depth is 1
|
559 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
|
560 |
+
)
|
561 |
+
)
|
562 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
563 |
+
self._feature_size += ch
|
564 |
+
input_block_chans.append(ch)
|
565 |
+
if level != len(channel_mult) - 1:
|
566 |
+
out_ch = ch
|
567 |
+
self.input_blocks.append(
|
568 |
+
TimestepEmbedSequential(
|
569 |
+
ResBlock(
|
570 |
+
ch,
|
571 |
+
time_embed_dim,
|
572 |
+
dropout,
|
573 |
+
out_channels=out_ch,
|
574 |
+
dims=dims,
|
575 |
+
use_checkpoint=use_checkpoint,
|
576 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
577 |
+
down=True,
|
578 |
+
)
|
579 |
+
if resblock_updown
|
580 |
+
else Downsample(
|
581 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
582 |
+
)
|
583 |
+
)
|
584 |
+
)
|
585 |
+
ch = out_ch
|
586 |
+
input_block_chans.append(ch)
|
587 |
+
ds *= 2
|
588 |
+
self._feature_size += ch
|
589 |
+
|
590 |
+
if num_head_channels == -1:
|
591 |
+
dim_head = ch // num_heads
|
592 |
+
else:
|
593 |
+
num_heads = ch // num_head_channels
|
594 |
+
dim_head = num_head_channels
|
595 |
+
if legacy:
|
596 |
+
#num_heads = 1
|
597 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
598 |
+
self.middle_block = TimestepEmbedSequential(
|
599 |
+
ResBlock(
|
600 |
+
ch,
|
601 |
+
time_embed_dim,
|
602 |
+
dropout,
|
603 |
+
dims=dims,
|
604 |
+
use_checkpoint=use_checkpoint,
|
605 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
606 |
+
),
|
607 |
+
AttentionBlock(
|
608 |
+
ch,
|
609 |
+
use_checkpoint=use_checkpoint,
|
610 |
+
num_heads=num_heads,
|
611 |
+
num_head_channels=dim_head,
|
612 |
+
use_new_attention_order=use_new_attention_order,
|
613 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
614 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
|
615 |
+
),
|
616 |
+
ResBlock(
|
617 |
+
ch,
|
618 |
+
time_embed_dim,
|
619 |
+
dropout,
|
620 |
+
dims=dims,
|
621 |
+
use_checkpoint=use_checkpoint,
|
622 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
623 |
+
),
|
624 |
+
)
|
625 |
+
self._feature_size += ch
|
626 |
+
# upsample blocks
|
627 |
+
self.output_blocks = nn.ModuleList([])
|
628 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
629 |
+
for i in range(num_res_blocks + 1):
|
630 |
+
ich = input_block_chans.pop()
|
631 |
+
layers = [
|
632 |
+
ResBlock(
|
633 |
+
ch + ich,
|
634 |
+
time_embed_dim,
|
635 |
+
dropout,
|
636 |
+
out_channels=model_channels * mult,
|
637 |
+
dims=dims,
|
638 |
+
use_checkpoint=use_checkpoint,
|
639 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
640 |
+
)
|
641 |
+
]
|
642 |
+
ch = model_channels * mult
|
643 |
+
if ds in attention_resolutions:
|
644 |
+
if num_head_channels == -1:
|
645 |
+
dim_head = ch // num_heads
|
646 |
+
else:
|
647 |
+
num_heads = ch // num_head_channels
|
648 |
+
dim_head = num_head_channels
|
649 |
+
if legacy:
|
650 |
+
#num_heads = 1
|
651 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
652 |
+
layers.append(
|
653 |
+
AttentionBlock(
|
654 |
+
ch,
|
655 |
+
use_checkpoint=use_checkpoint,
|
656 |
+
num_heads=num_heads_upsample,
|
657 |
+
num_head_channels=dim_head,
|
658 |
+
use_new_attention_order=use_new_attention_order,
|
659 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
660 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
|
661 |
+
)
|
662 |
+
)
|
663 |
+
if level and i == num_res_blocks:
|
664 |
+
out_ch = ch
|
665 |
+
layers.append(
|
666 |
+
ResBlock(
|
667 |
+
ch,
|
668 |
+
time_embed_dim,
|
669 |
+
dropout,
|
670 |
+
out_channels=out_ch,
|
671 |
+
dims=dims,
|
672 |
+
use_checkpoint=use_checkpoint,
|
673 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
674 |
+
up=True,
|
675 |
+
)
|
676 |
+
if resblock_updown
|
677 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
678 |
+
)
|
679 |
+
ds //= 2
|
680 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
681 |
+
self._feature_size += ch
|
682 |
+
|
683 |
+
self.out = nn.Sequential(
|
684 |
+
normalization(ch),
|
685 |
+
nn.SiLU(),
|
686 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
687 |
+
)
|
688 |
+
if self.predict_codebook_ids:
|
689 |
+
self.id_predictor = nn.Sequential(
|
690 |
+
normalization(ch),
|
691 |
+
conv_nd(dims, model_channels, n_embed, 1),
|
692 |
+
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
693 |
+
)
|
694 |
+
|
695 |
+
def convert_to_fp16(self):
|
696 |
+
"""
|
697 |
+
Convert the torso of the model to float16.
|
698 |
+
"""
|
699 |
+
self.input_blocks.apply(convert_module_to_f16)
|
700 |
+
self.middle_block.apply(convert_module_to_f16)
|
701 |
+
self.output_blocks.apply(convert_module_to_f16)
|
702 |
+
|
703 |
+
def convert_to_fp32(self):
|
704 |
+
"""
|
705 |
+
Convert the torso of the model to float32.
|
706 |
+
"""
|
707 |
+
self.input_blocks.apply(convert_module_to_f32)
|
708 |
+
self.middle_block.apply(convert_module_to_f32)
|
709 |
+
self.output_blocks.apply(convert_module_to_f32)
|
710 |
+
|
711 |
+
def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
|
712 |
+
"""
|
713 |
+
Apply the model to an input batch.
|
714 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
715 |
+
:param timesteps: a 1-D batch of timesteps,shape [N]
|
716 |
+
:param context: conditioning plugged in via crossattn. for txt2img shape is [N,77,context_dim]
|
717 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
718 |
+
:return: an [N x C x ...] Tensor of outputs.
|
719 |
+
"""
|
720 |
+
# print(f"in unet {x.shape}")
|
721 |
+
assert (y is not None) == (
|
722 |
+
self.num_classes is not None
|
723 |
+
), "must specify y if and only if the model is class-conditional"
|
724 |
+
hs = []
|
725 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)# shape [N,self.model_channels]
|
726 |
+
emb = self.time_embed(t_emb)# shape [N,context_dim]
|
727 |
+
|
728 |
+
if self.num_classes is not None:# only for class label
|
729 |
+
assert y.shape == (x.shape[0],)
|
730 |
+
emb = emb + self.label_emb(y)
|
731 |
+
|
732 |
+
h = x.type(self.dtype)# [N,C,10,106]
|
733 |
+
for module in self.input_blocks:
|
734 |
+
h = module(h, emb, context)# 0:[N,self.model_channels,10,106],1:[N,self.model_channels,10,106],2:[N,self.model_channels,10,106] 3:[N,self.model_channels,5,53] 4:[N,self.model_channels,5,53] 5:[N,self.model_channels*2,5,53]
|
735 |
+
hs.append(h)
|
736 |
+
h = self.middle_block(h, emb, context)# no shape change
|
737 |
+
for module in self.output_blocks:
|
738 |
+
h = th.cat([h, hs.pop()], dim=1)# 在这里c维度乘2或+self.model_channels,其余维度不变
|
739 |
+
h = module(h, emb, context)# 在这里c维度/2回到之前维度,h,w不变或*2
|
740 |
+
h = h.type(x.dtype)# 至此h维度和输入x维度回到相同状态
|
741 |
+
if self.predict_codebook_ids:
|
742 |
+
return self.id_predictor(h)
|
743 |
+
else:
|
744 |
+
return self.out(h)
|
745 |
+
|
746 |
+
|
747 |
+
class EncoderUNetModel(nn.Module):
|
748 |
+
"""
|
749 |
+
The half UNet model with attention and timestep embedding.
|
750 |
+
For usage, see UNet.
|
751 |
+
"""
|
752 |
+
|
753 |
+
def __init__(
|
754 |
+
self,
|
755 |
+
image_size,
|
756 |
+
in_channels,
|
757 |
+
model_channels,
|
758 |
+
out_channels,
|
759 |
+
num_res_blocks,
|
760 |
+
attention_resolutions,
|
761 |
+
dropout=0,
|
762 |
+
channel_mult=(1, 2, 4, 8),
|
763 |
+
conv_resample=True,
|
764 |
+
dims=2,
|
765 |
+
use_checkpoint=False,
|
766 |
+
use_fp16=False,
|
767 |
+
num_heads=1,
|
768 |
+
num_head_channels=-1,
|
769 |
+
num_heads_upsample=-1,
|
770 |
+
use_scale_shift_norm=False,
|
771 |
+
resblock_updown=False,
|
772 |
+
use_new_attention_order=False,
|
773 |
+
pool="adaptive",
|
774 |
+
*args,
|
775 |
+
**kwargs
|
776 |
+
):
|
777 |
+
super().__init__()
|
778 |
+
|
779 |
+
if num_heads_upsample == -1:
|
780 |
+
num_heads_upsample = num_heads
|
781 |
+
|
782 |
+
self.in_channels = in_channels
|
783 |
+
self.model_channels = model_channels
|
784 |
+
self.out_channels = out_channels
|
785 |
+
self.num_res_blocks = num_res_blocks
|
786 |
+
self.attention_resolutions = attention_resolutions
|
787 |
+
self.dropout = dropout
|
788 |
+
self.channel_mult = channel_mult
|
789 |
+
self.conv_resample = conv_resample
|
790 |
+
self.use_checkpoint = use_checkpoint
|
791 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
792 |
+
self.num_heads = num_heads
|
793 |
+
self.num_head_channels = num_head_channels
|
794 |
+
self.num_heads_upsample = num_heads_upsample
|
795 |
+
|
796 |
+
time_embed_dim = model_channels * 4
|
797 |
+
self.time_embed = nn.Sequential(
|
798 |
+
linear(model_channels, time_embed_dim),
|
799 |
+
nn.SiLU(),
|
800 |
+
linear(time_embed_dim, time_embed_dim),
|
801 |
+
)
|
802 |
+
|
803 |
+
self.input_blocks = nn.ModuleList(
|
804 |
+
[
|
805 |
+
TimestepEmbedSequential(
|
806 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
807 |
+
)
|
808 |
+
]
|
809 |
+
)
|
810 |
+
self._feature_size = model_channels
|
811 |
+
input_block_chans = [model_channels]
|
812 |
+
ch = model_channels
|
813 |
+
ds = 1
|
814 |
+
for level, mult in enumerate(channel_mult):
|
815 |
+
for _ in range(num_res_blocks):
|
816 |
+
layers = [
|
817 |
+
ResBlock(
|
818 |
+
ch,
|
819 |
+
time_embed_dim,
|
820 |
+
dropout,
|
821 |
+
out_channels=mult * model_channels,
|
822 |
+
dims=dims,
|
823 |
+
use_checkpoint=use_checkpoint,
|
824 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
825 |
+
)
|
826 |
+
]
|
827 |
+
ch = mult * model_channels
|
828 |
+
if ds in attention_resolutions:
|
829 |
+
layers.append(
|
830 |
+
AttentionBlock(
|
831 |
+
ch,
|
832 |
+
use_checkpoint=use_checkpoint,
|
833 |
+
num_heads=num_heads,
|
834 |
+
num_head_channels=num_head_channels,
|
835 |
+
use_new_attention_order=use_new_attention_order,
|
836 |
+
)
|
837 |
+
)
|
838 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
839 |
+
self._feature_size += ch
|
840 |
+
input_block_chans.append(ch)
|
841 |
+
if level != len(channel_mult) - 1:
|
842 |
+
out_ch = ch
|
843 |
+
self.input_blocks.append(
|
844 |
+
TimestepEmbedSequential(
|
845 |
+
ResBlock(
|
846 |
+
ch,
|
847 |
+
time_embed_dim,
|
848 |
+
dropout,
|
849 |
+
out_channels=out_ch,
|
850 |
+
dims=dims,
|
851 |
+
use_checkpoint=use_checkpoint,
|
852 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
853 |
+
down=True,
|
854 |
+
)
|
855 |
+
if resblock_updown
|
856 |
+
else Downsample(
|
857 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
858 |
+
)
|
859 |
+
)
|
860 |
+
)
|
861 |
+
ch = out_ch
|
862 |
+
input_block_chans.append(ch)
|
863 |
+
ds *= 2
|
864 |
+
self._feature_size += ch
|
865 |
+
|
866 |
+
self.middle_block = TimestepEmbedSequential(
|
867 |
+
ResBlock(
|
868 |
+
ch,
|
869 |
+
time_embed_dim,
|
870 |
+
dropout,
|
871 |
+
dims=dims,
|
872 |
+
use_checkpoint=use_checkpoint,
|
873 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
874 |
+
),
|
875 |
+
AttentionBlock(
|
876 |
+
ch,
|
877 |
+
use_checkpoint=use_checkpoint,
|
878 |
+
num_heads=num_heads,
|
879 |
+
num_head_channels=num_head_channels,
|
880 |
+
use_new_attention_order=use_new_attention_order,
|
881 |
+
),
|
882 |
+
ResBlock(
|
883 |
+
ch,
|
884 |
+
time_embed_dim,
|
885 |
+
dropout,
|
886 |
+
dims=dims,
|
887 |
+
use_checkpoint=use_checkpoint,
|
888 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
889 |
+
),
|
890 |
+
)
|
891 |
+
self._feature_size += ch
|
892 |
+
self.pool = pool
|
893 |
+
if pool == "adaptive":
|
894 |
+
self.out = nn.Sequential(
|
895 |
+
normalization(ch),
|
896 |
+
nn.SiLU(),
|
897 |
+
nn.AdaptiveAvgPool2d((1, 1)),
|
898 |
+
zero_module(conv_nd(dims, ch, out_channels, 1)),
|
899 |
+
nn.Flatten(),
|
900 |
+
)
|
901 |
+
elif pool == "attention":
|
902 |
+
assert num_head_channels != -1
|
903 |
+
self.out = nn.Sequential(
|
904 |
+
normalization(ch),
|
905 |
+
nn.SiLU(),
|
906 |
+
AttentionPool2d(
|
907 |
+
(image_size // ds), ch, num_head_channels, out_channels
|
908 |
+
),
|
909 |
+
)
|
910 |
+
elif pool == "spatial":
|
911 |
+
self.out = nn.Sequential(
|
912 |
+
nn.Linear(self._feature_size, 2048),
|
913 |
+
nn.ReLU(),
|
914 |
+
nn.Linear(2048, self.out_channels),
|
915 |
+
)
|
916 |
+
elif pool == "spatial_v2":
|
917 |
+
self.out = nn.Sequential(
|
918 |
+
nn.Linear(self._feature_size, 2048),
|
919 |
+
normalization(2048),
|
920 |
+
nn.SiLU(),
|
921 |
+
nn.Linear(2048, self.out_channels),
|
922 |
+
)
|
923 |
+
else:
|
924 |
+
raise NotImplementedError(f"Unexpected {pool} pooling")
|
925 |
+
|
926 |
+
def convert_to_fp16(self):
|
927 |
+
"""
|
928 |
+
Convert the torso of the model to float16.
|
929 |
+
"""
|
930 |
+
self.input_blocks.apply(convert_module_to_f16)
|
931 |
+
self.middle_block.apply(convert_module_to_f16)
|
932 |
+
|
933 |
+
def convert_to_fp32(self):
|
934 |
+
"""
|
935 |
+
Convert the torso of the model to float32.
|
936 |
+
"""
|
937 |
+
self.input_blocks.apply(convert_module_to_f32)
|
938 |
+
self.middle_block.apply(convert_module_to_f32)
|
939 |
+
|
940 |
+
def forward(self, x, timesteps):
|
941 |
+
"""
|
942 |
+
Apply the model to an input batch.
|
943 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
944 |
+
:param timesteps: a 1-D batch of timesteps.
|
945 |
+
:return: an [N x K] Tensor of outputs.
|
946 |
+
"""
|
947 |
+
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
948 |
+
|
949 |
+
results = []
|
950 |
+
h = x.type(self.dtype)
|
951 |
+
for module in self.input_blocks:
|
952 |
+
h = module(h, emb)
|
953 |
+
if self.pool.startswith("spatial"):
|
954 |
+
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
955 |
+
h = self.middle_block(h, emb)
|
956 |
+
if self.pool.startswith("spatial"):
|
957 |
+
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
958 |
+
h = th.cat(results, axis=-1)
|
959 |
+
return self.out(h)
|
960 |
+
else:
|
961 |
+
h = h.type(x.dtype)
|
962 |
+
return self.out(h)
|
963 |
+
|
ldm/modules/diffusionmodules/util.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# adopted from
|
2 |
+
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
3 |
+
# and
|
4 |
+
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
5 |
+
# and
|
6 |
+
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
|
7 |
+
#
|
8 |
+
# thanks!
|
9 |
+
|
10 |
+
|
11 |
+
import os
|
12 |
+
import math
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import numpy as np
|
16 |
+
from einops import repeat
|
17 |
+
|
18 |
+
from ldm.util import instantiate_from_config
|
19 |
+
|
20 |
+
|
21 |
+
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
22 |
+
if schedule == "linear":
|
23 |
+
betas = (
|
24 |
+
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
|
25 |
+
)
|
26 |
+
|
27 |
+
elif schedule == "cosine":
|
28 |
+
timesteps = (
|
29 |
+
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
|
30 |
+
)
|
31 |
+
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
32 |
+
alphas = torch.cos(alphas).pow(2)
|
33 |
+
alphas = alphas / alphas[0]
|
34 |
+
betas = 1 - alphas[1:] / alphas[:-1]
|
35 |
+
betas = np.clip(betas, a_min=0, a_max=0.999)
|
36 |
+
|
37 |
+
elif schedule == "sqrt_linear":
|
38 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
39 |
+
elif schedule == "sqrt":
|
40 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
|
41 |
+
else:
|
42 |
+
raise ValueError(f"schedule '{schedule}' unknown.")
|
43 |
+
return betas.numpy()
|
44 |
+
|
45 |
+
|
46 |
+
def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
|
47 |
+
if ddim_discr_method == 'uniform':
|
48 |
+
c = num_ddpm_timesteps // num_ddim_timesteps
|
49 |
+
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
50 |
+
elif ddim_discr_method == 'quad':
|
51 |
+
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
|
52 |
+
else:
|
53 |
+
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
|
54 |
+
|
55 |
+
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
56 |
+
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
57 |
+
steps_out = ddim_timesteps + 1
|
58 |
+
if verbose:
|
59 |
+
print(f'Selected timesteps for ddim sampler: {steps_out}')
|
60 |
+
return steps_out
|
61 |
+
|
62 |
+
|
63 |
+
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
64 |
+
# select alphas for computing the variance schedule
|
65 |
+
alphas = alphacums[ddim_timesteps]
|
66 |
+
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
|
67 |
+
|
68 |
+
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
69 |
+
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
|
70 |
+
if verbose:
|
71 |
+
print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
|
72 |
+
print(f'For the chosen value of eta, which is {eta}, '
|
73 |
+
f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
|
74 |
+
return sigmas, alphas, alphas_prev
|
75 |
+
|
76 |
+
|
77 |
+
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
78 |
+
"""
|
79 |
+
Create a beta schedule that discretizes the given alpha_t_bar function,
|
80 |
+
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
81 |
+
:param num_diffusion_timesteps: the number of betas to produce.
|
82 |
+
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
83 |
+
produces the cumulative product of (1-beta) up to that
|
84 |
+
part of the diffusion process.
|
85 |
+
:param max_beta: the maximum beta to use; use values lower than 1 to
|
86 |
+
prevent singularities.
|
87 |
+
"""
|
88 |
+
betas = []
|
89 |
+
for i in range(num_diffusion_timesteps):
|
90 |
+
t1 = i / num_diffusion_timesteps
|
91 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
92 |
+
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
93 |
+
return np.array(betas)
|
94 |
+
|
95 |
+
|
96 |
+
def extract_into_tensor(a, t, x_shape):
|
97 |
+
b, *_ = t.shape
|
98 |
+
out = a.gather(-1, t)
|
99 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
100 |
+
|
101 |
+
|
102 |
+
def checkpoint(func, inputs, params, flag):
|
103 |
+
"""
|
104 |
+
Evaluate a function without caching intermediate activations, allowing for
|
105 |
+
reduced memory at the expense of extra compute in the backward pass.
|
106 |
+
:param func: the function to evaluate.
|
107 |
+
:param inputs: the argument sequence to pass to `func`.
|
108 |
+
:param params: a sequence of parameters `func` depends on but does not
|
109 |
+
explicitly take as arguments.
|
110 |
+
:param flag: if False, disable gradient checkpointing.
|
111 |
+
"""
|
112 |
+
if flag:
|
113 |
+
args = tuple(inputs) + tuple(params)
|
114 |
+
return CheckpointFunction.apply(func, len(inputs), *args)
|
115 |
+
else:
|
116 |
+
return func(*inputs)
|
117 |
+
|
118 |
+
|
119 |
+
class CheckpointFunction(torch.autograd.Function):
|
120 |
+
@staticmethod
|
121 |
+
def forward(ctx, run_function, length, *args):
|
122 |
+
ctx.run_function = run_function
|
123 |
+
ctx.input_tensors = list(args[:length])
|
124 |
+
ctx.input_params = list(args[length:])
|
125 |
+
|
126 |
+
with torch.no_grad():
|
127 |
+
output_tensors = ctx.run_function(*ctx.input_tensors)
|
128 |
+
return output_tensors
|
129 |
+
|
130 |
+
@staticmethod
|
131 |
+
def backward(ctx, *output_grads):
|
132 |
+
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
133 |
+
with torch.enable_grad():
|
134 |
+
# Fixes a bug where the first op in run_function modifies the
|
135 |
+
# Tensor storage in place, which is not allowed for detach()'d
|
136 |
+
# Tensors.
|
137 |
+
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
138 |
+
output_tensors = ctx.run_function(*shallow_copies)
|
139 |
+
input_grads = torch.autograd.grad(
|
140 |
+
output_tensors,
|
141 |
+
ctx.input_tensors + ctx.input_params,
|
142 |
+
output_grads,
|
143 |
+
allow_unused=True,
|
144 |
+
)
|
145 |
+
del ctx.input_tensors
|
146 |
+
del ctx.input_params
|
147 |
+
del output_tensors
|
148 |
+
return (None, None) + input_grads
|
149 |
+
|
150 |
+
|
151 |
+
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
152 |
+
"""
|
153 |
+
Create sinusoidal timestep embeddings.
|
154 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
155 |
+
These may be fractional.
|
156 |
+
:param dim: the dimension of the output.
|
157 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
158 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
159 |
+
"""
|
160 |
+
if not repeat_only:
|
161 |
+
half = dim // 2
|
162 |
+
freqs = torch.exp(
|
163 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
164 |
+
).to(device=timesteps.device)
|
165 |
+
args = timesteps[:, None].float() * freqs[None]
|
166 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
167 |
+
if dim % 2:
|
168 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
169 |
+
else:
|
170 |
+
embedding = repeat(timesteps, 'b -> b d', d=dim)
|
171 |
+
return embedding
|
172 |
+
|
173 |
+
|
174 |
+
def zero_module(module):
|
175 |
+
"""
|
176 |
+
Zero out the parameters of a module and return it.
|
177 |
+
"""
|
178 |
+
for p in module.parameters():
|
179 |
+
p.detach().zero_()
|
180 |
+
return module
|
181 |
+
|
182 |
+
|
183 |
+
def scale_module(module, scale):
|
184 |
+
"""
|
185 |
+
Scale the parameters of a module and return it.
|
186 |
+
"""
|
187 |
+
for p in module.parameters():
|
188 |
+
p.detach().mul_(scale)
|
189 |
+
return module
|
190 |
+
|
191 |
+
|
192 |
+
def mean_flat(tensor):
|
193 |
+
"""
|
194 |
+
Take the mean over all non-batch dimensions.
|
195 |
+
"""
|
196 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
197 |
+
|
198 |
+
|
199 |
+
def normalization(channels):
|
200 |
+
"""
|
201 |
+
Make a standard normalization layer.
|
202 |
+
:param channels: number of input channels.
|
203 |
+
:return: an nn.Module for normalization.
|
204 |
+
"""
|
205 |
+
return GroupNorm32(32, channels)
|
206 |
+
|
207 |
+
|
208 |
+
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
|
209 |
+
class SiLU(nn.Module):
|
210 |
+
def forward(self, x):
|
211 |
+
return x * torch.sigmoid(x)
|
212 |
+
|
213 |
+
|
214 |
+
class GroupNorm32(nn.GroupNorm):
|
215 |
+
def forward(self, x):
|
216 |
+
return super().forward(x.float()).type(x.dtype)
|
217 |
+
|
218 |
+
def conv_nd(dims, *args, **kwargs):
|
219 |
+
"""
|
220 |
+
Create a 1D, 2D, or 3D convolution module.
|
221 |
+
"""
|
222 |
+
if dims == 1:
|
223 |
+
return nn.Conv1d(*args, **kwargs)
|
224 |
+
elif dims == 2:
|
225 |
+
return nn.Conv2d(*args, **kwargs)
|
226 |
+
elif dims == 3:
|
227 |
+
return nn.Conv3d(*args, **kwargs)
|
228 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
229 |
+
|
230 |
+
|
231 |
+
def linear(*args, **kwargs):
|
232 |
+
"""
|
233 |
+
Create a linear module.
|
234 |
+
"""
|
235 |
+
return nn.Linear(*args, **kwargs)
|
236 |
+
|
237 |
+
|
238 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
239 |
+
"""
|
240 |
+
Create a 1D, 2D, or 3D average pooling module.
|
241 |
+
"""
|
242 |
+
if dims == 1:
|
243 |
+
return nn.AvgPool1d(*args, **kwargs)
|
244 |
+
elif dims == 2:
|
245 |
+
return nn.AvgPool2d(*args, **kwargs)
|
246 |
+
elif dims == 3:
|
247 |
+
return nn.AvgPool3d(*args, **kwargs)
|
248 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
249 |
+
|
250 |
+
|
251 |
+
class HybridConditioner(nn.Module):
|
252 |
+
|
253 |
+
def __init__(self, c_concat_config, c_crossattn_config):
|
254 |
+
super().__init__()
|
255 |
+
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
256 |
+
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
257 |
+
|
258 |
+
def forward(self, c_concat, c_crossattn):
|
259 |
+
c_concat = self.concat_conditioner(c_concat)
|
260 |
+
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
261 |
+
return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
|
262 |
+
|
263 |
+
|
264 |
+
def noise_like(shape, device, repeat=False):
|
265 |
+
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
266 |
+
noise = lambda: torch.randn(shape, device=device)
|
267 |
+
return repeat_noise() if repeat else noise()
|
ldm/modules/discriminator/model.py
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
|
5 |
+
class ActNorm(nn.Module):
|
6 |
+
def __init__(self, num_features, logdet=False, affine=True,
|
7 |
+
allow_reverse_init=False):
|
8 |
+
assert affine
|
9 |
+
super().__init__()
|
10 |
+
self.logdet = logdet
|
11 |
+
self.loc = nn.Parameter(torch.zeros(1, num_features, 1, 1))
|
12 |
+
self.scale = nn.Parameter(torch.ones(1, num_features, 1, 1))
|
13 |
+
self.allow_reverse_init = allow_reverse_init
|
14 |
+
|
15 |
+
self.register_buffer('initialized', torch.tensor(0, dtype=torch.uint8))
|
16 |
+
|
17 |
+
def initialize(self, input):
|
18 |
+
with torch.no_grad():
|
19 |
+
flatten = input.permute(1, 0, 2, 3).contiguous().view(input.shape[1], -1)
|
20 |
+
mean = (
|
21 |
+
flatten.mean(1)
|
22 |
+
.unsqueeze(1)
|
23 |
+
.unsqueeze(2)
|
24 |
+
.unsqueeze(3)
|
25 |
+
.permute(1, 0, 2, 3)
|
26 |
+
)
|
27 |
+
std = (
|
28 |
+
flatten.std(1)
|
29 |
+
.unsqueeze(1)
|
30 |
+
.unsqueeze(2)
|
31 |
+
.unsqueeze(3)
|
32 |
+
.permute(1, 0, 2, 3)
|
33 |
+
)
|
34 |
+
|
35 |
+
self.loc.data.copy_(-mean)
|
36 |
+
self.scale.data.copy_(1 / (std + 1e-6))
|
37 |
+
|
38 |
+
def forward(self, input, reverse=False):
|
39 |
+
if reverse:
|
40 |
+
return self.reverse(input)
|
41 |
+
if len(input.shape) == 2:
|
42 |
+
input = input[:, :, None, None]
|
43 |
+
squeeze = True
|
44 |
+
else:
|
45 |
+
squeeze = False
|
46 |
+
|
47 |
+
_, _, height, width = input.shape
|
48 |
+
|
49 |
+
if self.training and self.initialized.item() == 0:
|
50 |
+
self.initialize(input)
|
51 |
+
self.initialized.fill_(1)
|
52 |
+
|
53 |
+
h = self.scale * (input + self.loc)
|
54 |
+
|
55 |
+
if squeeze:
|
56 |
+
h = h.squeeze(-1).squeeze(-1)
|
57 |
+
|
58 |
+
if self.logdet:
|
59 |
+
log_abs = torch.log(torch.abs(self.scale))
|
60 |
+
logdet = height * width * torch.sum(log_abs)
|
61 |
+
logdet = logdet * torch.ones(input.shape[0]).to(input)
|
62 |
+
return h, logdet
|
63 |
+
|
64 |
+
return h
|
65 |
+
|
66 |
+
def reverse(self, output):
|
67 |
+
if self.training and self.initialized.item() == 0:
|
68 |
+
if not self.allow_reverse_init:
|
69 |
+
raise RuntimeError(
|
70 |
+
"Initializing ActNorm in reverse direction is "
|
71 |
+
"disabled by default. Use allow_reverse_init=True to enable."
|
72 |
+
)
|
73 |
+
else:
|
74 |
+
self.initialize(output)
|
75 |
+
self.initialized.fill_(1)
|
76 |
+
|
77 |
+
if len(output.shape) == 2:
|
78 |
+
output = output[:, :, None, None]
|
79 |
+
squeeze = True
|
80 |
+
else:
|
81 |
+
squeeze = False
|
82 |
+
|
83 |
+
h = output / self.scale - self.loc
|
84 |
+
|
85 |
+
if squeeze:
|
86 |
+
h = h.squeeze(-1).squeeze(-1)
|
87 |
+
return h
|
88 |
+
|
89 |
+
def weights_init(m):
|
90 |
+
classname = m.__class__.__name__
|
91 |
+
if classname.find('Conv') != -1:
|
92 |
+
nn.init.normal_(m.weight.data, 0.0, 0.02)
|
93 |
+
elif classname.find('BatchNorm') != -1:
|
94 |
+
nn.init.normal_(m.weight.data, 1.0, 0.02)
|
95 |
+
nn.init.constant_(m.bias.data, 0)
|
96 |
+
|
97 |
+
|
98 |
+
class NLayerDiscriminator(nn.Module):
|
99 |
+
"""Defines a PatchGAN discriminator as in Pix2Pix
|
100 |
+
--> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py
|
101 |
+
"""
|
102 |
+
def __init__(self, input_nc=3, ndf=64, n_layers=3, use_actnorm=False):
|
103 |
+
"""Construct a PatchGAN discriminator
|
104 |
+
Parameters:
|
105 |
+
input_nc (int) -- the number of channels in input images
|
106 |
+
ndf (int) -- the number of filters in the last conv layer
|
107 |
+
n_layers (int) -- the number of conv layers in the discriminator
|
108 |
+
norm_layer -- normalization layer
|
109 |
+
"""
|
110 |
+
super(NLayerDiscriminator, self).__init__()
|
111 |
+
if not use_actnorm:
|
112 |
+
norm_layer = nn.BatchNorm2d
|
113 |
+
else:
|
114 |
+
norm_layer = ActNorm
|
115 |
+
if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters
|
116 |
+
use_bias = norm_layer.func != nn.BatchNorm2d
|
117 |
+
else:
|
118 |
+
use_bias = norm_layer != nn.BatchNorm2d
|
119 |
+
|
120 |
+
kw = 4
|
121 |
+
padw = 1
|
122 |
+
sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]
|
123 |
+
nf_mult = 1
|
124 |
+
nf_mult_prev = 1
|
125 |
+
for n in range(1, n_layers): # gradually increase the number of filters
|
126 |
+
nf_mult_prev = nf_mult
|
127 |
+
nf_mult = min(2 ** n, 8)
|
128 |
+
sequence += [
|
129 |
+
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias),
|
130 |
+
norm_layer(ndf * nf_mult),
|
131 |
+
nn.LeakyReLU(0.2, True)
|
132 |
+
]
|
133 |
+
|
134 |
+
nf_mult_prev = nf_mult
|
135 |
+
nf_mult = min(2 ** n_layers, 8)
|
136 |
+
sequence += [
|
137 |
+
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias),
|
138 |
+
norm_layer(ndf * nf_mult),
|
139 |
+
nn.LeakyReLU(0.2, True)
|
140 |
+
]
|
141 |
+
# output 1 channel prediction map
|
142 |
+
sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)]
|
143 |
+
self.main = nn.Sequential(*sequence)
|
144 |
+
|
145 |
+
def forward(self, input):
|
146 |
+
"""Standard forward."""
|
147 |
+
return self.main(input)
|
148 |
+
|
149 |
+
class NLayerDiscriminator1dFeats(NLayerDiscriminator):
|
150 |
+
"""Defines a PatchGAN discriminator as in Pix2Pix
|
151 |
+
--> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py
|
152 |
+
"""
|
153 |
+
def __init__(self, input_nc=3, ndf=64, n_layers=3, use_actnorm=False):
|
154 |
+
"""Construct a PatchGAN discriminator
|
155 |
+
Parameters:
|
156 |
+
input_nc (int) -- the number of channels in input feats
|
157 |
+
ndf (int) -- the number of filters in the last conv layer
|
158 |
+
n_layers (int) -- the number of conv layers in the discriminator
|
159 |
+
norm_layer -- normalization layer
|
160 |
+
"""
|
161 |
+
super().__init__(input_nc=input_nc, ndf=64, n_layers=n_layers, use_actnorm=use_actnorm)
|
162 |
+
|
163 |
+
if not use_actnorm:
|
164 |
+
norm_layer = nn.BatchNorm1d
|
165 |
+
else:
|
166 |
+
norm_layer = ActNorm
|
167 |
+
if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm has affine parameters
|
168 |
+
use_bias = norm_layer.func != nn.BatchNorm1d
|
169 |
+
else:
|
170 |
+
use_bias = norm_layer != nn.BatchNorm1d
|
171 |
+
|
172 |
+
kw = 4
|
173 |
+
padw = 1
|
174 |
+
sequence = [nn.Conv1d(input_nc, input_nc//2, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]
|
175 |
+
nf_mult = input_nc//2
|
176 |
+
nf_mult_prev = 1
|
177 |
+
for n in range(1, n_layers): # gradually decrease the number of filters
|
178 |
+
nf_mult_prev = nf_mult
|
179 |
+
nf_mult = max(nf_mult_prev // (2 ** n), 8)
|
180 |
+
sequence += [
|
181 |
+
nn.Conv1d(nf_mult_prev, nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias),
|
182 |
+
norm_layer(nf_mult),
|
183 |
+
nn.LeakyReLU(0.2, True)
|
184 |
+
]
|
185 |
+
|
186 |
+
nf_mult_prev = nf_mult
|
187 |
+
nf_mult = max(nf_mult_prev // (2 ** n), 8)
|
188 |
+
sequence += [
|
189 |
+
nn.Conv1d(nf_mult_prev, nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias),
|
190 |
+
norm_layer(nf_mult),
|
191 |
+
nn.LeakyReLU(0.2, True)
|
192 |
+
]
|
193 |
+
nf_mult_prev = nf_mult
|
194 |
+
nf_mult = max(nf_mult_prev // (2 ** n), 8)
|
195 |
+
sequence += [
|
196 |
+
nn.Conv1d(nf_mult_prev, nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias),
|
197 |
+
norm_layer(nf_mult),
|
198 |
+
nn.LeakyReLU(0.2, True)
|
199 |
+
]
|
200 |
+
# output 1 channel prediction map
|
201 |
+
sequence += [nn.Conv1d(nf_mult, 1, kernel_size=kw, stride=1, padding=padw)]
|
202 |
+
self.main = nn.Sequential(*sequence)
|
203 |
+
|
204 |
+
|
205 |
+
class NLayerDiscriminator1dSpecs(NLayerDiscriminator):
|
206 |
+
"""Defines a PatchGAN discriminator as in Pix2Pix
|
207 |
+
--> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py
|
208 |
+
"""
|
209 |
+
def __init__(self, input_nc=80, ndf=64, n_layers=3, use_actnorm=False):
|
210 |
+
"""Construct a PatchGAN discriminator
|
211 |
+
Parameters:
|
212 |
+
input_nc (int) -- the number of channels in input specs
|
213 |
+
ndf (int) -- the number of filters in the last conv layer
|
214 |
+
n_layers (int) -- the number of conv layers in the discriminator
|
215 |
+
norm_layer -- normalization layer
|
216 |
+
"""
|
217 |
+
super().__init__(input_nc=input_nc, ndf=64, n_layers=n_layers, use_actnorm=use_actnorm)
|
218 |
+
|
219 |
+
if not use_actnorm:
|
220 |
+
norm_layer = nn.BatchNorm1d
|
221 |
+
else:
|
222 |
+
norm_layer = ActNorm
|
223 |
+
if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm has affine parameters
|
224 |
+
use_bias = norm_layer.func != nn.BatchNorm1d
|
225 |
+
else:
|
226 |
+
use_bias = norm_layer != nn.BatchNorm1d
|
227 |
+
|
228 |
+
kw = 4
|
229 |
+
padw = 1
|
230 |
+
sequence = [nn.Conv1d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]
|
231 |
+
nf_mult = 1
|
232 |
+
nf_mult_prev = 1
|
233 |
+
for n in range(1, n_layers): # gradually decrease the number of filters
|
234 |
+
nf_mult_prev = nf_mult
|
235 |
+
nf_mult = min(2 ** n, 8)
|
236 |
+
sequence += [
|
237 |
+
nn.Conv1d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias),
|
238 |
+
norm_layer(ndf * nf_mult),
|
239 |
+
nn.LeakyReLU(0.2, True)
|
240 |
+
]
|
241 |
+
|
242 |
+
nf_mult_prev = nf_mult
|
243 |
+
nf_mult = min(2 ** n_layers, 8)
|
244 |
+
sequence += [
|
245 |
+
nn.Conv1d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias),
|
246 |
+
norm_layer(ndf * nf_mult),
|
247 |
+
nn.LeakyReLU(0.2, True)
|
248 |
+
]
|
249 |
+
# output 1 channel prediction map
|
250 |
+
sequence += [nn.Conv1d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)]
|
251 |
+
self.main = nn.Sequential(*sequence)
|
252 |
+
|
253 |
+
def forward(self, input):
|
254 |
+
"""Standard forward."""
|
255 |
+
# (B, C, L)
|
256 |
+
input = input.squeeze(1)
|
257 |
+
input = self.main(input)
|
258 |
+
return input
|
259 |
+
|
260 |
+
|
261 |
+
if __name__ == '__main__':
|
262 |
+
import torch
|
263 |
+
|
264 |
+
## FEATURES
|
265 |
+
disc_in_channels = 2048
|
266 |
+
disc_num_layers = 2
|
267 |
+
use_actnorm = False
|
268 |
+
disc_ndf = 64
|
269 |
+
discriminator = NLayerDiscriminator1dFeats(input_nc=disc_in_channels, n_layers=disc_num_layers,
|
270 |
+
use_actnorm=use_actnorm, ndf=disc_ndf).apply(weights_init)
|
271 |
+
inputs = torch.rand((6, 2048, 212))
|
272 |
+
outputs = discriminator(inputs)
|
273 |
+
print(outputs.shape)
|
274 |
+
|
275 |
+
## AUDIO
|
276 |
+
disc_in_channels = 1
|
277 |
+
disc_num_layers = 3
|
278 |
+
use_actnorm = False
|
279 |
+
disc_ndf = 64
|
280 |
+
discriminator = NLayerDiscriminator(input_nc=disc_in_channels, n_layers=disc_num_layers,
|
281 |
+
use_actnorm=use_actnorm, ndf=disc_ndf).apply(weights_init)
|
282 |
+
inputs = torch.rand((6, 1, 80, 848))
|
283 |
+
outputs = discriminator(inputs)
|
284 |
+
print(outputs.shape)
|
285 |
+
|
286 |
+
## IMAGE
|
287 |
+
disc_in_channels = 3
|
288 |
+
disc_num_layers = 3
|
289 |
+
use_actnorm = False
|
290 |
+
disc_ndf = 64
|
291 |
+
discriminator = NLayerDiscriminator(input_nc=disc_in_channels, n_layers=disc_num_layers,
|
292 |
+
use_actnorm=use_actnorm, ndf=disc_ndf).apply(weights_init)
|
293 |
+
inputs = torch.rand((6, 3, 256, 256))
|
294 |
+
outputs = discriminator(inputs)
|
295 |
+
print(outputs.shape)
|
ldm/modules/discriminator/multi_window_disc.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
|
6 |
+
class Discriminator2DFactory(nn.Module):
|
7 |
+
def __init__(self, time_length, freq_length=80, kernel=(3, 3), c_in=1, hidden_size=128,
|
8 |
+
norm_type='bn', reduction='sum'):
|
9 |
+
super(Discriminator2DFactory, self).__init__()
|
10 |
+
padding = (kernel[0] // 2, kernel[1] // 2)
|
11 |
+
|
12 |
+
def discriminator_block(in_filters, out_filters, first=False):
|
13 |
+
"""
|
14 |
+
Input: (B, in, 2H, 2W)
|
15 |
+
Output:(B, out, H, W)
|
16 |
+
"""
|
17 |
+
conv = nn.Conv2d(in_filters, out_filters, kernel, (2, 2), padding)
|
18 |
+
if norm_type == 'sn':
|
19 |
+
conv = nn.utils.spectral_norm(conv)
|
20 |
+
block = [
|
21 |
+
conv, # padding = kernel//2
|
22 |
+
nn.LeakyReLU(0.2, inplace=True),
|
23 |
+
nn.Dropout2d(0.25)
|
24 |
+
]
|
25 |
+
if norm_type == 'bn' and not first:
|
26 |
+
block.append(nn.BatchNorm2d(out_filters, 0.8))
|
27 |
+
if norm_type == 'in' and not first:
|
28 |
+
block.append(nn.InstanceNorm2d(out_filters, affine=True))
|
29 |
+
block = nn.Sequential(*block)
|
30 |
+
return block
|
31 |
+
|
32 |
+
self.model = nn.ModuleList([
|
33 |
+
discriminator_block(c_in, hidden_size, first=True),
|
34 |
+
discriminator_block(hidden_size, hidden_size),
|
35 |
+
discriminator_block(hidden_size, hidden_size),
|
36 |
+
])
|
37 |
+
|
38 |
+
self.reduction = reduction
|
39 |
+
ds_size = (time_length // 2 ** 3, (freq_length + 7) // 2 ** 3)
|
40 |
+
if reduction != 'none':
|
41 |
+
# The height and width of downsampled image
|
42 |
+
self.adv_layer = nn.Linear(hidden_size * ds_size[0] * ds_size[1], 1)
|
43 |
+
else:
|
44 |
+
self.adv_layer = nn.Linear(hidden_size * ds_size[1], 1)
|
45 |
+
|
46 |
+
def forward(self, x):
|
47 |
+
"""
|
48 |
+
|
49 |
+
:param x: [B, C, T, n_bins]
|
50 |
+
:return: validity: [B, 1], h: List of hiddens
|
51 |
+
"""
|
52 |
+
h = []
|
53 |
+
for l in self.model:
|
54 |
+
x = l(x)
|
55 |
+
h.append(x)
|
56 |
+
if self.reduction != 'none':
|
57 |
+
x = x.view(x.shape[0], -1)
|
58 |
+
validity = self.adv_layer(x) # [B, 1]
|
59 |
+
else:
|
60 |
+
B, _, T_, _ = x.shape
|
61 |
+
x = x.transpose(1, 2).reshape(B, T_, -1)
|
62 |
+
validity = self.adv_layer(x)[:, :, 0] # [B, T]
|
63 |
+
return validity, h
|
64 |
+
|
65 |
+
|
66 |
+
class MultiWindowDiscriminator(nn.Module):
|
67 |
+
def __init__(self, time_lengths, cond_size=0, freq_length=80, kernel=(3, 3),
|
68 |
+
c_in=1, hidden_size=128, norm_type='bn', reduction='sum'):
|
69 |
+
super(MultiWindowDiscriminator, self).__init__()
|
70 |
+
self.win_lengths = time_lengths
|
71 |
+
self.reduction = reduction
|
72 |
+
|
73 |
+
self.conv_layers = nn.ModuleList()
|
74 |
+
if cond_size > 0:
|
75 |
+
self.cond_proj_layers = nn.ModuleList()
|
76 |
+
self.mel_proj_layers = nn.ModuleList()
|
77 |
+
for time_length in time_lengths:
|
78 |
+
conv_layer = [
|
79 |
+
Discriminator2DFactory(
|
80 |
+
time_length, freq_length, kernel, c_in=c_in, hidden_size=hidden_size,
|
81 |
+
norm_type=norm_type, reduction=reduction)
|
82 |
+
]
|
83 |
+
self.conv_layers += conv_layer
|
84 |
+
if cond_size > 0:
|
85 |
+
self.cond_proj_layers.append(nn.Linear(cond_size, freq_length))
|
86 |
+
self.mel_proj_layers.append(nn.Linear(freq_length, freq_length))
|
87 |
+
|
88 |
+
def forward(self, x, x_len, cond=None, start_frames_wins=None):
|
89 |
+
'''
|
90 |
+
Args:
|
91 |
+
x (tensor): input mel, (B, c_in, T, n_bins).
|
92 |
+
x_length (tensor): len of per mel. (B,).
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
tensor : (B).
|
96 |
+
'''
|
97 |
+
validity = []
|
98 |
+
if start_frames_wins is None:
|
99 |
+
start_frames_wins = [None] * len(self.conv_layers)
|
100 |
+
h = []
|
101 |
+
for i, start_frames in zip(range(len(self.conv_layers)), start_frames_wins):
|
102 |
+
x_clip, c_clip, start_frames = self.clip(
|
103 |
+
x, cond, x_len, self.win_lengths[i], start_frames) # (B, win_length, C)
|
104 |
+
start_frames_wins[i] = start_frames
|
105 |
+
if x_clip is None:
|
106 |
+
continue
|
107 |
+
if cond is not None:
|
108 |
+
x_clip = self.mel_proj_layers[i](x_clip) # (B, 1, win_length, C)
|
109 |
+
c_clip = self.cond_proj_layers[i](c_clip)[:, None] # (B, 1, win_length, C)
|
110 |
+
x_clip = x_clip + c_clip
|
111 |
+
x_clip, h_ = self.conv_layers[i](x_clip)
|
112 |
+
h += h_
|
113 |
+
validity.append(x_clip)
|
114 |
+
if len(validity) != len(self.conv_layers):
|
115 |
+
return None, start_frames_wins, h
|
116 |
+
if self.reduction == 'sum':
|
117 |
+
validity = sum(validity) # [B]
|
118 |
+
elif self.reduction == 'stack':
|
119 |
+
validity = torch.stack(validity, -1) # [B, W_L]
|
120 |
+
elif self.reduction == 'none':
|
121 |
+
validity = torch.cat(validity, -1) # [B, W_sum]
|
122 |
+
return validity, start_frames_wins, h
|
123 |
+
|
124 |
+
def clip(self, x, cond, x_len, win_length, start_frames=None):
|
125 |
+
'''Ramdom clip x to win_length.
|
126 |
+
Args:
|
127 |
+
x (tensor) : (B, c_in, T, n_bins).
|
128 |
+
cond (tensor) : (B, T, H).
|
129 |
+
x_len (tensor) : (B,).
|
130 |
+
win_length (int): target clip length
|
131 |
+
|
132 |
+
Returns:
|
133 |
+
(tensor) : (B, c_in, win_length, n_bins).
|
134 |
+
|
135 |
+
'''
|
136 |
+
T_start = 0
|
137 |
+
T_end = x_len.max() - win_length
|
138 |
+
if T_end < 0:
|
139 |
+
return None, None, start_frames
|
140 |
+
T_end = T_end.item()
|
141 |
+
if start_frames is None:
|
142 |
+
start_frame = np.random.randint(low=T_start, high=T_end + 1)
|
143 |
+
start_frames = [start_frame] * x.size(0)
|
144 |
+
else:
|
145 |
+
start_frame = start_frames[0]
|
146 |
+
x_batch = x[:, :, start_frame: start_frame + win_length]
|
147 |
+
c_batch = cond[:, start_frame: start_frame + win_length] if cond is not None else None
|
148 |
+
return x_batch, c_batch, start_frames
|
149 |
+
|
150 |
+
|
151 |
+
class Discriminator(nn.Module):
|
152 |
+
def __init__(self, time_lengths=[32, 64, 128], freq_length=80, cond_size=0, kernel=(3, 3), c_in=1,
|
153 |
+
hidden_size=128, norm_type='bn', reduction='sum', uncond_disc=True):
|
154 |
+
super(Discriminator, self).__init__()
|
155 |
+
self.time_lengths = time_lengths
|
156 |
+
self.cond_size = cond_size
|
157 |
+
self.reduction = reduction
|
158 |
+
self.uncond_disc = uncond_disc
|
159 |
+
if uncond_disc:
|
160 |
+
self.discriminator = MultiWindowDiscriminator(
|
161 |
+
freq_length=freq_length,
|
162 |
+
time_lengths=time_lengths,
|
163 |
+
kernel=kernel,
|
164 |
+
c_in=c_in, hidden_size=hidden_size, norm_type=norm_type,
|
165 |
+
reduction=reduction
|
166 |
+
)
|
167 |
+
if cond_size > 0:
|
168 |
+
self.cond_disc = MultiWindowDiscriminator(
|
169 |
+
freq_length=freq_length,
|
170 |
+
time_lengths=time_lengths,
|
171 |
+
cond_size=cond_size,
|
172 |
+
kernel=kernel,
|
173 |
+
c_in=c_in, hidden_size=hidden_size, norm_type=norm_type,
|
174 |
+
reduction=reduction
|
175 |
+
)
|
176 |
+
|
177 |
+
def forward(self, x, cond=None, start_frames_wins=None):
|
178 |
+
"""
|
179 |
+
|
180 |
+
:param x: [B, T, 80]
|
181 |
+
:param cond: [B, T, cond_size]
|
182 |
+
:param return_y_only:
|
183 |
+
:return:
|
184 |
+
"""
|
185 |
+
if len(x.shape) == 3:
|
186 |
+
x = x[:, None, :, :]
|
187 |
+
x_len = x.sum([1, -1]).ne(0).int().sum([-1])
|
188 |
+
ret = {'y_c': None, 'y': None}
|
189 |
+
if self.uncond_disc:
|
190 |
+
ret['y'], start_frames_wins, ret['h'] = self.discriminator(
|
191 |
+
x, x_len, start_frames_wins=start_frames_wins)
|
192 |
+
if self.cond_size > 0 and cond is not None:
|
193 |
+
ret['y_c'], start_frames_wins, ret['h_c'] = self.cond_disc(
|
194 |
+
x, x_len, cond, start_frames_wins=start_frames_wins)
|
195 |
+
ret['start_frames_wins'] = start_frames_wins
|
196 |
+
return ret
|
ldm/modules/distributions/__init__.py
ADDED
File without changes
|
ldm/modules/distributions/distributions.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
class AbstractDistribution:
|
6 |
+
def sample(self):
|
7 |
+
raise NotImplementedError()
|
8 |
+
|
9 |
+
def mode(self):
|
10 |
+
raise NotImplementedError()
|
11 |
+
|
12 |
+
|
13 |
+
class DiracDistribution(AbstractDistribution):
|
14 |
+
def __init__(self, value):
|
15 |
+
self.value = value
|
16 |
+
|
17 |
+
def sample(self):
|
18 |
+
return self.value
|
19 |
+
|
20 |
+
def mode(self):
|
21 |
+
return self.value
|
22 |
+
|
23 |
+
|
24 |
+
class DiagonalGaussianDistribution(object):
|
25 |
+
def __init__(self, parameters, deterministic=False):
|
26 |
+
self.parameters = parameters
|
27 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
28 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
29 |
+
self.deterministic = deterministic
|
30 |
+
self.std = torch.exp(0.5 * self.logvar)
|
31 |
+
self.var = torch.exp(self.logvar)
|
32 |
+
if self.deterministic:
|
33 |
+
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
|
34 |
+
|
35 |
+
def sample(self):
|
36 |
+
x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
|
37 |
+
return x
|
38 |
+
|
39 |
+
def kl(self, other=None):
|
40 |
+
if self.deterministic:
|
41 |
+
return torch.Tensor([0.])
|
42 |
+
else:
|
43 |
+
if other is None:
|
44 |
+
return 0.5 * torch.sum(torch.pow(self.mean, 2)
|
45 |
+
+ self.var - 1.0 - self.logvar,
|
46 |
+
dim=[1, 2, 3])
|
47 |
+
else:
|
48 |
+
return 0.5 * torch.sum(
|
49 |
+
torch.pow(self.mean - other.mean, 2) / other.var
|
50 |
+
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
|
51 |
+
dim=[1, 2, 3])
|
52 |
+
|
53 |
+
def nll(self, sample, dims=[1,2,3]):
|
54 |
+
if self.deterministic:
|
55 |
+
return torch.Tensor([0.])
|
56 |
+
logtwopi = np.log(2.0 * np.pi)
|
57 |
+
return 0.5 * torch.sum(
|
58 |
+
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
59 |
+
dim=dims)
|
60 |
+
|
61 |
+
def mode(self):
|
62 |
+
return self.mean
|
63 |
+
|
64 |
+
|
65 |
+
def normal_kl(mean1, logvar1, mean2, logvar2):
|
66 |
+
"""
|
67 |
+
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
|
68 |
+
Compute the KL divergence between two gaussians.
|
69 |
+
Shapes are automatically broadcasted, so batches can be compared to
|
70 |
+
scalars, among other use cases.
|
71 |
+
"""
|
72 |
+
tensor = None
|
73 |
+
for obj in (mean1, logvar1, mean2, logvar2):
|
74 |
+
if isinstance(obj, torch.Tensor):
|
75 |
+
tensor = obj
|
76 |
+
break
|
77 |
+
assert tensor is not None, "at least one argument must be a Tensor"
|
78 |
+
|
79 |
+
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
80 |
+
# Tensors, but it does not work for torch.exp().
|
81 |
+
logvar1, logvar2 = [
|
82 |
+
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
|
83 |
+
for x in (logvar1, logvar2)
|
84 |
+
]
|
85 |
+
|
86 |
+
return 0.5 * (
|
87 |
+
-1.0
|
88 |
+
+ logvar2
|
89 |
+
- logvar1
|
90 |
+
+ torch.exp(logvar1 - logvar2)
|
91 |
+
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
|
92 |
+
)
|
ldm/modules/ema.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
|
5 |
+
class LitEma(nn.Module):
|
6 |
+
def __init__(self, model, decay=0.9999, use_num_upates=True):
|
7 |
+
super().__init__()
|
8 |
+
if decay < 0.0 or decay > 1.0:
|
9 |
+
raise ValueError('Decay must be between 0 and 1')
|
10 |
+
|
11 |
+
self.m_name2s_name = {}
|
12 |
+
self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
|
13 |
+
self.register_buffer('num_updates', torch.tensor(0,dtype=torch.int) if use_num_upates
|
14 |
+
else torch.tensor(-1,dtype=torch.int))
|
15 |
+
|
16 |
+
for name, p in model.named_parameters():
|
17 |
+
if p.requires_grad:
|
18 |
+
#remove as '.'-character is not allowed in buffers
|
19 |
+
s_name = name.replace('.','')
|
20 |
+
self.m_name2s_name.update({name:s_name})
|
21 |
+
self.register_buffer(s_name,p.clone().detach().data)
|
22 |
+
|
23 |
+
self.collected_params = []
|
24 |
+
|
25 |
+
def forward(self,model):
|
26 |
+
decay = self.decay
|
27 |
+
|
28 |
+
if self.num_updates >= 0:
|
29 |
+
self.num_updates += 1
|
30 |
+
decay = min(self.decay,(1 + self.num_updates) / (10 + self.num_updates))
|
31 |
+
|
32 |
+
one_minus_decay = 1.0 - decay
|
33 |
+
|
34 |
+
with torch.no_grad():
|
35 |
+
m_param = dict(model.named_parameters())
|
36 |
+
shadow_params = dict(self.named_buffers())
|
37 |
+
|
38 |
+
for key in m_param:
|
39 |
+
if m_param[key].requires_grad:
|
40 |
+
sname = self.m_name2s_name[key]
|
41 |
+
shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
|
42 |
+
shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
|
43 |
+
else:
|
44 |
+
assert not key in self.m_name2s_name
|
45 |
+
|
46 |
+
def copy_to(self, model):
|
47 |
+
m_param = dict(model.named_parameters())
|
48 |
+
shadow_params = dict(self.named_buffers())
|
49 |
+
for key in m_param:
|
50 |
+
if m_param[key].requires_grad:
|
51 |
+
m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
|
52 |
+
else:
|
53 |
+
assert not key in self.m_name2s_name
|
54 |
+
|
55 |
+
def store(self, parameters):
|
56 |
+
"""
|
57 |
+
Save the current parameters for restoring later.
|
58 |
+
Args:
|
59 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
60 |
+
temporarily stored.
|
61 |
+
"""
|
62 |
+
self.collected_params = [param.clone() for param in parameters]
|
63 |
+
|
64 |
+
def restore(self, parameters):
|
65 |
+
"""
|
66 |
+
Restore the parameters stored with the `store` method.
|
67 |
+
Useful to validate the model with EMA parameters without affecting the
|
68 |
+
original optimization process. Store the parameters before the
|
69 |
+
`copy_to` method. After validation (or model saving), use this to
|
70 |
+
restore the former parameters.
|
71 |
+
Args:
|
72 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
73 |
+
updated with the stored parameters.
|
74 |
+
"""
|
75 |
+
for c_param, param in zip(self.collected_params, parameters):
|
76 |
+
param.data.copy_(c_param.data)
|
ldm/modules/encoders/CLAP/CLAPWrapper.py
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import torchaudio
|
3 |
+
from torch._six import string_classes
|
4 |
+
import collections
|
5 |
+
import re
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import numpy as np
|
8 |
+
from transformers import AutoTokenizer
|
9 |
+
from ldm.modules.encoders.CLAP.utils import read_config_as_args
|
10 |
+
from ldm.modules.encoders.CLAP.clap import CLAP
|
11 |
+
import math
|
12 |
+
import torchaudio.transforms as T
|
13 |
+
import os
|
14 |
+
import torch
|
15 |
+
from importlib_resources import files
|
16 |
+
|
17 |
+
|
18 |
+
class CLAPWrapper():
|
19 |
+
"""
|
20 |
+
A class for interfacing CLAP model.
|
21 |
+
"""
|
22 |
+
|
23 |
+
def __init__(self, model_fp, device):
|
24 |
+
self.np_str_obj_array_pattern = re.compile(r'[SaUO]')
|
25 |
+
self.file_path = os.path.realpath(__file__)
|
26 |
+
self.default_collate_err_msg_format = (
|
27 |
+
"default_collate: batch must contain tensors, numpy arrays, numbers, "
|
28 |
+
"dicts or lists; found {}")
|
29 |
+
self.config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text()
|
30 |
+
self.model_fp = model_fp
|
31 |
+
self.device = device
|
32 |
+
self.clap, self.tokenizer, self.args = self.load_clap()
|
33 |
+
|
34 |
+
def load_clap(self):
|
35 |
+
r"""Load CLAP model with args from config file"""
|
36 |
+
|
37 |
+
args = read_config_as_args(self.config_as_str, is_config_str=True)
|
38 |
+
|
39 |
+
if 'bert' in args.text_model:
|
40 |
+
self.token_keys = ['input_ids', 'token_type_ids', 'attention_mask']
|
41 |
+
else:
|
42 |
+
self.token_keys = ['input_ids', 'attention_mask']
|
43 |
+
|
44 |
+
clap = CLAP(
|
45 |
+
audioenc_name=args.audioenc_name,
|
46 |
+
sample_rate=args.sampling_rate,
|
47 |
+
window_size=args.window_size,
|
48 |
+
hop_size=args.hop_size,
|
49 |
+
mel_bins=args.mel_bins,
|
50 |
+
fmin=args.fmin,
|
51 |
+
fmax=args.fmax,
|
52 |
+
classes_num=args.num_classes,
|
53 |
+
out_emb=args.out_emb,
|
54 |
+
text_model=args.text_model,
|
55 |
+
transformer_embed_dim=args.transformer_embed_dim,
|
56 |
+
d_proj=args.d_proj
|
57 |
+
)
|
58 |
+
|
59 |
+
# Load pretrained weights for model
|
60 |
+
model_state_dict = torch.load(self.model_fp, map_location=torch.device('cpu'))['model']
|
61 |
+
clap.load_state_dict(model_state_dict)
|
62 |
+
|
63 |
+
clap.eval() # set clap in eval mode
|
64 |
+
tokenizer = AutoTokenizer.from_pretrained(args.text_model)
|
65 |
+
|
66 |
+
clap = clap.to(self.device)
|
67 |
+
tokenizer = tokenizer.to(self.device)
|
68 |
+
|
69 |
+
return clap, tokenizer, args
|
70 |
+
|
71 |
+
def default_collate(self, batch):
|
72 |
+
r"""Puts each data field into a tensor with outer dimension batch size"""
|
73 |
+
elem = batch[0]
|
74 |
+
elem_type = type(elem)
|
75 |
+
if isinstance(elem, torch.Tensor):
|
76 |
+
out = None
|
77 |
+
if torch.utils.data.get_worker_info() is not None:
|
78 |
+
# If we're in a background process, concatenate directly into a
|
79 |
+
# shared memory tensor to avoid an extra copy
|
80 |
+
numel = sum([x.numel() for x in batch])
|
81 |
+
storage = elem.storage()._new_shared(numel)
|
82 |
+
out = elem.new(storage)
|
83 |
+
return torch.stack(batch, 0, out=out)
|
84 |
+
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
|
85 |
+
and elem_type.__name__ != 'string_':
|
86 |
+
if elem_type.__name__ == 'ndarray' or elem_type.__name__ == 'memmap':
|
87 |
+
# array of string classes and object
|
88 |
+
if self.np_str_obj_array_pattern.search(elem.dtype.str) is not None:
|
89 |
+
raise TypeError(
|
90 |
+
self.default_collate_err_msg_format.format(elem.dtype))
|
91 |
+
|
92 |
+
return self.default_collate([torch.as_tensor(b) for b in batch])
|
93 |
+
elif elem.shape == (): # scalars
|
94 |
+
return torch.as_tensor(batch)
|
95 |
+
elif isinstance(elem, float):
|
96 |
+
return torch.tensor(batch, dtype=torch.float64)
|
97 |
+
elif isinstance(elem, int):
|
98 |
+
return torch.tensor(batch)
|
99 |
+
elif isinstance(elem, string_classes):
|
100 |
+
return batch
|
101 |
+
elif isinstance(elem, collections.abc.Mapping):
|
102 |
+
return {key: self.default_collate([d[key] for d in batch]) for key in elem}
|
103 |
+
elif isinstance(elem, tuple) and hasattr(elem, '_fields'): # namedtuple
|
104 |
+
return elem_type(*(self.default_collate(samples) for samples in zip(*batch)))
|
105 |
+
elif isinstance(elem, collections.abc.Sequence):
|
106 |
+
# check to make sure that the elements in batch have consistent size
|
107 |
+
it = iter(batch)
|
108 |
+
elem_size = len(next(it))
|
109 |
+
if not all(len(elem) == elem_size for elem in it):
|
110 |
+
raise RuntimeError(
|
111 |
+
'each element in list of batch should be of equal size')
|
112 |
+
transposed = zip(*batch)
|
113 |
+
return [self.default_collate(samples) for samples in transposed]
|
114 |
+
|
115 |
+
raise TypeError(self.default_collate_err_msg_format.format(elem_type))
|
116 |
+
|
117 |
+
def load_audio_into_tensor(self, audio_path, audio_duration, resample=False):
|
118 |
+
r"""Loads audio file and returns raw audio."""
|
119 |
+
# Randomly sample a segment of audio_duration from the clip or pad to match duration
|
120 |
+
audio_time_series, sample_rate = torchaudio.load(audio_path)
|
121 |
+
resample_rate = self.args.sampling_rate
|
122 |
+
if resample:
|
123 |
+
resampler = T.Resample(sample_rate, resample_rate)
|
124 |
+
audio_time_series = resampler(audio_time_series)
|
125 |
+
audio_time_series = audio_time_series.reshape(-1)
|
126 |
+
|
127 |
+
# audio_time_series is shorter than predefined audio duration,
|
128 |
+
# so audio_time_series is extended
|
129 |
+
if audio_duration*sample_rate >= audio_time_series.shape[0]:
|
130 |
+
repeat_factor = int(np.ceil((audio_duration*sample_rate) /
|
131 |
+
audio_time_series.shape[0]))
|
132 |
+
# Repeat audio_time_series by repeat_factor to match audio_duration
|
133 |
+
audio_time_series = audio_time_series.repeat(repeat_factor)
|
134 |
+
# remove excess part of audio_time_series
|
135 |
+
audio_time_series = audio_time_series[0:audio_duration*sample_rate]
|
136 |
+
else:
|
137 |
+
# audio_time_series is longer than predefined audio duration,
|
138 |
+
# so audio_time_series is trimmed
|
139 |
+
start_index = random.randrange(
|
140 |
+
audio_time_series.shape[0] - audio_duration*sample_rate)
|
141 |
+
audio_time_series = audio_time_series[start_index:start_index +
|
142 |
+
audio_duration*sample_rate]
|
143 |
+
return torch.FloatTensor(audio_time_series)
|
144 |
+
|
145 |
+
def preprocess_audio(self, audio_files, resample):
|
146 |
+
r"""Load list of audio files and return raw audio"""
|
147 |
+
audio_tensors = []
|
148 |
+
for audio_file in audio_files:
|
149 |
+
audio_tensor = self.load_audio_into_tensor(
|
150 |
+
audio_file, self.args.duration, resample)
|
151 |
+
audio_tensor = audio_tensor.reshape(1, -1).to(self.device)
|
152 |
+
audio_tensors.append(audio_tensor)
|
153 |
+
return self.default_collate(audio_tensors)
|
154 |
+
|
155 |
+
def preprocess_text(self, text_queries, text_len=100):
|
156 |
+
r"""Load list of class labels and return tokenized text"""
|
157 |
+
device = next(self.clap.parameters()).device
|
158 |
+
tokenized_texts = []
|
159 |
+
for ttext in text_queries:
|
160 |
+
tok = self.tokenizer.encode_plus(
|
161 |
+
text=ttext, add_special_tokens=True, max_length=text_len, pad_to_max_length=True, return_tensors="pt")
|
162 |
+
for key in self.token_keys:
|
163 |
+
tok[key] = tok[key].reshape(-1).to(device)
|
164 |
+
tokenized_texts.append(tok)
|
165 |
+
return self.default_collate(tokenized_texts)
|
166 |
+
|
167 |
+
def get_text_embeddings(self, class_labels):
|
168 |
+
r"""Load list of class labels and return text embeddings"""
|
169 |
+
preprocessed_text = self.preprocess_text(class_labels)
|
170 |
+
text_embeddings = self._get_text_embeddings(preprocessed_text)
|
171 |
+
text_embeddings = text_embeddings/torch.norm(text_embeddings, dim=-1, keepdim=True)
|
172 |
+
return text_embeddings
|
173 |
+
|
174 |
+
def get_audio_embeddings(self, audio_files, resample):
|
175 |
+
r"""Load list of audio files and return a audio embeddings"""
|
176 |
+
preprocessed_audio = self.preprocess_audio(audio_files, resample)
|
177 |
+
audio_embeddings = self._get_audio_embeddings(preprocessed_audio)
|
178 |
+
audio_embeddings = audio_embeddings/torch.norm(audio_embeddings, dim=-1, keepdim=True)
|
179 |
+
return audio_embeddings
|
180 |
+
|
181 |
+
def _get_text_embeddings(self, preprocessed_text):
|
182 |
+
r"""Load preprocessed text and return text embeddings"""
|
183 |
+
with torch.no_grad():
|
184 |
+
text_embeddings = self.clap.caption_encoder(preprocessed_text)
|
185 |
+
text_embeddings = text_embeddings/torch.norm(text_embeddings, dim=-1, keepdim=True)
|
186 |
+
return text_embeddings
|
187 |
+
|
188 |
+
def _get_audio_embeddings(self, preprocessed_audio):
|
189 |
+
r"""Load preprocessed audio and return a audio embeddings"""
|
190 |
+
with torch.no_grad():
|
191 |
+
preprocessed_audio = preprocessed_audio.reshape(
|
192 |
+
preprocessed_audio.shape[0], preprocessed_audio.shape[2])
|
193 |
+
#Append [0] the audio emebdding, [1] has output class probabilities
|
194 |
+
audio_embeddings = self.clap.audio_encoder(preprocessed_audio)[0]
|
195 |
+
audio_embeddings = audio_embeddings/torch.norm(audio_embeddings, dim=-1, keepdim=True)
|
196 |
+
return audio_embeddings
|
197 |
+
|
198 |
+
def compute_similarity(self, audio_embeddings, text_embeddings):
|
199 |
+
r"""Compute similarity between text and audio embeddings"""
|
200 |
+
logit_scale = self.clap.logit_scale.exp()
|
201 |
+
similarity = logit_scale*text_embeddings @ audio_embeddings.T
|
202 |
+
return similarity.T
|
203 |
+
|
204 |
+
def _generic_batch_inference(self, func, *args):
|
205 |
+
r"""Process audio and/or text per batch"""
|
206 |
+
input_tmp = args[0]
|
207 |
+
batch_size = args[-1]
|
208 |
+
# args[0] has audio_files, args[1] has class_labels
|
209 |
+
inputs = [args[0], args[1]] if len(args) == 3 else [args[0]]
|
210 |
+
args0_len = len(args[0])
|
211 |
+
# compute text_embeddings once for all the audio_files batches
|
212 |
+
if len(inputs) == 2:
|
213 |
+
text_embeddings = self.get_text_embeddings(args[1])
|
214 |
+
inputs = [args[0], args[1], text_embeddings]
|
215 |
+
dataset_idx = 0
|
216 |
+
for _ in range(math.ceil(args0_len/batch_size)):
|
217 |
+
next_batch_idx = dataset_idx + batch_size
|
218 |
+
# batch size is bigger than available audio/text items
|
219 |
+
if next_batch_idx >= args0_len:
|
220 |
+
inputs[0] = input_tmp[dataset_idx:]
|
221 |
+
return func(*tuple(inputs))
|
222 |
+
else:
|
223 |
+
inputs[0] = input_tmp[dataset_idx:next_batch_idx]
|
224 |
+
yield func(*tuple(inputs))
|
225 |
+
dataset_idx = next_batch_idx
|
226 |
+
|
227 |
+
def get_audio_embeddings_per_batch(self, audio_files, batch_size):
|
228 |
+
r"""Load preprocessed audio and return a audio embeddings per batch"""
|
229 |
+
return self._generic_batch_inference(self.get_audio_embeddings, audio_files, batch_size)
|
230 |
+
|
231 |
+
def get_text_embeddings_per_batch(self, class_labels, batch_size):
|
232 |
+
r"""Load preprocessed text and return text embeddings per batch"""
|
233 |
+
return self._generic_batch_inference(self.get_text_embeddings, class_labels, batch_size)
|
234 |
+
|
235 |
+
def classify_audio_files_per_batch(self, audio_files, class_labels, batch_size):
|
236 |
+
r"""Compute classification probabilities for each audio recording in a batch and each class label"""
|
237 |
+
return self._generic_batch_inference(self.classify_audio_files, audio_files, class_labels, batch_size)
|
238 |
+
|
239 |
+
if __name__ == '__main__':
|
240 |
+
|
241 |
+
# Load and initialize CLAP
|
242 |
+
weights_path = "/home1/huangrongjie/Project/Diffusion/LatentDiffusion/CLAP/CLAP_weights_2022.pth"
|
243 |
+
clap_model = CLAPWrapper(weights_path, use_cuda=False)
|
244 |
+
|
245 |
+
y = ["A woman talks nearby as water pours", "Multiple clanging and clanking sounds"]
|
246 |
+
x = ['/home2/huangjiawei/data/audiocaps/train/Yr1nicOVtvkQ.wav', '/home2/huangjiawei/data/audiocaps/train/YUDGBjjwyaqE.wav']
|
247 |
+
|
248 |
+
# Computing text embeddings
|
249 |
+
text_embeddings = clap_model.get_text_embeddings(y)
|
250 |
+
|
251 |
+
import ipdb
|
252 |
+
ipdb.set_trace()
|
253 |
+
|
254 |
+
# Computing audio embeddings
|
255 |
+
audio_embeddings = clap_model.get_audio_embeddings(x, resample=True)
|
256 |
+
similarity = clap_model.compute_similarity(audio_embeddings, text_embeddings)
|
257 |
+
|
ldm/modules/encoders/CLAP/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from . import clap
|
2 |
+
from . import audio
|
3 |
+
from . import utils
|
ldm/modules/encoders/CLAP/audio.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torchlibrosa.stft import Spectrogram, LogmelFilterBank
|
5 |
+
|
6 |
+
def get_audio_encoder(name: str):
|
7 |
+
if name == "Cnn14":
|
8 |
+
return Cnn14
|
9 |
+
else:
|
10 |
+
raise Exception('The audio encoder name {} is incorrect or not supported'.format(name))
|
11 |
+
|
12 |
+
|
13 |
+
class ConvBlock(nn.Module):
|
14 |
+
def __init__(self, in_channels, out_channels):
|
15 |
+
|
16 |
+
super(ConvBlock, self).__init__()
|
17 |
+
|
18 |
+
self.conv1 = nn.Conv2d(in_channels=in_channels,
|
19 |
+
out_channels=out_channels,
|
20 |
+
kernel_size=(3, 3), stride=(1, 1),
|
21 |
+
padding=(1, 1), bias=False)
|
22 |
+
|
23 |
+
self.conv2 = nn.Conv2d(in_channels=out_channels,
|
24 |
+
out_channels=out_channels,
|
25 |
+
kernel_size=(3, 3), stride=(1, 1),
|
26 |
+
padding=(1, 1), bias=False)
|
27 |
+
|
28 |
+
self.bn1 = nn.BatchNorm2d(out_channels)
|
29 |
+
self.bn2 = nn.BatchNorm2d(out_channels)
|
30 |
+
|
31 |
+
|
32 |
+
def forward(self, input, pool_size=(2, 2), pool_type='avg'):
|
33 |
+
|
34 |
+
x = input
|
35 |
+
x = F.relu_(self.bn1(self.conv1(x)))
|
36 |
+
x = F.relu_(self.bn2(self.conv2(x)))
|
37 |
+
if pool_type == 'max':
|
38 |
+
x = F.max_pool2d(x, kernel_size=pool_size)
|
39 |
+
elif pool_type == 'avg':
|
40 |
+
x = F.avg_pool2d(x, kernel_size=pool_size)
|
41 |
+
elif pool_type == 'avg+max':
|
42 |
+
x1 = F.avg_pool2d(x, kernel_size=pool_size)
|
43 |
+
x2 = F.max_pool2d(x, kernel_size=pool_size)
|
44 |
+
x = x1 + x2
|
45 |
+
else:
|
46 |
+
raise Exception('Incorrect argument!')
|
47 |
+
|
48 |
+
return x
|
49 |
+
|
50 |
+
|
51 |
+
class ConvBlock5x5(nn.Module):
|
52 |
+
def __init__(self, in_channels, out_channels):
|
53 |
+
|
54 |
+
super(ConvBlock5x5, self).__init__()
|
55 |
+
|
56 |
+
self.conv1 = nn.Conv2d(in_channels=in_channels,
|
57 |
+
out_channels=out_channels,
|
58 |
+
kernel_size=(5, 5), stride=(1, 1),
|
59 |
+
padding=(2, 2), bias=False)
|
60 |
+
|
61 |
+
self.bn1 = nn.BatchNorm2d(out_channels)
|
62 |
+
|
63 |
+
|
64 |
+
def forward(self, input, pool_size=(2, 2), pool_type='avg'):
|
65 |
+
|
66 |
+
x = input
|
67 |
+
x = F.relu_(self.bn1(self.conv1(x)))
|
68 |
+
if pool_type == 'max':
|
69 |
+
x = F.max_pool2d(x, kernel_size=pool_size)
|
70 |
+
elif pool_type == 'avg':
|
71 |
+
x = F.avg_pool2d(x, kernel_size=pool_size)
|
72 |
+
elif pool_type == 'avg+max':
|
73 |
+
x1 = F.avg_pool2d(x, kernel_size=pool_size)
|
74 |
+
x2 = F.max_pool2d(x, kernel_size=pool_size)
|
75 |
+
x = x1 + x2
|
76 |
+
else:
|
77 |
+
raise Exception('Incorrect argument!')
|
78 |
+
|
79 |
+
return x
|
80 |
+
|
81 |
+
|
82 |
+
class AttBlock(nn.Module):
|
83 |
+
def __init__(self, n_in, n_out, activation='linear', temperature=1.):
|
84 |
+
super(AttBlock, self).__init__()
|
85 |
+
|
86 |
+
self.activation = activation
|
87 |
+
self.temperature = temperature
|
88 |
+
self.att = nn.Conv1d(in_channels=n_in, out_channels=n_out, kernel_size=1, stride=1, padding=0, bias=True)
|
89 |
+
self.cla = nn.Conv1d(in_channels=n_in, out_channels=n_out, kernel_size=1, stride=1, padding=0, bias=True)
|
90 |
+
|
91 |
+
self.bn_att = nn.BatchNorm1d(n_out)
|
92 |
+
|
93 |
+
def forward(self, x):
|
94 |
+
# x: (n_samples, n_in, n_time)
|
95 |
+
norm_att = torch.softmax(torch.clamp(self.att(x), -10, 10), dim=-1)
|
96 |
+
cla = self.nonlinear_transform(self.cla(x))
|
97 |
+
x = torch.sum(norm_att * cla, dim=2)
|
98 |
+
return x, norm_att, cla
|
99 |
+
|
100 |
+
def nonlinear_transform(self, x):
|
101 |
+
if self.activation == 'linear':
|
102 |
+
return x
|
103 |
+
elif self.activation == 'sigmoid':
|
104 |
+
return torch.sigmoid(x)
|
105 |
+
|
106 |
+
|
107 |
+
class Cnn14(nn.Module):
|
108 |
+
def __init__(self, sample_rate, window_size, hop_size, mel_bins, fmin,
|
109 |
+
fmax, classes_num, out_emb):
|
110 |
+
|
111 |
+
super(Cnn14, self).__init__()
|
112 |
+
|
113 |
+
window = 'hann'
|
114 |
+
center = True
|
115 |
+
pad_mode = 'reflect'
|
116 |
+
ref = 1.0
|
117 |
+
amin = 1e-10
|
118 |
+
top_db = None
|
119 |
+
|
120 |
+
# Spectrogram extractor
|
121 |
+
self.spectrogram_extractor = Spectrogram(n_fft=window_size, hop_length=hop_size,
|
122 |
+
win_length=window_size, window=window, center=center, pad_mode=pad_mode,
|
123 |
+
freeze_parameters=True)
|
124 |
+
|
125 |
+
# Logmel feature extractor
|
126 |
+
self.logmel_extractor = LogmelFilterBank(sr=sample_rate, n_fft=window_size,
|
127 |
+
n_mels=mel_bins, fmin=fmin, fmax=fmax, ref=ref, amin=amin, top_db=top_db,
|
128 |
+
freeze_parameters=True)
|
129 |
+
|
130 |
+
self.bn0 = nn.BatchNorm2d(64)
|
131 |
+
|
132 |
+
self.conv_block1 = ConvBlock(in_channels=1, out_channels=64)
|
133 |
+
self.conv_block2 = ConvBlock(in_channels=64, out_channels=128)
|
134 |
+
self.conv_block3 = ConvBlock(in_channels=128, out_channels=256)
|
135 |
+
self.conv_block4 = ConvBlock(in_channels=256, out_channels=512)
|
136 |
+
self.conv_block5 = ConvBlock(in_channels=512, out_channels=1024)
|
137 |
+
self.conv_block6 = ConvBlock(in_channels=1024, out_channels=2048)
|
138 |
+
|
139 |
+
# out_emb is 2048 for best Cnn14
|
140 |
+
self.fc1 = nn.Linear(2048, out_emb, bias=True)
|
141 |
+
self.fc_audioset = nn.Linear(out_emb, classes_num, bias=True)
|
142 |
+
|
143 |
+
def forward(self, input, mixup_lambda=None):
|
144 |
+
"""
|
145 |
+
Input: (batch_size, data_length)
|
146 |
+
"""
|
147 |
+
|
148 |
+
x = self.spectrogram_extractor(input) # (batch_size, 1, time_steps, freq_bins)
|
149 |
+
x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins)
|
150 |
+
|
151 |
+
x = x.transpose(1, 3)
|
152 |
+
x = self.bn0(x)
|
153 |
+
x = x.transpose(1, 3)
|
154 |
+
|
155 |
+
x = self.conv_block1(x, pool_size=(2, 2), pool_type='avg')
|
156 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
157 |
+
x = self.conv_block2(x, pool_size=(2, 2), pool_type='avg')
|
158 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
159 |
+
x = self.conv_block3(x, pool_size=(2, 2), pool_type='avg')
|
160 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
161 |
+
x = self.conv_block4(x, pool_size=(2, 2), pool_type='avg')
|
162 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
163 |
+
x = self.conv_block5(x, pool_size=(2, 2), pool_type='avg')
|
164 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
165 |
+
x = self.conv_block6(x, pool_size=(1, 1), pool_type='avg')
|
166 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
167 |
+
x = torch.mean(x, dim=3)
|
168 |
+
|
169 |
+
(x1, _) = torch.max(x, dim=2)
|
170 |
+
x2 = torch.mean(x, dim=2)
|
171 |
+
x = x1 + x2
|
172 |
+
x = F.dropout(x, p=0.5, training=self.training)
|
173 |
+
x = F.relu_(self.fc1(x))
|
174 |
+
embedding = F.dropout(x, p=0.5, training=self.training)
|
175 |
+
clipwise_output = torch.sigmoid(self.fc_audioset(x))
|
176 |
+
|
177 |
+
output_dict = {'clipwise_output': clipwise_output, 'embedding': embedding}
|
178 |
+
|
179 |
+
return output_dict
|
ldm/modules/encoders/CLAP/clap.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch import nn
|
5 |
+
from transformers import AutoModel
|
6 |
+
from .audio import get_audio_encoder
|
7 |
+
|
8 |
+
class Projection(nn.Module):
|
9 |
+
def __init__(self, d_in: int, d_out: int, p: float=0.5) -> None:
|
10 |
+
super().__init__()
|
11 |
+
self.linear1 = nn.Linear(d_in, d_out, bias=False)
|
12 |
+
self.linear2 = nn.Linear(d_out, d_out, bias=False)
|
13 |
+
self.layer_norm = nn.LayerNorm(d_out)
|
14 |
+
self.drop = nn.Dropout(p)
|
15 |
+
|
16 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
17 |
+
embed1 = self.linear1(x)
|
18 |
+
embed2 = self.drop(self.linear2(F.gelu(embed1)))
|
19 |
+
embeds = self.layer_norm(embed1 + embed2)
|
20 |
+
return embeds
|
21 |
+
|
22 |
+
class AudioEncoder(nn.Module):
|
23 |
+
def __init__(self, audioenc_name:str, d_in: int, d_out: int, sample_rate: int, window_size: int,
|
24 |
+
hop_size: int, mel_bins: int, fmin: int, fmax: int, classes_num: int) -> None:
|
25 |
+
super().__init__()
|
26 |
+
|
27 |
+
audio_encoder = get_audio_encoder(audioenc_name)
|
28 |
+
|
29 |
+
self.base = audio_encoder(
|
30 |
+
sample_rate, window_size,
|
31 |
+
hop_size, mel_bins, fmin, fmax,
|
32 |
+
classes_num, d_in)
|
33 |
+
|
34 |
+
self.projection = Projection(d_in, d_out)
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
out_dict = self.base(x)
|
38 |
+
audio_features, audio_classification_output = out_dict['embedding'], out_dict['clipwise_output']
|
39 |
+
projected_vec = self.projection(audio_features)
|
40 |
+
return projected_vec, audio_classification_output
|
41 |
+
|
42 |
+
class TextEncoder(nn.Module):
|
43 |
+
def __init__(self, d_out: int, text_model: str, transformer_embed_dim: int) -> None:
|
44 |
+
super().__init__()
|
45 |
+
self.base = AutoModel.from_pretrained(text_model)
|
46 |
+
self.projection = Projection(transformer_embed_dim, d_out)
|
47 |
+
|
48 |
+
def forward(self, x):
|
49 |
+
out = self.base(**x)[0]
|
50 |
+
out = out[:, 0, :] # get CLS token output
|
51 |
+
projected_vec = self.projection(out)
|
52 |
+
return projected_vec
|
53 |
+
|
54 |
+
class CLAP(nn.Module):
|
55 |
+
def __init__(self,
|
56 |
+
# audio
|
57 |
+
audioenc_name: str,
|
58 |
+
sample_rate: int,
|
59 |
+
window_size: int,
|
60 |
+
hop_size: int,
|
61 |
+
mel_bins: int,
|
62 |
+
fmin: int,
|
63 |
+
fmax: int,
|
64 |
+
classes_num: int,
|
65 |
+
out_emb: int,
|
66 |
+
# text
|
67 |
+
text_model: str,
|
68 |
+
transformer_embed_dim: int,
|
69 |
+
# common
|
70 |
+
d_proj: int,
|
71 |
+
):
|
72 |
+
super().__init__()
|
73 |
+
|
74 |
+
|
75 |
+
self.audio_encoder = AudioEncoder(
|
76 |
+
audioenc_name, out_emb, d_proj,
|
77 |
+
sample_rate, window_size, hop_size, mel_bins, fmin, fmax, classes_num)
|
78 |
+
|
79 |
+
self.caption_encoder = TextEncoder(
|
80 |
+
d_proj, text_model, transformer_embed_dim
|
81 |
+
)
|
82 |
+
|
83 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
84 |
+
|
85 |
+
def forward(self, audio, text):
|
86 |
+
audio_embed, _ = self.audio_encoder(audio)
|
87 |
+
caption_embed = self.caption_encoder(text)
|
88 |
+
|
89 |
+
return caption_embed, audio_embed, self.logit_scale.exp()
|
ldm/modules/encoders/CLAP/config.yml
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# TEXT ENCODER CONFIG
|
2 |
+
text_model: 'bert-base-uncased'
|
3 |
+
text_len: 100
|
4 |
+
transformer_embed_dim: 768
|
5 |
+
freeze_text_encoder_weights: True
|
6 |
+
|
7 |
+
# AUDIO ENCODER CONFIG
|
8 |
+
audioenc_name: 'Cnn14'
|
9 |
+
out_emb: 2048
|
10 |
+
sampling_rate: 44100
|
11 |
+
duration: 5
|
12 |
+
fmin: 50
|
13 |
+
fmax: 14000
|
14 |
+
n_fft: 1028
|
15 |
+
hop_size: 320
|
16 |
+
mel_bins: 64
|
17 |
+
window_size: 1024
|
18 |
+
|
19 |
+
# PROJECTION SPACE CONFIG
|
20 |
+
d_proj: 1024
|
21 |
+
temperature: 0.003
|
22 |
+
|
23 |
+
# TRAINING AND EVALUATION CONFIG
|
24 |
+
num_classes: 527
|
25 |
+
batch_size: 1024
|
26 |
+
demo: False
|
ldm/modules/encoders/CLAP/utils.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import yaml
|
3 |
+
import sys
|
4 |
+
|
5 |
+
def read_config_as_args(config_path,args=None,is_config_str=False):
|
6 |
+
return_dict = {}
|
7 |
+
|
8 |
+
if config_path is not None:
|
9 |
+
if is_config_str:
|
10 |
+
yml_config = yaml.load(config_path, Loader=yaml.FullLoader)
|
11 |
+
else:
|
12 |
+
with open(config_path, "r") as f:
|
13 |
+
yml_config = yaml.load(f, Loader=yaml.FullLoader)
|
14 |
+
|
15 |
+
if args != None:
|
16 |
+
for k, v in yml_config.items():
|
17 |
+
if k in args.__dict__:
|
18 |
+
args.__dict__[k] = v
|
19 |
+
else:
|
20 |
+
sys.stderr.write("Ignored unknown parameter {} in yaml.\n".format(k))
|
21 |
+
else:
|
22 |
+
for k, v in yml_config.items():
|
23 |
+
return_dict[k] = v
|
24 |
+
|
25 |
+
args = args if args != None else return_dict
|
26 |
+
return argparse.Namespace(**args)
|
ldm/modules/encoders/__init__.py
ADDED
File without changes
|
ldm/modules/encoders/modules.py
ADDED
@@ -0,0 +1,314 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from functools import partial
|
4 |
+
|
5 |
+
from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
|
6 |
+
from torch.utils.checkpoint import checkpoint
|
7 |
+
from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel, AutoTokenizer
|
8 |
+
from importlib_resources import files
|
9 |
+
from ldm.modules.encoders.CLAP.utils import read_config_as_args
|
10 |
+
from ldm.modules.encoders.CLAP.clap import TextEncoder
|
11 |
+
from ldm.util import default, count_params
|
12 |
+
|
13 |
+
|
14 |
+
class AbstractEncoder(nn.Module):
|
15 |
+
def __init__(self):
|
16 |
+
super().__init__()
|
17 |
+
|
18 |
+
def encode(self, *args, **kwargs):
|
19 |
+
raise NotImplementedError
|
20 |
+
|
21 |
+
|
22 |
+
class ClassEmbedder(nn.Module):
|
23 |
+
def __init__(self, embed_dim, n_classes=1000, key='class'):
|
24 |
+
super().__init__()
|
25 |
+
self.key = key
|
26 |
+
self.embedding = nn.Embedding(n_classes, embed_dim)
|
27 |
+
|
28 |
+
def forward(self, batch, key=None):
|
29 |
+
if key is None:
|
30 |
+
key = self.key
|
31 |
+
# this is for use in crossattn
|
32 |
+
c = batch[key][:, None]# (bsz,1)
|
33 |
+
c = self.embedding(c)
|
34 |
+
return c
|
35 |
+
|
36 |
+
|
37 |
+
class TransformerEmbedder(AbstractEncoder):
|
38 |
+
"""Some transformer encoder layers"""
|
39 |
+
def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"):
|
40 |
+
super().__init__()
|
41 |
+
self.device = device
|
42 |
+
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
43 |
+
attn_layers=Encoder(dim=n_embed, depth=n_layer))
|
44 |
+
|
45 |
+
def forward(self, tokens):
|
46 |
+
tokens = tokens.to(self.device) # meh
|
47 |
+
z = self.transformer(tokens, return_embeddings=True)
|
48 |
+
return z
|
49 |
+
|
50 |
+
def encode(self, x):
|
51 |
+
return self(x)
|
52 |
+
|
53 |
+
|
54 |
+
class BERTTokenizer(AbstractEncoder):
|
55 |
+
""" Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
|
56 |
+
def __init__(self, device="cuda", vq_interface=True, max_length=77):
|
57 |
+
super().__init__()
|
58 |
+
from transformers import BertTokenizerFast # TODO: add to reuquirements
|
59 |
+
self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
|
60 |
+
self.device = device
|
61 |
+
self.vq_interface = vq_interface
|
62 |
+
self.max_length = max_length
|
63 |
+
|
64 |
+
def forward(self, text):
|
65 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
66 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
67 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
68 |
+
return tokens
|
69 |
+
|
70 |
+
@torch.no_grad()
|
71 |
+
def encode(self, text):
|
72 |
+
tokens = self(text)
|
73 |
+
if not self.vq_interface:
|
74 |
+
return tokens
|
75 |
+
return None, None, [None, None, tokens]
|
76 |
+
|
77 |
+
def decode(self, text):
|
78 |
+
return text
|
79 |
+
|
80 |
+
|
81 |
+
class BERTEmbedder(AbstractEncoder):# 这里不是用的pretrained bert,是用的transformers的BertTokenizer加自定义的TransformerWrapper
|
82 |
+
"""Uses the BERT tokenizr model and add some transformer encoder layers"""
|
83 |
+
def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
|
84 |
+
device="cuda",use_tokenizer=True, embedding_dropout=0.0):
|
85 |
+
super().__init__()
|
86 |
+
self.use_tknz_fn = use_tokenizer
|
87 |
+
if self.use_tknz_fn:
|
88 |
+
self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
|
89 |
+
self.device = device
|
90 |
+
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
91 |
+
attn_layers=Encoder(dim=n_embed, depth=n_layer),
|
92 |
+
emb_dropout=embedding_dropout)
|
93 |
+
|
94 |
+
def forward(self, text):
|
95 |
+
if self.use_tknz_fn:
|
96 |
+
tokens = self.tknz_fn(text)#.to(self.device)
|
97 |
+
else:
|
98 |
+
tokens = text
|
99 |
+
z = self.transformer(tokens, return_embeddings=True)
|
100 |
+
return z
|
101 |
+
|
102 |
+
def encode(self, text):
|
103 |
+
# output of length 77
|
104 |
+
return self(text)
|
105 |
+
|
106 |
+
|
107 |
+
class SpatialRescaler(nn.Module):
|
108 |
+
def __init__(self,
|
109 |
+
n_stages=1,
|
110 |
+
method='bilinear',
|
111 |
+
multiplier=0.5,
|
112 |
+
in_channels=3,
|
113 |
+
out_channels=None,
|
114 |
+
bias=False):
|
115 |
+
super().__init__()
|
116 |
+
self.n_stages = n_stages
|
117 |
+
assert self.n_stages >= 0
|
118 |
+
assert method in ['nearest','linear','bilinear','trilinear','bicubic','area']
|
119 |
+
self.multiplier = multiplier
|
120 |
+
self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
|
121 |
+
self.remap_output = out_channels is not None
|
122 |
+
if self.remap_output:
|
123 |
+
print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.')
|
124 |
+
self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias)
|
125 |
+
|
126 |
+
def forward(self,x):
|
127 |
+
for stage in range(self.n_stages):
|
128 |
+
x = self.interpolator(x, scale_factor=self.multiplier)
|
129 |
+
|
130 |
+
|
131 |
+
if self.remap_output:
|
132 |
+
x = self.channel_mapper(x)
|
133 |
+
return x
|
134 |
+
|
135 |
+
def encode(self, x):
|
136 |
+
return self(x)
|
137 |
+
|
138 |
+
def disabled_train(self, mode=True):
|
139 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
140 |
+
does not change anymore."""
|
141 |
+
return self
|
142 |
+
|
143 |
+
class FrozenT5Embedder(AbstractEncoder):
|
144 |
+
"""Uses the T5 transformer encoder for text"""
|
145 |
+
def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
|
146 |
+
super().__init__()
|
147 |
+
self.tokenizer = T5Tokenizer.from_pretrained(version)
|
148 |
+
self.transformer = T5EncoderModel.from_pretrained(version)
|
149 |
+
self.device = device
|
150 |
+
self.max_length = max_length # TODO: typical value?
|
151 |
+
if freeze:
|
152 |
+
self.freeze()
|
153 |
+
|
154 |
+
def freeze(self):
|
155 |
+
self.transformer = self.transformer.eval()
|
156 |
+
#self.train = disabled_train
|
157 |
+
for param in self.parameters():
|
158 |
+
param.requires_grad = False
|
159 |
+
|
160 |
+
def forward(self, text):
|
161 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
162 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
163 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
164 |
+
outputs = self.transformer(input_ids=tokens)
|
165 |
+
|
166 |
+
z = outputs.last_hidden_state
|
167 |
+
return z
|
168 |
+
|
169 |
+
def encode(self, text):
|
170 |
+
return self(text)
|
171 |
+
|
172 |
+
|
173 |
+
class FrozenCLAPEmbedder(AbstractEncoder):
|
174 |
+
"""Uses the CLAP transformer encoder for text (from huggingface)"""
|
175 |
+
def __init__(self, weights_path, freeze=True, device="cuda", max_length=77): # clip-vit-base-patch32
|
176 |
+
super().__init__()
|
177 |
+
|
178 |
+
model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model']
|
179 |
+
match_params = dict()
|
180 |
+
for key in list(model_state_dict.keys()):
|
181 |
+
if 'caption_encoder' in key:
|
182 |
+
match_params[key.replace('caption_encoder.', '')] = model_state_dict[key]
|
183 |
+
|
184 |
+
config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text()
|
185 |
+
args = read_config_as_args(config_as_str, is_config_str=True)
|
186 |
+
|
187 |
+
# To device
|
188 |
+
self.tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model
|
189 |
+
self.caption_encoder = TextEncoder(
|
190 |
+
args.d_proj, args.text_model, args.transformer_embed_dim
|
191 |
+
)
|
192 |
+
|
193 |
+
self.max_length = max_length
|
194 |
+
self.device = device
|
195 |
+
if freeze: self.freeze()
|
196 |
+
|
197 |
+
print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.")
|
198 |
+
|
199 |
+
def freeze(self):
|
200 |
+
self.caption_encoder.base = self.caption_encoder.base.eval()
|
201 |
+
for param in self.caption_encoder.base.parameters():
|
202 |
+
param.requires_grad = False
|
203 |
+
|
204 |
+
|
205 |
+
def encode(self, text):
|
206 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
207 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
208 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
209 |
+
|
210 |
+
outputs = self.caption_encoder.base(input_ids=tokens)
|
211 |
+
z = self.caption_encoder.projection(outputs.last_hidden_state)
|
212 |
+
return z
|
213 |
+
|
214 |
+
class FrozenCLAPEmbedderNoLoad(AbstractEncoder):
|
215 |
+
def __init__(self, config, freeze=True, device="cpu", max_length=77):
|
216 |
+
super().__init__()
|
217 |
+
args = config
|
218 |
+
|
219 |
+
# To device
|
220 |
+
self.tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model
|
221 |
+
self.caption_encoder = TextEncoder(
|
222 |
+
args.d_proj, args.text_model, args.transformer_embed_dim
|
223 |
+
)
|
224 |
+
|
225 |
+
self.max_length = max_length
|
226 |
+
self.device = device
|
227 |
+
if freeze: self.freeze()
|
228 |
+
|
229 |
+
print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.")
|
230 |
+
|
231 |
+
def freeze(self):
|
232 |
+
self.caption_encoder.base = self.caption_encoder.base.eval()
|
233 |
+
for param in self.caption_encoder.base.parameters():
|
234 |
+
param.requires_grad = False
|
235 |
+
|
236 |
+
|
237 |
+
def encode(self, text):
|
238 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
239 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
240 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
241 |
+
|
242 |
+
outputs = self.caption_encoder.base(input_ids=tokens)
|
243 |
+
z = self.caption_encoder.projection(outputs.last_hidden_state)
|
244 |
+
return z
|
245 |
+
|
246 |
+
|
247 |
+
class NewFrozenCLAPEmbedder(AbstractEncoder):
|
248 |
+
"""Uses the CLAP transformer encoder for text (from huggingface)"""
|
249 |
+
def __init__(self, weights_path, freeze=True, device="cuda", max_length=77): # clip-vit-base-patch32
|
250 |
+
super().__init__()
|
251 |
+
# To device
|
252 |
+
from transformers import RobertaTokenizer
|
253 |
+
from ldm.modules.encoders.open_clap import create_model
|
254 |
+
|
255 |
+
|
256 |
+
model, model_cfg = create_model(
|
257 |
+
'HTSAT-tiny',
|
258 |
+
'roberta',
|
259 |
+
weights_path,
|
260 |
+
enable_fusion=True,
|
261 |
+
fusion_type='aff_2d'
|
262 |
+
)
|
263 |
+
|
264 |
+
del model.audio_branch, model.audio_transform, model.audio_projection
|
265 |
+
self.tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
|
266 |
+
self.model = model
|
267 |
+
|
268 |
+
self.max_length = max_length
|
269 |
+
self.device = device
|
270 |
+
if freeze: self.freeze()
|
271 |
+
|
272 |
+
param_num = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
273 |
+
print(f'{self.model.__class__.__name__} comes with: {param_num / 1e+6:.3f} M params.')
|
274 |
+
|
275 |
+
def freeze(self):
|
276 |
+
self.model = self.model.eval()
|
277 |
+
for param in self.model.parameters():
|
278 |
+
param.requires_grad = False
|
279 |
+
|
280 |
+
def encode(self, text):
|
281 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
282 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
283 |
+
outputs = self.model.text_branch(input_ids=batch_encoding["input_ids"].to(self.device), attention_mask=batch_encoding["attention_mask"].to(self.device))
|
284 |
+
z = self.model.text_projection(outputs.last_hidden_state)
|
285 |
+
return z
|
286 |
+
|
287 |
+
class FrozenFLANEmbedder(AbstractEncoder):
|
288 |
+
"""Uses the T5 transformer encoder for text"""
|
289 |
+
def __init__(self, version="google/flan-t5-large", device="cuda", max_length=77, freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
|
290 |
+
super().__init__()
|
291 |
+
self.tokenizer = T5Tokenizer.from_pretrained(version)
|
292 |
+
self.transformer = T5EncoderModel.from_pretrained(version)
|
293 |
+
self.device = device
|
294 |
+
self.max_length = max_length # TODO: typical value?
|
295 |
+
if freeze:
|
296 |
+
self.freeze()
|
297 |
+
|
298 |
+
def freeze(self):
|
299 |
+
self.transformer = self.transformer.eval()
|
300 |
+
#self.train = disabled_train
|
301 |
+
for param in self.parameters():
|
302 |
+
param.requires_grad = False
|
303 |
+
|
304 |
+
def forward(self, text):
|
305 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
306 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
307 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
308 |
+
outputs = self.transformer(input_ids=tokens)
|
309 |
+
|
310 |
+
z = outputs.last_hidden_state
|
311 |
+
return z
|
312 |
+
|
313 |
+
def encode(self, text):
|
314 |
+
return self(text)
|
ldm/modules/encoders/open_clap/__init__.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .factory import list_models, create_model, create_model_and_transforms, add_model_config
|
2 |
+
from .loss import ClipLoss, gather_features, LPLoss, lp_gather_features, LPMetrics
|
3 |
+
from .model import CLAP, CLAPTextCfg, CLAPVisionCfg, CLAPAudioCfp, convert_weights_to_fp16, trace_model
|
4 |
+
from .openai import load_openai_model, list_openai_models
|
5 |
+
from .pretrained import list_pretrained, list_pretrained_tag_models, list_pretrained_model_tags,\
|
6 |
+
get_pretrained_url, download_pretrained
|
7 |
+
from .tokenizer import SimpleTokenizer, tokenize
|
8 |
+
from .transform import image_transform
|
ldm/modules/encoders/open_clap/bert.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import BertTokenizer, BertModel
|
2 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
3 |
+
model = BertModel.from_pretrained("bert-base-uncased")
|
4 |
+
text = "Replace me by any text you'd like."
|
5 |
+
|
6 |
+
def bert_embeddings(text):
|
7 |
+
# text = "Replace me by any text you'd like."
|
8 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
9 |
+
output = model(**encoded_input)
|
10 |
+
return output
|
11 |
+
|
12 |
+
from transformers import RobertaTokenizer, RobertaModel
|
13 |
+
|
14 |
+
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
|
15 |
+
model = RobertaModel.from_pretrained('roberta-base')
|
16 |
+
text = "Replace me by any text you'd like."
|
17 |
+
def Roberta_embeddings(text):
|
18 |
+
# text = "Replace me by any text you'd like."
|
19 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
20 |
+
output = model(**encoded_input)
|
21 |
+
return output
|
22 |
+
|
23 |
+
from transformers import BartTokenizer, BartModel
|
24 |
+
|
25 |
+
tokenizer = BartTokenizer.from_pretrained('facebook/bart-base')
|
26 |
+
model = BartModel.from_pretrained('facebook/bart-base')
|
27 |
+
text = "Replace me by any text you'd like."
|
28 |
+
def bart_embeddings(text):
|
29 |
+
# text = "Replace me by any text you'd like."
|
30 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
31 |
+
output = model(**encoded_input)
|
32 |
+
return output
|
ldm/modules/encoders/open_clap/bpe_simple_vocab_16e6.txt.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a
|
3 |
+
size 1356917
|
ldm/modules/encoders/open_clap/factory.py
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
import pathlib
|
5 |
+
import re
|
6 |
+
from copy import deepcopy
|
7 |
+
from pathlib import Path
|
8 |
+
|
9 |
+
import torch
|
10 |
+
|
11 |
+
from .model import CLAP, convert_weights_to_fp16
|
12 |
+
from .openai import load_openai_model
|
13 |
+
from .pretrained import get_pretrained_url, download_pretrained
|
14 |
+
from .transform import image_transform
|
15 |
+
|
16 |
+
_MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"]
|
17 |
+
_MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs
|
18 |
+
|
19 |
+
|
20 |
+
def _natural_key(string_):
|
21 |
+
return [int(s) if s.isdigit() else s for s in re.split(r"(\d+)", string_.lower())]
|
22 |
+
|
23 |
+
|
24 |
+
def _rescan_model_configs():
|
25 |
+
global _MODEL_CONFIGS
|
26 |
+
|
27 |
+
config_ext = (".json",)
|
28 |
+
config_files = []
|
29 |
+
for config_path in _MODEL_CONFIG_PATHS:
|
30 |
+
if config_path.is_file() and config_path.suffix in config_ext:
|
31 |
+
config_files.append(config_path)
|
32 |
+
elif config_path.is_dir():
|
33 |
+
for ext in config_ext:
|
34 |
+
config_files.extend(config_path.glob(f"*{ext}"))
|
35 |
+
|
36 |
+
for cf in config_files:
|
37 |
+
with open(cf, "r") as f:
|
38 |
+
model_cfg = json.load(f)
|
39 |
+
if all(a in model_cfg for a in ("embed_dim", "audio_cfg", "text_cfg")):
|
40 |
+
_MODEL_CONFIGS[cf.stem] = model_cfg
|
41 |
+
|
42 |
+
_MODEL_CONFIGS = {
|
43 |
+
k: v
|
44 |
+
for k, v in sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))
|
45 |
+
}
|
46 |
+
|
47 |
+
|
48 |
+
_rescan_model_configs() # initial populate of model config registry
|
49 |
+
|
50 |
+
|
51 |
+
def load_state_dict(checkpoint_path: str, map_location="cpu", skip_params=True):
|
52 |
+
checkpoint = torch.load(checkpoint_path, map_location=map_location)
|
53 |
+
if isinstance(checkpoint, dict) and "state_dict" in checkpoint:
|
54 |
+
state_dict = checkpoint["state_dict"]
|
55 |
+
else:
|
56 |
+
state_dict = checkpoint
|
57 |
+
if skip_params:
|
58 |
+
if next(iter(state_dict.items()))[0].startswith("module"):
|
59 |
+
state_dict = {k[7:]: v for k, v in state_dict.items()}
|
60 |
+
# for k in state_dict:
|
61 |
+
# if k.startswith('transformer'):
|
62 |
+
# v = state_dict.pop(k)
|
63 |
+
# state_dict['text_branch.' + k[12:]] = v
|
64 |
+
return state_dict
|
65 |
+
|
66 |
+
|
67 |
+
def create_model(
|
68 |
+
amodel_name: str,
|
69 |
+
tmodel_name: str,
|
70 |
+
pretrained: str = "",
|
71 |
+
precision: str = "fp32",
|
72 |
+
device: torch.device = torch.device("cpu"),
|
73 |
+
jit: bool = False,
|
74 |
+
force_quick_gelu: bool = False,
|
75 |
+
openai_model_cache_dir: str = os.path.expanduser("~/.cache/clip"),
|
76 |
+
skip_params=True,
|
77 |
+
pretrained_audio: str = "",
|
78 |
+
pretrained_text: str = "",
|
79 |
+
enable_fusion: bool = False,
|
80 |
+
fusion_type: str = 'None'
|
81 |
+
# pretrained_image: bool = False,
|
82 |
+
):
|
83 |
+
amodel_name = amodel_name.replace(
|
84 |
+
"/", "-"
|
85 |
+
) # for callers using old naming with / in ViT names
|
86 |
+
pretrained_orig = pretrained
|
87 |
+
pretrained = pretrained.lower()
|
88 |
+
if pretrained == "openai":
|
89 |
+
if amodel_name in _MODEL_CONFIGS:
|
90 |
+
logging.info(f"Loading {amodel_name} model config.")
|
91 |
+
model_cfg = deepcopy(_MODEL_CONFIGS[amodel_name])
|
92 |
+
else:
|
93 |
+
logging.error(
|
94 |
+
f"Model config for {amodel_name} not found; available models {list_models()}."
|
95 |
+
)
|
96 |
+
raise RuntimeError(f"Model config for {amodel_name} not found.")
|
97 |
+
|
98 |
+
logging.info(f"Loading pretrained ViT-B-16 text encoder from OpenAI.")
|
99 |
+
# Hard Code in model name
|
100 |
+
model_cfg["text_cfg"]["model_type"] = tmodel_name
|
101 |
+
model = load_openai_model(
|
102 |
+
"ViT-B-16",
|
103 |
+
model_cfg,
|
104 |
+
device=device,
|
105 |
+
jit=jit,
|
106 |
+
cache_dir=openai_model_cache_dir,
|
107 |
+
enable_fusion=enable_fusion,
|
108 |
+
fusion_type=fusion_type
|
109 |
+
)
|
110 |
+
# See https://discuss.pytorch.org/t/valueerror-attemting-to-unscale-fp16-gradients/81372
|
111 |
+
if precision == "amp" or precision == "fp32":
|
112 |
+
model = model.float()
|
113 |
+
else:
|
114 |
+
if amodel_name in _MODEL_CONFIGS:
|
115 |
+
logging.info(f"Loading {amodel_name} model config.")
|
116 |
+
model_cfg = deepcopy(_MODEL_CONFIGS[amodel_name])
|
117 |
+
else:
|
118 |
+
logging.error(
|
119 |
+
f"Model config for {amodel_name} not found; available models {list_models()}."
|
120 |
+
)
|
121 |
+
raise RuntimeError(f"Model config for {amodel_name} not found.")
|
122 |
+
|
123 |
+
if force_quick_gelu:
|
124 |
+
# override for use of QuickGELU on non-OpenAI transformer models
|
125 |
+
model_cfg["quick_gelu"] = True
|
126 |
+
|
127 |
+
# if pretrained_image:
|
128 |
+
# if 'timm_amodel_name' in model_cfg.get('vision_cfg', {}):
|
129 |
+
# # pretrained weight loading for timm models set via vision_cfg
|
130 |
+
# model_cfg['vision_cfg']['timm_model_pretrained'] = True
|
131 |
+
# else:
|
132 |
+
# assert False, 'pretrained image towers currently only supported for timm models'
|
133 |
+
model_cfg["text_cfg"]["model_type"] = tmodel_name
|
134 |
+
model_cfg["enable_fusion"] = enable_fusion
|
135 |
+
model_cfg["fusion_type"] = fusion_type
|
136 |
+
model = CLAP(**model_cfg)
|
137 |
+
|
138 |
+
if pretrained:
|
139 |
+
checkpoint_path = ""
|
140 |
+
url = get_pretrained_url(amodel_name, pretrained)
|
141 |
+
if url:
|
142 |
+
checkpoint_path = download_pretrained(url, root=openai_model_cache_dir)
|
143 |
+
elif os.path.exists(pretrained_orig):
|
144 |
+
checkpoint_path = pretrained_orig
|
145 |
+
if checkpoint_path:
|
146 |
+
logging.info(f"Loading pretrained {amodel_name}-{tmodel_name} weights ({pretrained}).")
|
147 |
+
ckpt = load_state_dict(checkpoint_path, skip_params=True)
|
148 |
+
model.load_state_dict(ckpt)
|
149 |
+
param_names = [n for n, p in model.named_parameters()]
|
150 |
+
for n in param_names:
|
151 |
+
print(n, "\t", "Loaded" if n in ckpt else "Unloaded")
|
152 |
+
else:
|
153 |
+
logging.warning(
|
154 |
+
f"Pretrained weights ({pretrained}) not found for model {amodel_name}."
|
155 |
+
)
|
156 |
+
raise RuntimeError(
|
157 |
+
f"Pretrained weights ({pretrained}) not found for model {amodel_name}."
|
158 |
+
)
|
159 |
+
|
160 |
+
if pretrained_audio:
|
161 |
+
if amodel_name.startswith('PANN'):
|
162 |
+
if 'Cnn14_mAP' in pretrained_audio: # official checkpoint
|
163 |
+
audio_ckpt = torch.load(pretrained_audio, map_location='cpu')
|
164 |
+
audio_ckpt = audio_ckpt['model']
|
165 |
+
keys = list(audio_ckpt.keys())
|
166 |
+
for key in keys:
|
167 |
+
if 'spectrogram_extractor' not in key and 'logmel_extractor' not in key:
|
168 |
+
v = audio_ckpt.pop(key)
|
169 |
+
audio_ckpt['audio_branch.' + key] = v
|
170 |
+
elif os.path.basename(pretrained_audio).startswith('PANN'): # checkpoint trained via HTSAT codebase
|
171 |
+
audio_ckpt = torch.load(pretrained_audio, map_location='cpu')
|
172 |
+
audio_ckpt = audio_ckpt['state_dict']
|
173 |
+
keys = list(audio_ckpt.keys())
|
174 |
+
for key in keys:
|
175 |
+
if key.startswith('sed_model'):
|
176 |
+
v = audio_ckpt.pop(key)
|
177 |
+
audio_ckpt['audio_branch.' + key[10:]] = v
|
178 |
+
elif os.path.basename(pretrained_audio).startswith('finetuned'): # checkpoint trained via linear probe codebase
|
179 |
+
audio_ckpt = torch.load(pretrained_audio, map_location='cpu')
|
180 |
+
else:
|
181 |
+
raise ValueError('Unknown audio checkpoint')
|
182 |
+
elif amodel_name.startswith('HTSAT'):
|
183 |
+
if 'HTSAT_AudioSet_Saved' in pretrained_audio: # official checkpoint
|
184 |
+
audio_ckpt = torch.load(pretrained_audio, map_location='cpu')
|
185 |
+
audio_ckpt = audio_ckpt['state_dict']
|
186 |
+
keys = list(audio_ckpt.keys())
|
187 |
+
for key in keys:
|
188 |
+
if key.startswith('sed_model') and ('spectrogram_extractor' not in key
|
189 |
+
and 'logmel_extractor' not in key):
|
190 |
+
v = audio_ckpt.pop(key)
|
191 |
+
audio_ckpt['audio_branch.' + key[10:]] = v
|
192 |
+
elif os.path.basename(pretrained_audio).startswith('HTSAT'): # checkpoint trained via HTSAT codebase
|
193 |
+
audio_ckpt = torch.load(pretrained_audio, map_location='cpu')
|
194 |
+
audio_ckpt = audio_ckpt['state_dict']
|
195 |
+
keys = list(audio_ckpt.keys())
|
196 |
+
for key in keys:
|
197 |
+
if key.startswith('sed_model'):
|
198 |
+
v = audio_ckpt.pop(key)
|
199 |
+
audio_ckpt['audio_branch.' + key[10:]] = v
|
200 |
+
elif os.path.basename(pretrained_audio).startswith('finetuned'): # checkpoint trained via linear probe codebase
|
201 |
+
audio_ckpt = torch.load(pretrained_audio, map_location='cpu')
|
202 |
+
else:
|
203 |
+
raise ValueError('Unknown audio checkpoint')
|
204 |
+
else:
|
205 |
+
raise f'this audio encoder pretrained checkpoint is not support'
|
206 |
+
|
207 |
+
model.load_state_dict(audio_ckpt, strict=False)
|
208 |
+
logging.info(f"Loading pretrained {amodel_name} weights ({pretrained_audio}).")
|
209 |
+
param_names = [n for n, p in model.named_parameters()]
|
210 |
+
for n in param_names:
|
211 |
+
print(n, "\t", "Loaded" if n in audio_ckpt else "Unloaded")
|
212 |
+
|
213 |
+
model.to(device=device)
|
214 |
+
if precision == "fp16":
|
215 |
+
assert device.type != "cpu"
|
216 |
+
convert_weights_to_fp16(model)
|
217 |
+
|
218 |
+
if jit:
|
219 |
+
model = torch.jit.script(model)
|
220 |
+
|
221 |
+
return model, model_cfg
|
222 |
+
|
223 |
+
|
224 |
+
def create_model_and_transforms(
|
225 |
+
model_name: str,
|
226 |
+
pretrained: str = "",
|
227 |
+
precision: str = "fp32",
|
228 |
+
device: torch.device = torch.device("cpu"),
|
229 |
+
jit: bool = False,
|
230 |
+
force_quick_gelu: bool = False,
|
231 |
+
# pretrained_image: bool = False,
|
232 |
+
):
|
233 |
+
model = create_model(
|
234 |
+
model_name,
|
235 |
+
pretrained,
|
236 |
+
precision,
|
237 |
+
device,
|
238 |
+
jit,
|
239 |
+
force_quick_gelu=force_quick_gelu,
|
240 |
+
# pretrained_image=pretrained_image
|
241 |
+
)
|
242 |
+
preprocess_train = image_transform(model.visual.image_size, is_train=True)
|
243 |
+
preprocess_val = image_transform(model.visual.image_size, is_train=False)
|
244 |
+
return model, preprocess_train, preprocess_val
|
245 |
+
|
246 |
+
|
247 |
+
def list_models():
|
248 |
+
"""enumerate available model architectures based on config files"""
|
249 |
+
return list(_MODEL_CONFIGS.keys())
|
250 |
+
|
251 |
+
|
252 |
+
def add_model_config(path):
|
253 |
+
"""add model config path or file and update registry"""
|
254 |
+
if not isinstance(path, Path):
|
255 |
+
path = Path(path)
|
256 |
+
_MODEL_CONFIG_PATHS.append(path)
|
257 |
+
_rescan_model_configs()
|
ldm/modules/encoders/open_clap/feature_fusion.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
Feature Fusion for Varible-Length Data Processing
|
3 |
+
AFF/iAFF is referred and modified from https://github.com/YimianDai/open-aff/blob/master/aff_pytorch/aff_net/fusion.py
|
4 |
+
According to the paper: Yimian Dai et al, Attentional Feature Fusion, IEEE Winter Conference on Applications of Computer Vision, WACV 2021
|
5 |
+
'''
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
|
10 |
+
|
11 |
+
class DAF(nn.Module):
|
12 |
+
'''
|
13 |
+
直接相加 DirectAddFuse
|
14 |
+
'''
|
15 |
+
|
16 |
+
def __init__(self):
|
17 |
+
super(DAF, self).__init__()
|
18 |
+
|
19 |
+
def forward(self, x, residual):
|
20 |
+
return x + residual
|
21 |
+
|
22 |
+
|
23 |
+
class iAFF(nn.Module):
|
24 |
+
'''
|
25 |
+
多特征融合 iAFF
|
26 |
+
'''
|
27 |
+
|
28 |
+
def __init__(self, channels=64, r=4, type='2D'):
|
29 |
+
super(iAFF, self).__init__()
|
30 |
+
inter_channels = int(channels // r)
|
31 |
+
|
32 |
+
if type == '1D':
|
33 |
+
# 本地注意力
|
34 |
+
self.local_att = nn.Sequential(
|
35 |
+
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
36 |
+
nn.BatchNorm1d(inter_channels),
|
37 |
+
nn.ReLU(inplace=True),
|
38 |
+
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
39 |
+
nn.BatchNorm1d(channels),
|
40 |
+
)
|
41 |
+
|
42 |
+
# 全局注意力
|
43 |
+
self.global_att = nn.Sequential(
|
44 |
+
nn.AdaptiveAvgPool1d(1),
|
45 |
+
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
46 |
+
nn.BatchNorm1d(inter_channels),
|
47 |
+
nn.ReLU(inplace=True),
|
48 |
+
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
49 |
+
nn.BatchNorm1d(channels),
|
50 |
+
)
|
51 |
+
|
52 |
+
# 第二次本地注意力
|
53 |
+
self.local_att2 = nn.Sequential(
|
54 |
+
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
55 |
+
nn.BatchNorm1d(inter_channels),
|
56 |
+
nn.ReLU(inplace=True),
|
57 |
+
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
58 |
+
nn.BatchNorm1d(channels),
|
59 |
+
)
|
60 |
+
# 第二次全局注意力
|
61 |
+
self.global_att2 = nn.Sequential(
|
62 |
+
nn.AdaptiveAvgPool1d(1),
|
63 |
+
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
64 |
+
nn.BatchNorm1d(inter_channels),
|
65 |
+
nn.ReLU(inplace=True),
|
66 |
+
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
67 |
+
nn.BatchNorm1d(channels),
|
68 |
+
)
|
69 |
+
elif type == '2D':
|
70 |
+
# 本地注意力
|
71 |
+
self.local_att = nn.Sequential(
|
72 |
+
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
73 |
+
nn.BatchNorm2d(inter_channels),
|
74 |
+
nn.ReLU(inplace=True),
|
75 |
+
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
76 |
+
nn.BatchNorm2d(channels),
|
77 |
+
)
|
78 |
+
|
79 |
+
# 全局注意力
|
80 |
+
self.global_att = nn.Sequential(
|
81 |
+
nn.AdaptiveAvgPool2d(1),
|
82 |
+
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
83 |
+
nn.BatchNorm2d(inter_channels),
|
84 |
+
nn.ReLU(inplace=True),
|
85 |
+
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
86 |
+
nn.BatchNorm2d(channels),
|
87 |
+
)
|
88 |
+
|
89 |
+
# 第二次本地注意力
|
90 |
+
self.local_att2 = nn.Sequential(
|
91 |
+
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
92 |
+
nn.BatchNorm2d(inter_channels),
|
93 |
+
nn.ReLU(inplace=True),
|
94 |
+
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
95 |
+
nn.BatchNorm2d(channels),
|
96 |
+
)
|
97 |
+
# 第二次全局注意力
|
98 |
+
self.global_att2 = nn.Sequential(
|
99 |
+
nn.AdaptiveAvgPool2d(1),
|
100 |
+
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
101 |
+
nn.BatchNorm2d(inter_channels),
|
102 |
+
nn.ReLU(inplace=True),
|
103 |
+
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
104 |
+
nn.BatchNorm2d(channels),
|
105 |
+
)
|
106 |
+
else:
|
107 |
+
raise f'the type is not supported'
|
108 |
+
|
109 |
+
self.sigmoid = nn.Sigmoid()
|
110 |
+
|
111 |
+
def forward(self, x, residual):
|
112 |
+
flag = False
|
113 |
+
xa = x + residual
|
114 |
+
if xa.size(0) == 1:
|
115 |
+
xa = torch.cat([xa,xa],dim=0)
|
116 |
+
flag = True
|
117 |
+
xl = self.local_att(xa)
|
118 |
+
xg = self.global_att(xa)
|
119 |
+
xlg = xl + xg
|
120 |
+
wei = self.sigmoid(xlg)
|
121 |
+
xi = x * wei + residual * (1 - wei)
|
122 |
+
|
123 |
+
xl2 = self.local_att2(xi)
|
124 |
+
xg2 = self.global_att(xi)
|
125 |
+
xlg2 = xl2 + xg2
|
126 |
+
wei2 = self.sigmoid(xlg2)
|
127 |
+
xo = x * wei2 + residual * (1 - wei2)
|
128 |
+
if flag:
|
129 |
+
xo = xo[0].unsqueeze(0)
|
130 |
+
return xo
|
131 |
+
|
132 |
+
|
133 |
+
class AFF(nn.Module):
|
134 |
+
'''
|
135 |
+
多特征融合 AFF
|
136 |
+
'''
|
137 |
+
|
138 |
+
def __init__(self, channels=64, r=4, type='2D'):
|
139 |
+
super(AFF, self).__init__()
|
140 |
+
inter_channels = int(channels // r)
|
141 |
+
|
142 |
+
if type == '1D':
|
143 |
+
self.local_att = nn.Sequential(
|
144 |
+
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
145 |
+
nn.BatchNorm1d(inter_channels),
|
146 |
+
nn.ReLU(inplace=True),
|
147 |
+
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
148 |
+
nn.BatchNorm1d(channels),
|
149 |
+
)
|
150 |
+
self.global_att = nn.Sequential(
|
151 |
+
nn.AdaptiveAvgPool1d(1),
|
152 |
+
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
153 |
+
nn.BatchNorm1d(inter_channels),
|
154 |
+
nn.ReLU(inplace=True),
|
155 |
+
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
156 |
+
nn.BatchNorm1d(channels),
|
157 |
+
)
|
158 |
+
elif type == '2D':
|
159 |
+
self.local_att = nn.Sequential(
|
160 |
+
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
161 |
+
nn.BatchNorm2d(inter_channels),
|
162 |
+
nn.ReLU(inplace=True),
|
163 |
+
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
164 |
+
nn.BatchNorm2d(channels),
|
165 |
+
)
|
166 |
+
self.global_att = nn.Sequential(
|
167 |
+
nn.AdaptiveAvgPool2d(1),
|
168 |
+
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
169 |
+
nn.BatchNorm2d(inter_channels),
|
170 |
+
nn.ReLU(inplace=True),
|
171 |
+
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
172 |
+
nn.BatchNorm2d(channels),
|
173 |
+
)
|
174 |
+
else:
|
175 |
+
raise f'the type is not supported.'
|
176 |
+
|
177 |
+
self.sigmoid = nn.Sigmoid()
|
178 |
+
|
179 |
+
def forward(self, x, residual):
|
180 |
+
flag = False
|
181 |
+
xa = x + residual
|
182 |
+
if xa.size(0) == 1:
|
183 |
+
xa = torch.cat([xa,xa],dim=0)
|
184 |
+
flag = True
|
185 |
+
xl = self.local_att(xa)
|
186 |
+
xg = self.global_att(xa)
|
187 |
+
xlg = xl + xg
|
188 |
+
wei = self.sigmoid(xlg)
|
189 |
+
xo = 2 * x * wei + 2 * residual * (1 - wei)
|
190 |
+
if flag:
|
191 |
+
xo = xo[0].unsqueeze(0)
|
192 |
+
return xo
|
193 |
+
|
ldm/modules/encoders/open_clap/htsat.py
ADDED
@@ -0,0 +1,1022 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Ke Chen
|
2 | |
3 |
+
# HTS-AT: A HIERARCHICAL TOKEN-SEMANTIC AUDIO TRANSFORMER FOR SOUND CLASSIFICATION AND DETECTION
|
4 |
+
# Some layers designed on the model
|
5 |
+
# below codes are based and referred from https://github.com/microsoft/Swin-Transformer
|
6 |
+
# Swin Transformer for Computer Vision: https://arxiv.org/pdf/2103.14030.pdf
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from itertools import repeat
|
12 |
+
import collections.abc
|
13 |
+
import math
|
14 |
+
import warnings
|
15 |
+
|
16 |
+
from torch.nn.init import _calculate_fan_in_and_fan_out
|
17 |
+
import torch.utils.checkpoint as checkpoint
|
18 |
+
|
19 |
+
import random
|
20 |
+
|
21 |
+
from torchlibrosa.stft import Spectrogram, LogmelFilterBank
|
22 |
+
from torchlibrosa.augmentation import SpecAugmentation
|
23 |
+
|
24 |
+
from itertools import repeat
|
25 |
+
from .utils import do_mixup, interpolate
|
26 |
+
|
27 |
+
from .feature_fusion import iAFF, AFF, DAF
|
28 |
+
|
29 |
+
# from PyTorch internals
|
30 |
+
def _ntuple(n):
|
31 |
+
def parse(x):
|
32 |
+
if isinstance(x, collections.abc.Iterable):
|
33 |
+
return x
|
34 |
+
return tuple(repeat(x, n))
|
35 |
+
return parse
|
36 |
+
|
37 |
+
to_1tuple = _ntuple(1)
|
38 |
+
to_2tuple = _ntuple(2)
|
39 |
+
to_3tuple = _ntuple(3)
|
40 |
+
to_4tuple = _ntuple(4)
|
41 |
+
to_ntuple = _ntuple
|
42 |
+
|
43 |
+
def drop_path(x, drop_prob: float = 0., training: bool = False):
|
44 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
45 |
+
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
46 |
+
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
47 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
|
48 |
+
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
49 |
+
'survival rate' as the argument.
|
50 |
+
"""
|
51 |
+
if drop_prob == 0. or not training:
|
52 |
+
return x
|
53 |
+
keep_prob = 1 - drop_prob
|
54 |
+
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
55 |
+
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
|
56 |
+
random_tensor.floor_() # binarize
|
57 |
+
output = x.div(keep_prob) * random_tensor
|
58 |
+
return output
|
59 |
+
|
60 |
+
|
61 |
+
class DropPath(nn.Module):
|
62 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
63 |
+
"""
|
64 |
+
def __init__(self, drop_prob=None):
|
65 |
+
super(DropPath, self).__init__()
|
66 |
+
self.drop_prob = drop_prob
|
67 |
+
|
68 |
+
def forward(self, x):
|
69 |
+
return drop_path(x, self.drop_prob, self.training)
|
70 |
+
|
71 |
+
class PatchEmbed(nn.Module):
|
72 |
+
""" 2D Image to Patch Embedding
|
73 |
+
"""
|
74 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True, patch_stride = 16,
|
75 |
+
enable_fusion=False, fusion_type='None'):
|
76 |
+
super().__init__()
|
77 |
+
img_size = to_2tuple(img_size)
|
78 |
+
patch_size = to_2tuple(patch_size)
|
79 |
+
patch_stride = to_2tuple(patch_stride)
|
80 |
+
self.img_size = img_size
|
81 |
+
self.patch_size = patch_size
|
82 |
+
self.patch_stride = patch_stride
|
83 |
+
self.grid_size = (img_size[0] // patch_stride[0], img_size[1] // patch_stride[1])
|
84 |
+
self.num_patches = self.grid_size[0] * self.grid_size[1]
|
85 |
+
self.flatten = flatten
|
86 |
+
self.in_chans = in_chans
|
87 |
+
self.embed_dim = embed_dim
|
88 |
+
|
89 |
+
self.enable_fusion = enable_fusion
|
90 |
+
self.fusion_type = fusion_type
|
91 |
+
|
92 |
+
padding = ((patch_size[0] - patch_stride[0]) // 2, (patch_size[1] - patch_stride[1]) // 2)
|
93 |
+
|
94 |
+
if (self.enable_fusion) and (self.fusion_type == 'channel_map'):
|
95 |
+
self.proj = nn.Conv2d(in_chans*4, embed_dim, kernel_size=patch_size, stride=patch_stride, padding=padding)
|
96 |
+
else:
|
97 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_stride, padding=padding)
|
98 |
+
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
99 |
+
|
100 |
+
if (self.enable_fusion) and (self.fusion_type in ['daf_2d','aff_2d','iaff_2d']):
|
101 |
+
self.mel_conv2d = nn.Conv2d(in_chans, embed_dim, kernel_size=(patch_size[0], patch_size[1]*3), stride=(patch_stride[0], patch_stride[1] * 3), padding=padding)
|
102 |
+
if self.fusion_type == 'daf_2d':
|
103 |
+
self.fusion_model = DAF()
|
104 |
+
elif self.fusion_type == 'aff_2d':
|
105 |
+
self.fusion_model = AFF(channels=embed_dim, type='2D')
|
106 |
+
elif self.fusion_type == 'iaff_2d':
|
107 |
+
self.fusion_model = iAFF(channels=embed_dim, type='2D')
|
108 |
+
def forward(self, x, longer_idx = None):
|
109 |
+
if (self.enable_fusion) and (self.fusion_type in ['daf_2d','aff_2d','iaff_2d']):
|
110 |
+
global_x = x[:,0:1,:,:]
|
111 |
+
|
112 |
+
|
113 |
+
# global processing
|
114 |
+
B, C, H, W = global_x.shape
|
115 |
+
assert H == self.img_size[0] and W == self.img_size[1], \
|
116 |
+
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
117 |
+
global_x = self.proj(global_x)
|
118 |
+
TW = global_x.size(-1)
|
119 |
+
if len(longer_idx) > 0:
|
120 |
+
# local processing
|
121 |
+
local_x = x[longer_idx,1:,:,:].contiguous()
|
122 |
+
B, C, H, W = local_x.shape
|
123 |
+
local_x = local_x.view(B*C,1,H,W)
|
124 |
+
local_x = self.mel_conv2d(local_x)
|
125 |
+
local_x = local_x.view(B,C,local_x.size(1),local_x.size(2),local_x.size(3))
|
126 |
+
local_x = local_x.permute((0,2,3,1,4)).contiguous().flatten(3)
|
127 |
+
TB,TC,TH,_ = local_x.size()
|
128 |
+
if local_x.size(-1) < TW:
|
129 |
+
local_x = torch.cat([local_x, torch.zeros((TB,TC,TH,TW-local_x.size(-1)), device=global_x.device)], dim=-1)
|
130 |
+
else:
|
131 |
+
local_x = local_x[:,:,:,:TW]
|
132 |
+
|
133 |
+
global_x[longer_idx] = self.fusion_model(global_x[longer_idx],local_x)
|
134 |
+
x = global_x
|
135 |
+
else:
|
136 |
+
B, C, H, W = x.shape
|
137 |
+
assert H == self.img_size[0] and W == self.img_size[1], \
|
138 |
+
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
139 |
+
x = self.proj(x)
|
140 |
+
|
141 |
+
if self.flatten:
|
142 |
+
x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
|
143 |
+
x = self.norm(x)
|
144 |
+
return x
|
145 |
+
|
146 |
+
class Mlp(nn.Module):
|
147 |
+
""" MLP as used in Vision Transformer, MLP-Mixer and related networks
|
148 |
+
"""
|
149 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
150 |
+
super().__init__()
|
151 |
+
out_features = out_features or in_features
|
152 |
+
hidden_features = hidden_features or in_features
|
153 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
154 |
+
self.act = act_layer()
|
155 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
156 |
+
self.drop = nn.Dropout(drop)
|
157 |
+
|
158 |
+
def forward(self, x):
|
159 |
+
x = self.fc1(x)
|
160 |
+
x = self.act(x)
|
161 |
+
x = self.drop(x)
|
162 |
+
x = self.fc2(x)
|
163 |
+
x = self.drop(x)
|
164 |
+
return x
|
165 |
+
|
166 |
+
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
|
167 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
168 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
169 |
+
def norm_cdf(x):
|
170 |
+
# Computes standard normal cumulative distribution function
|
171 |
+
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
172 |
+
|
173 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
174 |
+
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
175 |
+
"The distribution of values may be incorrect.",
|
176 |
+
stacklevel=2)
|
177 |
+
|
178 |
+
with torch.no_grad():
|
179 |
+
# Values are generated by using a truncated uniform distribution and
|
180 |
+
# then using the inverse CDF for the normal distribution.
|
181 |
+
# Get upper and lower cdf values
|
182 |
+
l = norm_cdf((a - mean) / std)
|
183 |
+
u = norm_cdf((b - mean) / std)
|
184 |
+
|
185 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
186 |
+
# [2l-1, 2u-1].
|
187 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
188 |
+
|
189 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
190 |
+
# standard normal
|
191 |
+
tensor.erfinv_()
|
192 |
+
|
193 |
+
# Transform to proper mean, std
|
194 |
+
tensor.mul_(std * math.sqrt(2.))
|
195 |
+
tensor.add_(mean)
|
196 |
+
|
197 |
+
# Clamp to ensure it's in the proper range
|
198 |
+
tensor.clamp_(min=a, max=b)
|
199 |
+
return tensor
|
200 |
+
|
201 |
+
|
202 |
+
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
203 |
+
# type: (Tensor, float, float, float, float) -> Tensor
|
204 |
+
r"""Fills the input Tensor with values drawn from a truncated
|
205 |
+
normal distribution. The values are effectively drawn from the
|
206 |
+
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
|
207 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
208 |
+
the bounds. The method used for generating the random values works
|
209 |
+
best when :math:`a \leq \text{mean} \leq b`.
|
210 |
+
Args:
|
211 |
+
tensor: an n-dimensional `torch.Tensor`
|
212 |
+
mean: the mean of the normal distribution
|
213 |
+
std: the standard deviation of the normal distribution
|
214 |
+
a: the minimum cutoff value
|
215 |
+
b: the maximum cutoff value
|
216 |
+
Examples:
|
217 |
+
>>> w = torch.empty(3, 5)
|
218 |
+
>>> nn.init.trunc_normal_(w)
|
219 |
+
"""
|
220 |
+
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|
221 |
+
|
222 |
+
|
223 |
+
def variance_scaling_(tensor, scale=1.0, mode='fan_in', distribution='normal'):
|
224 |
+
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
225 |
+
if mode == 'fan_in':
|
226 |
+
denom = fan_in
|
227 |
+
elif mode == 'fan_out':
|
228 |
+
denom = fan_out
|
229 |
+
elif mode == 'fan_avg':
|
230 |
+
denom = (fan_in + fan_out) / 2
|
231 |
+
|
232 |
+
variance = scale / denom
|
233 |
+
|
234 |
+
if distribution == "truncated_normal":
|
235 |
+
# constant is stddev of standard normal truncated to (-2, 2)
|
236 |
+
trunc_normal_(tensor, std=math.sqrt(variance) / .87962566103423978)
|
237 |
+
elif distribution == "normal":
|
238 |
+
tensor.normal_(std=math.sqrt(variance))
|
239 |
+
elif distribution == "uniform":
|
240 |
+
bound = math.sqrt(3 * variance)
|
241 |
+
tensor.uniform_(-bound, bound)
|
242 |
+
else:
|
243 |
+
raise ValueError(f"invalid distribution {distribution}")
|
244 |
+
|
245 |
+
|
246 |
+
def lecun_normal_(tensor):
|
247 |
+
variance_scaling_(tensor, mode='fan_in', distribution='truncated_normal')
|
248 |
+
|
249 |
+
def window_partition(x, window_size):
|
250 |
+
"""
|
251 |
+
Args:
|
252 |
+
x: (B, H, W, C)
|
253 |
+
window_size (int): window size
|
254 |
+
Returns:
|
255 |
+
windows: (num_windows*B, window_size, window_size, C)
|
256 |
+
"""
|
257 |
+
B, H, W, C = x.shape
|
258 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
259 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
260 |
+
return windows
|
261 |
+
|
262 |
+
|
263 |
+
def window_reverse(windows, window_size, H, W):
|
264 |
+
"""
|
265 |
+
Args:
|
266 |
+
windows: (num_windows*B, window_size, window_size, C)
|
267 |
+
window_size (int): Window size
|
268 |
+
H (int): Height of image
|
269 |
+
W (int): Width of image
|
270 |
+
Returns:
|
271 |
+
x: (B, H, W, C)
|
272 |
+
"""
|
273 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
274 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
275 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
276 |
+
return x
|
277 |
+
|
278 |
+
|
279 |
+
class WindowAttention(nn.Module):
|
280 |
+
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
281 |
+
It supports both of shifted and non-shifted window.
|
282 |
+
Args:
|
283 |
+
dim (int): Number of input channels.
|
284 |
+
window_size (tuple[int]): The height and width of the window.
|
285 |
+
num_heads (int): Number of attention heads.
|
286 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
287 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
288 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
289 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
290 |
+
"""
|
291 |
+
|
292 |
+
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
|
293 |
+
|
294 |
+
super().__init__()
|
295 |
+
self.dim = dim
|
296 |
+
self.window_size = window_size # Wh, Ww
|
297 |
+
self.num_heads = num_heads
|
298 |
+
head_dim = dim // num_heads
|
299 |
+
self.scale = qk_scale or head_dim ** -0.5
|
300 |
+
|
301 |
+
# define a parameter table of relative position bias
|
302 |
+
self.relative_position_bias_table = nn.Parameter(
|
303 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
304 |
+
|
305 |
+
# get pair-wise relative position index for each token inside the window
|
306 |
+
coords_h = torch.arange(self.window_size[0])
|
307 |
+
coords_w = torch.arange(self.window_size[1])
|
308 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
309 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
310 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
311 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
312 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
313 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
314 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
315 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
316 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
317 |
+
|
318 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
319 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
320 |
+
self.proj = nn.Linear(dim, dim)
|
321 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
322 |
+
|
323 |
+
trunc_normal_(self.relative_position_bias_table, std=.02)
|
324 |
+
self.softmax = nn.Softmax(dim=-1)
|
325 |
+
|
326 |
+
def forward(self, x, mask=None):
|
327 |
+
"""
|
328 |
+
Args:
|
329 |
+
x: input features with shape of (num_windows*B, N, C)
|
330 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
331 |
+
"""
|
332 |
+
B_, N, C = x.shape
|
333 |
+
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
334 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
335 |
+
|
336 |
+
q = q * self.scale
|
337 |
+
attn = (q @ k.transpose(-2, -1))
|
338 |
+
|
339 |
+
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
340 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
341 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
342 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
343 |
+
|
344 |
+
if mask is not None:
|
345 |
+
nW = mask.shape[0]
|
346 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
347 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
348 |
+
attn = self.softmax(attn)
|
349 |
+
else:
|
350 |
+
attn = self.softmax(attn)
|
351 |
+
|
352 |
+
attn = self.attn_drop(attn)
|
353 |
+
|
354 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
355 |
+
x = self.proj(x)
|
356 |
+
x = self.proj_drop(x)
|
357 |
+
return x, attn
|
358 |
+
|
359 |
+
def extra_repr(self):
|
360 |
+
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
|
361 |
+
|
362 |
+
|
363 |
+
# We use the model based on Swintransformer Block, therefore we can use the swin-transformer pretrained model
|
364 |
+
class SwinTransformerBlock(nn.Module):
|
365 |
+
r""" Swin Transformer Block.
|
366 |
+
Args:
|
367 |
+
dim (int): Number of input channels.
|
368 |
+
input_resolution (tuple[int]): Input resulotion.
|
369 |
+
num_heads (int): Number of attention heads.
|
370 |
+
window_size (int): Window size.
|
371 |
+
shift_size (int): Shift size for SW-MSA.
|
372 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
373 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
374 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
375 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
376 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
377 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
378 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
379 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
380 |
+
"""
|
381 |
+
|
382 |
+
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
|
383 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
|
384 |
+
act_layer=nn.GELU, norm_layer=nn.LayerNorm, norm_before_mlp='ln'):
|
385 |
+
super().__init__()
|
386 |
+
self.dim = dim
|
387 |
+
self.input_resolution = input_resolution
|
388 |
+
self.num_heads = num_heads
|
389 |
+
self.window_size = window_size
|
390 |
+
self.shift_size = shift_size
|
391 |
+
self.mlp_ratio = mlp_ratio
|
392 |
+
self.norm_before_mlp = norm_before_mlp
|
393 |
+
if min(self.input_resolution) <= self.window_size:
|
394 |
+
# if window size is larger than input resolution, we don't partition windows
|
395 |
+
self.shift_size = 0
|
396 |
+
self.window_size = min(self.input_resolution)
|
397 |
+
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
398 |
+
|
399 |
+
self.norm1 = norm_layer(dim)
|
400 |
+
self.attn = WindowAttention(
|
401 |
+
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
|
402 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
403 |
+
|
404 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
405 |
+
if self.norm_before_mlp == 'ln':
|
406 |
+
self.norm2 = nn.LayerNorm(dim)
|
407 |
+
elif self.norm_before_mlp == 'bn':
|
408 |
+
self.norm2 = lambda x: nn.BatchNorm1d(dim)(x.transpose(1, 2)).transpose(1, 2)
|
409 |
+
else:
|
410 |
+
raise NotImplementedError
|
411 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
412 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
413 |
+
|
414 |
+
if self.shift_size > 0:
|
415 |
+
# calculate attention mask for SW-MSA
|
416 |
+
H, W = self.input_resolution
|
417 |
+
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
|
418 |
+
h_slices = (slice(0, -self.window_size),
|
419 |
+
slice(-self.window_size, -self.shift_size),
|
420 |
+
slice(-self.shift_size, None))
|
421 |
+
w_slices = (slice(0, -self.window_size),
|
422 |
+
slice(-self.window_size, -self.shift_size),
|
423 |
+
slice(-self.shift_size, None))
|
424 |
+
cnt = 0
|
425 |
+
for h in h_slices:
|
426 |
+
for w in w_slices:
|
427 |
+
img_mask[:, h, w, :] = cnt
|
428 |
+
cnt += 1
|
429 |
+
|
430 |
+
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
431 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
432 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
433 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
434 |
+
else:
|
435 |
+
attn_mask = None
|
436 |
+
|
437 |
+
self.register_buffer("attn_mask", attn_mask)
|
438 |
+
|
439 |
+
def forward(self, x):
|
440 |
+
# pdb.set_trace()
|
441 |
+
H, W = self.input_resolution
|
442 |
+
# print("H: ", H)
|
443 |
+
# print("W: ", W)
|
444 |
+
# pdb.set_trace()
|
445 |
+
B, L, C = x.shape
|
446 |
+
# assert L == H * W, "input feature has wrong size"
|
447 |
+
|
448 |
+
shortcut = x
|
449 |
+
x = self.norm1(x)
|
450 |
+
x = x.view(B, H, W, C)
|
451 |
+
|
452 |
+
# cyclic shift
|
453 |
+
if self.shift_size > 0:
|
454 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
455 |
+
else:
|
456 |
+
shifted_x = x
|
457 |
+
|
458 |
+
# partition windows
|
459 |
+
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
460 |
+
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
|
461 |
+
|
462 |
+
# W-MSA/SW-MSA
|
463 |
+
attn_windows, attn = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
|
464 |
+
|
465 |
+
# merge windows
|
466 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
467 |
+
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
|
468 |
+
|
469 |
+
# reverse cyclic shift
|
470 |
+
if self.shift_size > 0:
|
471 |
+
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
472 |
+
else:
|
473 |
+
x = shifted_x
|
474 |
+
x = x.view(B, H * W, C)
|
475 |
+
|
476 |
+
# FFN
|
477 |
+
x = shortcut + self.drop_path(x)
|
478 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
479 |
+
|
480 |
+
return x, attn
|
481 |
+
|
482 |
+
def extra_repr(self):
|
483 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
|
484 |
+
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
|
485 |
+
|
486 |
+
|
487 |
+
|
488 |
+
class PatchMerging(nn.Module):
|
489 |
+
r""" Patch Merging Layer.
|
490 |
+
Args:
|
491 |
+
input_resolution (tuple[int]): Resolution of input feature.
|
492 |
+
dim (int): Number of input channels.
|
493 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
494 |
+
"""
|
495 |
+
|
496 |
+
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
|
497 |
+
super().__init__()
|
498 |
+
self.input_resolution = input_resolution
|
499 |
+
self.dim = dim
|
500 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
501 |
+
self.norm = norm_layer(4 * dim)
|
502 |
+
|
503 |
+
def forward(self, x):
|
504 |
+
"""
|
505 |
+
x: B, H*W, C
|
506 |
+
"""
|
507 |
+
H, W = self.input_resolution
|
508 |
+
B, L, C = x.shape
|
509 |
+
assert L == H * W, "input feature has wrong size"
|
510 |
+
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
|
511 |
+
|
512 |
+
x = x.view(B, H, W, C)
|
513 |
+
|
514 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
515 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
516 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
517 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
518 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
519 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
520 |
+
|
521 |
+
x = self.norm(x)
|
522 |
+
x = self.reduction(x)
|
523 |
+
|
524 |
+
return x
|
525 |
+
|
526 |
+
def extra_repr(self):
|
527 |
+
return f"input_resolution={self.input_resolution}, dim={self.dim}"
|
528 |
+
|
529 |
+
|
530 |
+
class BasicLayer(nn.Module):
|
531 |
+
""" A basic Swin Transformer layer for one stage.
|
532 |
+
Args:
|
533 |
+
dim (int): Number of input channels.
|
534 |
+
input_resolution (tuple[int]): Input resolution.
|
535 |
+
depth (int): Number of blocks.
|
536 |
+
num_heads (int): Number of attention heads.
|
537 |
+
window_size (int): Local window size.
|
538 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
539 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
540 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
541 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
542 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
543 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
544 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
545 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
546 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
547 |
+
"""
|
548 |
+
|
549 |
+
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
|
550 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
|
551 |
+
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
|
552 |
+
norm_before_mlp='ln'):
|
553 |
+
|
554 |
+
super().__init__()
|
555 |
+
self.dim = dim
|
556 |
+
self.input_resolution = input_resolution
|
557 |
+
self.depth = depth
|
558 |
+
self.use_checkpoint = use_checkpoint
|
559 |
+
|
560 |
+
# build blocks
|
561 |
+
self.blocks = nn.ModuleList([
|
562 |
+
SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
|
563 |
+
num_heads=num_heads, window_size=window_size,
|
564 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
565 |
+
mlp_ratio=mlp_ratio,
|
566 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
567 |
+
drop=drop, attn_drop=attn_drop,
|
568 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
569 |
+
norm_layer=norm_layer, norm_before_mlp=norm_before_mlp)
|
570 |
+
for i in range(depth)])
|
571 |
+
|
572 |
+
# patch merging layer
|
573 |
+
if downsample is not None:
|
574 |
+
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
|
575 |
+
else:
|
576 |
+
self.downsample = None
|
577 |
+
|
578 |
+
def forward(self, x):
|
579 |
+
attns = []
|
580 |
+
for blk in self.blocks:
|
581 |
+
if self.use_checkpoint:
|
582 |
+
x = checkpoint.checkpoint(blk, x)
|
583 |
+
else:
|
584 |
+
x, attn = blk(x)
|
585 |
+
if not self.training:
|
586 |
+
attns.append(attn.unsqueeze(0))
|
587 |
+
if self.downsample is not None:
|
588 |
+
x = self.downsample(x)
|
589 |
+
if not self.training:
|
590 |
+
attn = torch.cat(attns, dim = 0)
|
591 |
+
attn = torch.mean(attn, dim = 0)
|
592 |
+
return x, attn
|
593 |
+
|
594 |
+
def extra_repr(self):
|
595 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
|
596 |
+
|
597 |
+
|
598 |
+
# The Core of HTSAT
|
599 |
+
class HTSAT_Swin_Transformer(nn.Module):
|
600 |
+
r"""HTSAT based on the Swin Transformer
|
601 |
+
Args:
|
602 |
+
spec_size (int | tuple(int)): Input Spectrogram size. Default 256
|
603 |
+
patch_size (int | tuple(int)): Patch size. Default: 4
|
604 |
+
path_stride (iot | tuple(int)): Patch Stride for Frequency and Time Axis. Default: 4
|
605 |
+
in_chans (int): Number of input image channels. Default: 1 (mono)
|
606 |
+
num_classes (int): Number of classes for classification head. Default: 527
|
607 |
+
embed_dim (int): Patch embedding dimension. Default: 96
|
608 |
+
depths (tuple(int)): Depth of each HTSAT-Swin Transformer layer.
|
609 |
+
num_heads (tuple(int)): Number of attention heads in different layers.
|
610 |
+
window_size (int): Window size. Default: 8
|
611 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
|
612 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
613 |
+
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
|
614 |
+
drop_rate (float): Dropout rate. Default: 0
|
615 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0
|
616 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
617 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
618 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
|
619 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True
|
620 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
|
621 |
+
config (module): The configuration Module from config.py
|
622 |
+
"""
|
623 |
+
|
624 |
+
def __init__(self, spec_size=256, patch_size=4, patch_stride=(4,4),
|
625 |
+
in_chans=1, num_classes=527,
|
626 |
+
embed_dim=96, depths=[2, 2, 6, 2], num_heads=[4, 8, 16, 32],
|
627 |
+
window_size=8, mlp_ratio=4., qkv_bias=True, qk_scale=None,
|
628 |
+
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
|
629 |
+
norm_layer=nn.LayerNorm,
|
630 |
+
ape=False, patch_norm=True,
|
631 |
+
use_checkpoint=False, norm_before_mlp='ln', config = None,
|
632 |
+
enable_fusion = False, fusion_type = 'None', **kwargs):
|
633 |
+
super(HTSAT_Swin_Transformer, self).__init__()
|
634 |
+
|
635 |
+
self.config = config
|
636 |
+
self.spec_size = spec_size
|
637 |
+
self.patch_stride = patch_stride
|
638 |
+
self.patch_size = patch_size
|
639 |
+
self.window_size = window_size
|
640 |
+
self.embed_dim = embed_dim
|
641 |
+
self.depths = depths
|
642 |
+
self.ape = ape
|
643 |
+
self.in_chans = in_chans
|
644 |
+
self.num_classes = num_classes
|
645 |
+
self.num_heads = num_heads
|
646 |
+
self.num_layers = len(self.depths)
|
647 |
+
self.num_features = int(self.embed_dim * 2 ** (self.num_layers - 1))
|
648 |
+
|
649 |
+
self.drop_rate = drop_rate
|
650 |
+
self.attn_drop_rate = attn_drop_rate
|
651 |
+
self.drop_path_rate = drop_path_rate
|
652 |
+
|
653 |
+
self.qkv_bias = qkv_bias
|
654 |
+
self.qk_scale = None
|
655 |
+
|
656 |
+
self.patch_norm = patch_norm
|
657 |
+
self.norm_layer = norm_layer if self.patch_norm else None
|
658 |
+
self.norm_before_mlp = norm_before_mlp
|
659 |
+
self.mlp_ratio = mlp_ratio
|
660 |
+
|
661 |
+
self.use_checkpoint = use_checkpoint
|
662 |
+
|
663 |
+
self.enable_fusion = enable_fusion
|
664 |
+
self.fusion_type = fusion_type
|
665 |
+
|
666 |
+
# process mel-spec ; used only once
|
667 |
+
self.freq_ratio = self.spec_size // self.config.mel_bins
|
668 |
+
window = 'hann'
|
669 |
+
center = True
|
670 |
+
pad_mode = 'reflect'
|
671 |
+
ref = 1.0
|
672 |
+
amin = 1e-10
|
673 |
+
top_db = None
|
674 |
+
self.interpolate_ratio = 32 # Downsampled ratio
|
675 |
+
# Spectrogram extractor
|
676 |
+
self.spectrogram_extractor = Spectrogram(n_fft=config.window_size, hop_length=config.hop_size,
|
677 |
+
win_length=config.window_size, window=window, center=center, pad_mode=pad_mode,
|
678 |
+
freeze_parameters=True)
|
679 |
+
# Logmel feature extractor
|
680 |
+
self.logmel_extractor = LogmelFilterBank(sr=config.sample_rate, n_fft=config.window_size,
|
681 |
+
n_mels=config.mel_bins, fmin=config.fmin, fmax=config.fmax, ref=ref, amin=amin, top_db=top_db,
|
682 |
+
freeze_parameters=True)
|
683 |
+
# Spec augmenter
|
684 |
+
self.spec_augmenter = SpecAugmentation(time_drop_width=64, time_stripes_num=2,
|
685 |
+
freq_drop_width=8, freq_stripes_num=2) # 2 2
|
686 |
+
self.bn0 = nn.BatchNorm2d(self.config.mel_bins)
|
687 |
+
|
688 |
+
|
689 |
+
# split spctrogram into non-overlapping patches
|
690 |
+
self.patch_embed = PatchEmbed(
|
691 |
+
img_size=self.spec_size, patch_size=self.patch_size, in_chans=self.in_chans,
|
692 |
+
embed_dim=self.embed_dim, norm_layer=self.norm_layer, patch_stride = patch_stride,
|
693 |
+
enable_fusion=self.enable_fusion, fusion_type=self.fusion_type
|
694 |
+
)
|
695 |
+
|
696 |
+
num_patches = self.patch_embed.num_patches
|
697 |
+
patches_resolution = self.patch_embed.grid_size
|
698 |
+
self.patches_resolution = patches_resolution
|
699 |
+
|
700 |
+
# absolute position embedding
|
701 |
+
if self.ape:
|
702 |
+
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, self.embed_dim))
|
703 |
+
trunc_normal_(self.absolute_pos_embed, std=.02)
|
704 |
+
|
705 |
+
self.pos_drop = nn.Dropout(p=self.drop_rate)
|
706 |
+
|
707 |
+
# stochastic depth
|
708 |
+
dpr = [x.item() for x in torch.linspace(0, self.drop_path_rate, sum(self.depths))] # stochastic depth decay rule
|
709 |
+
|
710 |
+
# build layers
|
711 |
+
self.layers = nn.ModuleList()
|
712 |
+
for i_layer in range(self.num_layers):
|
713 |
+
layer = BasicLayer(dim=int(self.embed_dim * 2 ** i_layer),
|
714 |
+
input_resolution=(patches_resolution[0] // (2 ** i_layer),
|
715 |
+
patches_resolution[1] // (2 ** i_layer)),
|
716 |
+
depth=self.depths[i_layer],
|
717 |
+
num_heads=self.num_heads[i_layer],
|
718 |
+
window_size=self.window_size,
|
719 |
+
mlp_ratio=self.mlp_ratio,
|
720 |
+
qkv_bias=self.qkv_bias, qk_scale=self.qk_scale,
|
721 |
+
drop=self.drop_rate, attn_drop=self.attn_drop_rate,
|
722 |
+
drop_path=dpr[sum(self.depths[:i_layer]):sum(self.depths[:i_layer + 1])],
|
723 |
+
norm_layer=self.norm_layer,
|
724 |
+
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
|
725 |
+
use_checkpoint=use_checkpoint,
|
726 |
+
norm_before_mlp=self.norm_before_mlp)
|
727 |
+
self.layers.append(layer)
|
728 |
+
|
729 |
+
self.norm = self.norm_layer(self.num_features)
|
730 |
+
self.avgpool = nn.AdaptiveAvgPool1d(1)
|
731 |
+
self.maxpool = nn.AdaptiveMaxPool1d(1)
|
732 |
+
|
733 |
+
SF = self.spec_size // (2 ** (len(self.depths) - 1)) // self.patch_stride[0] // self.freq_ratio
|
734 |
+
self.tscam_conv = nn.Conv2d(
|
735 |
+
in_channels = self.num_features,
|
736 |
+
out_channels = self.num_classes,
|
737 |
+
kernel_size = (SF,3),
|
738 |
+
padding = (0,1)
|
739 |
+
)
|
740 |
+
self.head = nn.Linear(num_classes, num_classes)
|
741 |
+
|
742 |
+
if (self.enable_fusion) and (self.fusion_type in ['daf_1d','aff_1d','iaff_1d']):
|
743 |
+
self.mel_conv1d = nn.Sequential(
|
744 |
+
nn.Conv1d(64, 64, kernel_size=5, stride=3, padding=2),
|
745 |
+
nn.BatchNorm1d(64)
|
746 |
+
)
|
747 |
+
if self.fusion_type == 'daf_1d':
|
748 |
+
self.fusion_model = DAF()
|
749 |
+
elif self.fusion_type == 'aff_1d':
|
750 |
+
self.fusion_model = AFF(channels=64, type='1D')
|
751 |
+
elif self.fusion_type == 'iaff_1d':
|
752 |
+
self.fusion_model = iAFF(channels=64, type='1D')
|
753 |
+
|
754 |
+
self.apply(self._init_weights)
|
755 |
+
|
756 |
+
def _init_weights(self, m):
|
757 |
+
if isinstance(m, nn.Linear):
|
758 |
+
trunc_normal_(m.weight, std=.02)
|
759 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
760 |
+
nn.init.constant_(m.bias, 0)
|
761 |
+
elif isinstance(m, nn.LayerNorm):
|
762 |
+
nn.init.constant_(m.bias, 0)
|
763 |
+
nn.init.constant_(m.weight, 1.0)
|
764 |
+
|
765 |
+
@torch.jit.ignore
|
766 |
+
def no_weight_decay(self):
|
767 |
+
return {'absolute_pos_embed'}
|
768 |
+
|
769 |
+
@torch.jit.ignore
|
770 |
+
def no_weight_decay_keywords(self):
|
771 |
+
return {'relative_position_bias_table'}
|
772 |
+
|
773 |
+
|
774 |
+
def forward_features(self, x, longer_idx = None):
|
775 |
+
# A deprecated optimization for using a hierarchical output from different blocks
|
776 |
+
|
777 |
+
frames_num = x.shape[2]
|
778 |
+
x = self.patch_embed(x, longer_idx = longer_idx)
|
779 |
+
if self.ape:
|
780 |
+
x = x + self.absolute_pos_embed
|
781 |
+
x = self.pos_drop(x)
|
782 |
+
for i, layer in enumerate(self.layers):
|
783 |
+
x, attn = layer(x)
|
784 |
+
# for x
|
785 |
+
x = self.norm(x)
|
786 |
+
B, N, C = x.shape
|
787 |
+
SF = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[0]
|
788 |
+
ST = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[1]
|
789 |
+
x = x.permute(0,2,1).contiguous().reshape(B, C, SF, ST)
|
790 |
+
B, C, F, T = x.shape
|
791 |
+
# group 2D CNN
|
792 |
+
c_freq_bin = F // self.freq_ratio
|
793 |
+
x = x.reshape(B, C, F // c_freq_bin, c_freq_bin, T)
|
794 |
+
x = x.permute(0,1,3,2,4).contiguous().reshape(B, C, c_freq_bin, -1)
|
795 |
+
# get latent_output
|
796 |
+
fine_grained_latent_output = torch.mean(x, dim = 2)
|
797 |
+
fine_grained_latent_output = interpolate(fine_grained_latent_output.permute(0,2,1).contiguous(), 8 * self.patch_stride[1])
|
798 |
+
|
799 |
+
latent_output = self.avgpool(torch.flatten(x,2))
|
800 |
+
latent_output = torch.flatten(latent_output, 1)
|
801 |
+
|
802 |
+
# display the attention map, if needed
|
803 |
+
|
804 |
+
x = self.tscam_conv(x)
|
805 |
+
x = torch.flatten(x, 2) # B, C, T
|
806 |
+
|
807 |
+
fpx = interpolate(torch.sigmoid(x).permute(0,2,1).contiguous(), 8 * self.patch_stride[1])
|
808 |
+
|
809 |
+
x = self.avgpool(x)
|
810 |
+
x = torch.flatten(x, 1)
|
811 |
+
|
812 |
+
output_dict = {
|
813 |
+
'framewise_output': fpx, # already sigmoided
|
814 |
+
'clipwise_output': torch.sigmoid(x),
|
815 |
+
'fine_grained_embedding': fine_grained_latent_output,
|
816 |
+
'embedding': latent_output
|
817 |
+
}
|
818 |
+
|
819 |
+
return output_dict
|
820 |
+
|
821 |
+
def crop_wav(self, x, crop_size, spe_pos = None):
|
822 |
+
time_steps = x.shape[2]
|
823 |
+
tx = torch.zeros(x.shape[0], x.shape[1], crop_size, x.shape[3]).to(x.device)
|
824 |
+
for i in range(len(x)):
|
825 |
+
if spe_pos is None:
|
826 |
+
crop_pos = random.randint(0, time_steps - crop_size - 1)
|
827 |
+
else:
|
828 |
+
crop_pos = spe_pos
|
829 |
+
tx[i][0] = x[i, 0, crop_pos:crop_pos + crop_size,:]
|
830 |
+
return tx
|
831 |
+
|
832 |
+
# Reshape the wavform to a img size, if you want to use the pretrained swin transformer model
|
833 |
+
def reshape_wav2img(self, x):
|
834 |
+
B, C, T, F = x.shape
|
835 |
+
target_T = int(self.spec_size * self.freq_ratio)
|
836 |
+
target_F = self.spec_size // self.freq_ratio
|
837 |
+
assert T <= target_T and F <= target_F, "the wav size should less than or equal to the swin input size"
|
838 |
+
# to avoid bicubic zero error
|
839 |
+
if T < target_T:
|
840 |
+
x = nn.functional.interpolate(x, (target_T, x.shape[3]), mode="bicubic", align_corners=True)
|
841 |
+
if F < target_F:
|
842 |
+
x = nn.functional.interpolate(x, (x.shape[2], target_F), mode="bicubic", align_corners=True)
|
843 |
+
x = x.permute(0,1,3,2).contiguous()
|
844 |
+
x = x.reshape(x.shape[0], x.shape[1], x.shape[2], self.freq_ratio, x.shape[3] // self.freq_ratio)
|
845 |
+
# print(x.shape)
|
846 |
+
x = x.permute(0,1,3,2,4).contiguous()
|
847 |
+
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3], x.shape[4])
|
848 |
+
return x
|
849 |
+
|
850 |
+
# Repeat the wavform to a img size, if you want to use the pretrained swin transformer model
|
851 |
+
def repeat_wat2img(self, x, cur_pos):
|
852 |
+
B, C, T, F = x.shape
|
853 |
+
target_T = int(self.spec_size * self.freq_ratio)
|
854 |
+
target_F = self.spec_size // self.freq_ratio
|
855 |
+
assert T <= target_T and F <= target_F, "the wav size should less than or equal to the swin input size"
|
856 |
+
# to avoid bicubic zero error
|
857 |
+
if T < target_T:
|
858 |
+
x = nn.functional.interpolate(x, (target_T, x.shape[3]), mode="bicubic", align_corners=True)
|
859 |
+
if F < target_F:
|
860 |
+
x = nn.functional.interpolate(x, (x.shape[2], target_F), mode="bicubic", align_corners=True)
|
861 |
+
x = x.permute(0,1,3,2).contiguous() # B C F T
|
862 |
+
x = x[:,:,:,cur_pos:cur_pos + self.spec_size]
|
863 |
+
x = x.repeat(repeats = (1,1,4,1))
|
864 |
+
return x
|
865 |
+
|
866 |
+
def forward(self, x: torch.Tensor, mixup_lambda = None, infer_mode = False, device=None):# out_feat_keys: List[str] = None):
|
867 |
+
|
868 |
+
if self.enable_fusion and x["longer"].sum() == 0:
|
869 |
+
# if no audio is longer than 10s, then randomly select one audio to be longer
|
870 |
+
x["longer"][torch.randint(0, x["longer"].shape[0], (1,))] = True
|
871 |
+
|
872 |
+
if not self.enable_fusion:
|
873 |
+
x = x["waveform"].to(device=device, non_blocking=True)
|
874 |
+
x = self.spectrogram_extractor(x) # (batch_size, 1, time_steps, freq_bins)
|
875 |
+
x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins)
|
876 |
+
x = x.transpose(1, 3)
|
877 |
+
x = self.bn0(x)
|
878 |
+
x = x.transpose(1, 3)
|
879 |
+
if self.training:
|
880 |
+
x = self.spec_augmenter(x)
|
881 |
+
|
882 |
+
if self.training and mixup_lambda is not None:
|
883 |
+
x = do_mixup(x, mixup_lambda)
|
884 |
+
|
885 |
+
x = self.reshape_wav2img(x)
|
886 |
+
output_dict = self.forward_features(x)
|
887 |
+
else:
|
888 |
+
longer_list = x["longer"].to(device=device, non_blocking=True)
|
889 |
+
x = x["mel_fusion"].to(device=device, non_blocking=True)
|
890 |
+
x = x.transpose(1, 3)
|
891 |
+
x = self.bn0(x)
|
892 |
+
x = x.transpose(1, 3)
|
893 |
+
longer_list_idx = torch.where(longer_list)[0]
|
894 |
+
if self.fusion_type in ['daf_1d','aff_1d','iaff_1d']:
|
895 |
+
new_x = x[:,0:1,:,:].clone().contiguous()
|
896 |
+
if len(longer_list_idx) > 0:
|
897 |
+
# local processing
|
898 |
+
fusion_x_local = x[longer_list_idx,1:,:,:].clone().contiguous()
|
899 |
+
FB,FC,FT,FF = fusion_x_local.size()
|
900 |
+
fusion_x_local = fusion_x_local.view(FB * FC, FT, FF)
|
901 |
+
fusion_x_local = torch.permute(fusion_x_local, (0,2,1)).contiguous()
|
902 |
+
fusion_x_local = self.mel_conv1d(fusion_x_local)
|
903 |
+
fusion_x_local = fusion_x_local.view(FB,FC,FF,fusion_x_local.size(-1))
|
904 |
+
fusion_x_local = torch.permute(fusion_x_local, (0,2,1,3)).contiguous().flatten(2)
|
905 |
+
if fusion_x_local.size(-1) < FT:
|
906 |
+
fusion_x_local = torch.cat([fusion_x_local, torch.zeros((FB,FF,FT- fusion_x_local.size(-1)), device=device)], dim=-1)
|
907 |
+
else:
|
908 |
+
fusion_x_local = fusion_x_local[:,:,:FT]
|
909 |
+
# 1D fusion
|
910 |
+
new_x = new_x.squeeze(1).permute((0,2,1)).contiguous()
|
911 |
+
new_x[longer_list_idx] = self.fusion_model(new_x[longer_list_idx], fusion_x_local)
|
912 |
+
x = new_x.permute((0,2,1)).contiguous()[:,None,:,:]
|
913 |
+
else:
|
914 |
+
x = new_x
|
915 |
+
|
916 |
+
elif self.fusion_type in ['daf_2d','aff_2d','iaff_2d','channel_map']:
|
917 |
+
x = x # no change
|
918 |
+
|
919 |
+
if self.training:
|
920 |
+
x = self.spec_augmenter(x)
|
921 |
+
if self.training and mixup_lambda is not None:
|
922 |
+
x = do_mixup(x, mixup_lambda)
|
923 |
+
|
924 |
+
x = self.reshape_wav2img(x)
|
925 |
+
output_dict = self.forward_features(x, longer_idx = longer_list_idx)
|
926 |
+
|
927 |
+
# if infer_mode:
|
928 |
+
# # in infer mode. we need to handle different length audio input
|
929 |
+
# frame_num = x.shape[2]
|
930 |
+
# target_T = int(self.spec_size * self.freq_ratio)
|
931 |
+
# repeat_ratio = math.floor(target_T / frame_num)
|
932 |
+
# x = x.repeat(repeats=(1,1,repeat_ratio,1))
|
933 |
+
# x = self.reshape_wav2img(x)
|
934 |
+
# output_dict = self.forward_features(x)
|
935 |
+
# else:
|
936 |
+
# if x.shape[2] > self.freq_ratio * self.spec_size:
|
937 |
+
# if self.training:
|
938 |
+
# x = self.crop_wav(x, crop_size=self.freq_ratio * self.spec_size)
|
939 |
+
# x = self.reshape_wav2img(x)
|
940 |
+
# output_dict = self.forward_features(x)
|
941 |
+
# else:
|
942 |
+
# # Change: Hard code here
|
943 |
+
# overlap_size = (x.shape[2] - 1) // 4
|
944 |
+
# output_dicts = []
|
945 |
+
# crop_size = (x.shape[2] - 1) // 2
|
946 |
+
# for cur_pos in range(0, x.shape[2] - crop_size - 1, overlap_size):
|
947 |
+
# tx = self.crop_wav(x, crop_size = crop_size, spe_pos = cur_pos)
|
948 |
+
# tx = self.reshape_wav2img(tx)
|
949 |
+
# output_dicts.append(self.forward_features(tx))
|
950 |
+
# clipwise_output = torch.zeros_like(output_dicts[0]["clipwise_output"]).float().to(x.device)
|
951 |
+
# framewise_output = torch.zeros_like(output_dicts[0]["framewise_output"]).float().to(x.device)
|
952 |
+
# for d in output_dicts:
|
953 |
+
# clipwise_output += d["clipwise_output"]
|
954 |
+
# framewise_output += d["framewise_output"]
|
955 |
+
# clipwise_output = clipwise_output / len(output_dicts)
|
956 |
+
# framewise_output = framewise_output / len(output_dicts)
|
957 |
+
# output_dict = {
|
958 |
+
# 'framewise_output': framewise_output,
|
959 |
+
# 'clipwise_output': clipwise_output
|
960 |
+
# }
|
961 |
+
# else: # this part is typically used, and most easy one
|
962 |
+
# x = self.reshape_wav2img(x)
|
963 |
+
# output_dict = self.forward_features(x)
|
964 |
+
# x = self.head(x)
|
965 |
+
|
966 |
+
# We process the data in the dataloader part, in that here we only consider the input_T < fixed_T
|
967 |
+
|
968 |
+
|
969 |
+
|
970 |
+
return output_dict
|
971 |
+
|
972 |
+
def create_htsat_model(audio_cfg, enable_fusion=False, fusion_type='None'):
|
973 |
+
try:
|
974 |
+
|
975 |
+
assert audio_cfg.model_name in ["tiny", "base", "large"], "model name for HTS-AT is wrong!"
|
976 |
+
if audio_cfg.model_name == "tiny":
|
977 |
+
model = HTSAT_Swin_Transformer(
|
978 |
+
spec_size=256,
|
979 |
+
patch_size=4,
|
980 |
+
patch_stride=(4,4),
|
981 |
+
num_classes=audio_cfg.class_num,
|
982 |
+
embed_dim=96,
|
983 |
+
depths=[2,2,6,2],
|
984 |
+
num_heads=[4,8,16,32],
|
985 |
+
window_size=8,
|
986 |
+
config = audio_cfg,
|
987 |
+
enable_fusion = enable_fusion,
|
988 |
+
fusion_type = fusion_type
|
989 |
+
)
|
990 |
+
elif audio_cfg.model_name == "base":
|
991 |
+
model = HTSAT_Swin_Transformer(
|
992 |
+
spec_size=256,
|
993 |
+
patch_size=4,
|
994 |
+
patch_stride=(4,4),
|
995 |
+
num_classes=audio_cfg.class_num,
|
996 |
+
embed_dim=128,
|
997 |
+
depths=[2,2,12,2],
|
998 |
+
num_heads=[4,8,16,32],
|
999 |
+
window_size=8,
|
1000 |
+
config = audio_cfg,
|
1001 |
+
enable_fusion = enable_fusion,
|
1002 |
+
fusion_type = fusion_type
|
1003 |
+
)
|
1004 |
+
elif audio_cfg.model_name == "large":
|
1005 |
+
model = HTSAT_Swin_Transformer(
|
1006 |
+
spec_size=256,
|
1007 |
+
patch_size=4,
|
1008 |
+
patch_stride=(4,4),
|
1009 |
+
num_classes=audio_cfg.class_num,
|
1010 |
+
embed_dim=256,
|
1011 |
+
depths=[2,2,12,2],
|
1012 |
+
num_heads=[4,8,16,32],
|
1013 |
+
window_size=8,
|
1014 |
+
config = audio_cfg,
|
1015 |
+
enable_fusion = enable_fusion,
|
1016 |
+
fusion_type = fusion_type
|
1017 |
+
)
|
1018 |
+
|
1019 |
+
return model
|
1020 |
+
except:
|
1021 |
+
raise RuntimeError(f'Import Model for {audio_cfg.model_name} not found, or the audio cfg parameters are not enough.')
|
1022 |
+
|
ldm/modules/encoders/open_clap/linear_probe.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from torch import nn
|
4 |
+
from .model import MLPLayers
|
5 |
+
|
6 |
+
|
7 |
+
class LinearProbe(nn.Module):
|
8 |
+
def __init__(self, model, mlp, freeze, in_ch, out_ch, act=None):
|
9 |
+
"""
|
10 |
+
Args:
|
11 |
+
model: nn.Module
|
12 |
+
mlp: bool, if True, then use the MLP layer as the linear probe module
|
13 |
+
freeze: bool, if Ture, then freeze all the CLAP model's layers when training the linear probe
|
14 |
+
in_ch: int, the output channel from CLAP model
|
15 |
+
out_ch: int, the output channel from linear probe (class_num)
|
16 |
+
act: torch.nn.functional, the activation function before the loss function
|
17 |
+
"""
|
18 |
+
super().__init__()
|
19 |
+
in_ch = 512
|
20 |
+
self.clap_model = model
|
21 |
+
self.clap_model.text_branch = None # to save memory
|
22 |
+
self.freeze = freeze
|
23 |
+
if mlp:
|
24 |
+
self.lp_layer = MLPLayers(units=[in_ch, in_ch * 2, out_ch])
|
25 |
+
else:
|
26 |
+
self.lp_layer = nn.Linear(in_ch, out_ch)
|
27 |
+
|
28 |
+
if self.freeze:
|
29 |
+
for param in self.clap_model.parameters():
|
30 |
+
param.requires_grad = False
|
31 |
+
|
32 |
+
if act == 'None':
|
33 |
+
self.act = None
|
34 |
+
elif act == 'relu':
|
35 |
+
self.act = nn.ReLU()
|
36 |
+
elif act == 'elu':
|
37 |
+
self.act = nn.ELU()
|
38 |
+
elif act == 'prelu':
|
39 |
+
self.act = nn.PReLU(num_parameters=in_ch)
|
40 |
+
elif act == 'softmax':
|
41 |
+
self.act = nn.Softmax(dim=-1)
|
42 |
+
elif act == 'sigmoid':
|
43 |
+
self.act = nn.Sigmoid()
|
44 |
+
|
45 |
+
def forward(self, x, mix_lambda=None, device=None):
|
46 |
+
"""
|
47 |
+
Args:
|
48 |
+
x: waveform, torch.tensor [batch, t_samples] / batch of mel_spec and longer list
|
49 |
+
mix_lambda: torch.tensor [batch], the mixup lambda
|
50 |
+
Returns:
|
51 |
+
class_prob: torch.tensor [batch, class_num]
|
52 |
+
|
53 |
+
"""
|
54 |
+
# batchnorm cancel grandient
|
55 |
+
if self.freeze:
|
56 |
+
self.clap_model.eval()
|
57 |
+
|
58 |
+
x = self.clap_model.audio_projection(
|
59 |
+
self.clap_model.audio_branch(x, mixup_lambda=mix_lambda, device=device)["embedding"])
|
60 |
+
out = self.lp_layer(x)
|
61 |
+
if self.act is not None:
|
62 |
+
out = self.act(out)
|
63 |
+
return out
|
ldm/modules/encoders/open_clap/loss.py
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from multiprocessing.sharedctypes import Value
|
2 |
+
import torch
|
3 |
+
import torch.distributed.nn
|
4 |
+
from torch import distributed as dist, nn as nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
import numpy as np
|
7 |
+
from sklearn.metrics import average_precision_score, roc_auc_score, accuracy_score
|
8 |
+
|
9 |
+
try:
|
10 |
+
import horovod.torch as hvd
|
11 |
+
except ImportError:
|
12 |
+
hvd = None
|
13 |
+
|
14 |
+
|
15 |
+
def gather_features(
|
16 |
+
audio_features,
|
17 |
+
text_features,
|
18 |
+
audio_features_mlp=None,
|
19 |
+
text_features_mlp=None,
|
20 |
+
local_loss=False,
|
21 |
+
gather_with_grad=False,
|
22 |
+
rank=0,
|
23 |
+
world_size=1,
|
24 |
+
use_horovod=False,
|
25 |
+
mlp_loss=False
|
26 |
+
):
|
27 |
+
if use_horovod:
|
28 |
+
assert hvd is not None, 'Please install horovod'
|
29 |
+
if gather_with_grad:
|
30 |
+
all_audio_features = hvd.allgather(audio_features)
|
31 |
+
all_text_features = hvd.allgather(text_features)
|
32 |
+
if mlp_loss:
|
33 |
+
all_audio_features_mlp = hvd.allgather(audio_features_mlp)
|
34 |
+
all_text_features_mlp = hvd.allgather(text_features_mlp)
|
35 |
+
else:
|
36 |
+
with torch.no_grad():
|
37 |
+
all_audio_features = hvd.allgather(audio_features)
|
38 |
+
all_text_features = hvd.allgather(text_features)
|
39 |
+
if mlp_loss:
|
40 |
+
all_audio_features_mlp = hvd.allgather(audio_features_mlp)
|
41 |
+
all_text_features_mlp = hvd.allgather(text_features_mlp)
|
42 |
+
if not local_loss:
|
43 |
+
# ensure grads for local rank when all_* features don't have a gradient
|
44 |
+
gathered_audio_features = list(all_audio_features.chunk(world_size, dim=0))
|
45 |
+
gathered_text_features = list(all_text_features.chunk(world_size, dim=0))
|
46 |
+
gathered_audio_features[rank] = audio_features
|
47 |
+
gathered_text_features[rank] = text_features
|
48 |
+
all_audio_features = torch.cat(gathered_audio_features, dim=0)
|
49 |
+
all_text_features = torch.cat(gathered_text_features, dim=0)
|
50 |
+
if mlp_loss:
|
51 |
+
gathered_audio_features_mlp = list(all_audio_features_mlp.chunk(world_size, dim=0))
|
52 |
+
gathered_text_features_mlp = list(all_text_features_mlp.chunk(world_size, dim=0))
|
53 |
+
gathered_audio_features_mlp[rank] = audio_features_mlp
|
54 |
+
gathered_text_features_mlp[rank] = text_features_mlp
|
55 |
+
all_audio_features_mlp = torch.cat(gathered_audio_features_mlp, dim=0)
|
56 |
+
all_text_features_mlp = torch.cat(gathered_text_features_mlp, dim=0)
|
57 |
+
else:
|
58 |
+
# We gather tensors from all gpus
|
59 |
+
if gather_with_grad:
|
60 |
+
all_audio_features = torch.cat(torch.distributed.nn.all_gather(audio_features), dim=0)
|
61 |
+
all_text_features = torch.cat(torch.distributed.nn.all_gather(text_features), dim=0)
|
62 |
+
if mlp_loss:
|
63 |
+
all_audio_features_mlp = torch.cat(torch.distributed.nn.all_gather(audio_features_mlp), dim=0)
|
64 |
+
all_text_features_mlp = torch.cat(torch.distributed.nn.all_gather(text_features_mlp), dim=0)
|
65 |
+
else:
|
66 |
+
gathered_audio_features = [torch.zeros_like(audio_features) for _ in range(world_size)]
|
67 |
+
gathered_text_features = [torch.zeros_like(text_features) for _ in range(world_size)]
|
68 |
+
dist.all_gather(gathered_audio_features, audio_features)
|
69 |
+
dist.all_gather(gathered_text_features, text_features)
|
70 |
+
if mlp_loss:
|
71 |
+
gathered_audio_features_mlp = [torch.zeros_like(audio_features_mlp) for _ in range(world_size)]
|
72 |
+
gathered_text_features_mlp = [torch.zeros_like(text_features_mlp) for _ in range(world_size)]
|
73 |
+
dist.all_gather(gathered_audio_features_mlp, audio_features_mlp)
|
74 |
+
dist.all_gather(gathered_text_features_mlp, text_features_mlp)
|
75 |
+
if not local_loss:
|
76 |
+
# ensure grads for local rank when all_* features don't have a gradient
|
77 |
+
gathered_audio_features[rank] = audio_features
|
78 |
+
gathered_text_features[rank] = text_features
|
79 |
+
if mlp_loss:
|
80 |
+
gathered_audio_features_mlp[rank] = audio_features_mlp
|
81 |
+
gathered_text_features_mlp[rank] = text_features_mlp
|
82 |
+
|
83 |
+
all_audio_features = torch.cat(gathered_audio_features, dim=0)
|
84 |
+
all_text_features = torch.cat(gathered_text_features, dim=0)
|
85 |
+
if mlp_loss:
|
86 |
+
all_audio_features_mlp = torch.cat(gathered_audio_features_mlp, dim=0)
|
87 |
+
all_text_features_mlp = torch.cat(gathered_text_features_mlp, dim=0)
|
88 |
+
if mlp_loss:
|
89 |
+
return all_audio_features, all_text_features, all_audio_features_mlp, all_text_features_mlp
|
90 |
+
else:
|
91 |
+
return all_audio_features, all_text_features
|
92 |
+
|
93 |
+
class ClipLoss(nn.Module):
|
94 |
+
|
95 |
+
def __init__(
|
96 |
+
self,
|
97 |
+
local_loss=False,
|
98 |
+
gather_with_grad=False,
|
99 |
+
cache_labels=False,
|
100 |
+
rank=0,
|
101 |
+
world_size=1,
|
102 |
+
use_horovod=False,
|
103 |
+
mlp_loss=False,
|
104 |
+
weight_loss_kappa=0,
|
105 |
+
):
|
106 |
+
super().__init__()
|
107 |
+
self.local_loss = local_loss
|
108 |
+
self.gather_with_grad = gather_with_grad
|
109 |
+
self.cache_labels = cache_labels
|
110 |
+
self.rank = rank
|
111 |
+
self.world_size = world_size
|
112 |
+
self.use_horovod = use_horovod
|
113 |
+
self.mlp_loss = mlp_loss
|
114 |
+
self.weighted_loss = bool(weight_loss_kappa!=0)
|
115 |
+
self.weight_loss_kappa = weight_loss_kappa
|
116 |
+
# cache state
|
117 |
+
self.prev_num_logits = 0
|
118 |
+
self.labels = {}
|
119 |
+
|
120 |
+
def forward(self, audio_features, text_features, logit_scale_a, logit_scale_t=None, audio_features_mlp=None, text_features_mlp=None):
|
121 |
+
device = audio_features.device
|
122 |
+
if self.mlp_loss:
|
123 |
+
if self.world_size > 1:
|
124 |
+
all_audio_features, all_text_features, all_audio_features_mlp, all_text_features_mlp = gather_features(
|
125 |
+
audio_features=audio_features,text_features=text_features,
|
126 |
+
audio_features_mlp=audio_features_mlp,text_features_mlp=text_features_mlp,
|
127 |
+
local_loss=self.local_loss,gather_with_grad=self.gather_with_grad,
|
128 |
+
rank=self.rank,world_size=self.world_size,use_horovod=self.use_horovod,
|
129 |
+
mlp_loss=self.mlp_loss
|
130 |
+
)
|
131 |
+
if self.local_loss:
|
132 |
+
a_logits_per_audio = logit_scale_a * audio_features @ all_text_features_mlp.T
|
133 |
+
a_logits_per_text = logit_scale_a * text_features_mlp @ all_audio_features.T
|
134 |
+
t_logits_per_audio = logit_scale_t * audio_features_mlp @ all_text_features.T
|
135 |
+
t_logits_per_text = logit_scale_t * text_features @ all_audio_features_mlp.T
|
136 |
+
else:
|
137 |
+
a_logits_per_audio = logit_scale_a * all_audio_features @ all_text_features_mlp.T
|
138 |
+
a_logits_per_text = a_logits_per_audio.T
|
139 |
+
t_logits_per_audio = logit_scale_t * all_audio_features_mlp @ all_text_features.T
|
140 |
+
t_logits_per_text = t_logits_per_audio.T
|
141 |
+
else:
|
142 |
+
a_logits_per_audio = logit_scale_a * audio_features @ text_features_mlp.T
|
143 |
+
a_logits_per_text = logit_scale_a * text_features_mlp @ audio_features.T
|
144 |
+
t_logits_per_audio = logit_scale_t * audio_features_mlp @ text_features.T
|
145 |
+
t_logits_per_text = logit_scale_t * text_features @ audio_features_mlp.T
|
146 |
+
|
147 |
+
# calculated ground-truth and cache if enabled
|
148 |
+
num_logits = a_logits_per_audio.shape[0]
|
149 |
+
if self.prev_num_logits != num_logits or device not in self.labels:
|
150 |
+
labels = torch.arange(num_logits, device=device, dtype=torch.long)
|
151 |
+
if self.world_size > 1 and self.local_loss:
|
152 |
+
labels = labels + num_logits * self.rank
|
153 |
+
if self.cache_labels:
|
154 |
+
self.labels[device] = labels
|
155 |
+
self.prev_num_logits = num_logits
|
156 |
+
else:
|
157 |
+
labels = self.labels[device]
|
158 |
+
|
159 |
+
if not self.weighted_loss:
|
160 |
+
total_loss = (
|
161 |
+
F.cross_entropy(a_logits_per_audio, labels) +
|
162 |
+
F.cross_entropy(a_logits_per_text, labels) +
|
163 |
+
F.cross_entropy(t_logits_per_audio, labels) +
|
164 |
+
F.cross_entropy(t_logits_per_text, labels)
|
165 |
+
) / 4
|
166 |
+
else:
|
167 |
+
audio_weight = (audio_features@audio_features.T).detach()
|
168 |
+
audio_weight = (torch.exp(torch.sum(audio_weight, axis=1)/(self.weight_loss_kappa*len(audio_weight)))).detach()
|
169 |
+
text_weight = (text_features@text_features.T).detach()
|
170 |
+
text_weight = (torch.exp(torch.sum(text_weight, axis=1)/(self.weight_loss_kappa*len(text_features)))).detach()
|
171 |
+
total_loss = (
|
172 |
+
F.cross_entropy(a_logits_per_audio, labels, weight=audio_weight) +
|
173 |
+
F.cross_entropy(a_logits_per_text, labels, weight=audio_weight) +
|
174 |
+
F.cross_entropy(t_logits_per_audio, labels, weight=text_weight) +
|
175 |
+
F.cross_entropy(t_logits_per_text, labels, weight=text_weight)
|
176 |
+
) / 4
|
177 |
+
else:
|
178 |
+
if self.world_size > 1:
|
179 |
+
all_audio_features, all_text_features = gather_features(
|
180 |
+
audio_features=audio_features,text_features=text_features,
|
181 |
+
local_loss=self.local_loss,gather_with_grad=self.gather_with_grad,
|
182 |
+
rank=self.rank,world_size=self.world_size,use_horovod=self.use_horovod,
|
183 |
+
mlp_loss=self.mlp_loss
|
184 |
+
)
|
185 |
+
|
186 |
+
if self.local_loss:
|
187 |
+
logits_per_audio = logit_scale_a * audio_features @ all_text_features.T
|
188 |
+
logits_per_text = logit_scale_a * text_features @ all_audio_features.T
|
189 |
+
else:
|
190 |
+
logits_per_audio = logit_scale_a * all_audio_features @ all_text_features.T
|
191 |
+
logits_per_text = logits_per_audio.T
|
192 |
+
else:
|
193 |
+
logits_per_audio = logit_scale_a * audio_features @ text_features.T
|
194 |
+
logits_per_text = logit_scale_a * text_features @ audio_features.T
|
195 |
+
|
196 |
+
# calculated ground-truth and cache if enabled
|
197 |
+
num_logits = logits_per_audio.shape[0]
|
198 |
+
if self.prev_num_logits != num_logits or device not in self.labels:
|
199 |
+
labels = torch.arange(num_logits, device=device, dtype=torch.long)
|
200 |
+
if self.world_size > 1 and self.local_loss:
|
201 |
+
labels = labels + num_logits * self.rank
|
202 |
+
if self.cache_labels:
|
203 |
+
self.labels[device] = labels
|
204 |
+
self.prev_num_logits = num_logits
|
205 |
+
else:
|
206 |
+
labels = self.labels[device]
|
207 |
+
if not self.weighted_loss:
|
208 |
+
total_loss = (
|
209 |
+
F.cross_entropy(logits_per_audio, labels) +
|
210 |
+
F.cross_entropy(logits_per_text, labels)
|
211 |
+
) / 2
|
212 |
+
else:
|
213 |
+
audio_weight = (all_audio_features@all_audio_features.T).detach()
|
214 |
+
audio_weight = (torch.exp(torch.sum(audio_weight, axis=1)/(self.weight_loss_kappa*len(all_audio_features)))).detach()
|
215 |
+
text_weight = (all_text_features@all_text_features.T).detach()
|
216 |
+
text_weight = (torch.exp(torch.sum(text_weight, axis=1)/(self.weight_loss_kappa*len(all_text_features)))).detach()
|
217 |
+
total_loss = (
|
218 |
+
F.cross_entropy(logits_per_audio, labels, weight=text_weight) +
|
219 |
+
F.cross_entropy(logits_per_text, labels, weight=audio_weight)
|
220 |
+
) / 2
|
221 |
+
return total_loss
|
222 |
+
|
223 |
+
def lp_gather_features(
|
224 |
+
pred,
|
225 |
+
target,
|
226 |
+
world_size=1,
|
227 |
+
use_horovod=False
|
228 |
+
):
|
229 |
+
if use_horovod:
|
230 |
+
assert hvd is not None, 'Please install horovod'
|
231 |
+
with torch.no_grad():
|
232 |
+
all_preds = hvd.allgather(pred)
|
233 |
+
all_targets = hvd.allgath(target)
|
234 |
+
else:
|
235 |
+
gathered_preds = [torch.zeros_like(pred) for _ in range(world_size)]
|
236 |
+
gathered_targets = [torch.zeros_like(target) for _ in range(world_size)]
|
237 |
+
|
238 |
+
dist.all_gather(gathered_preds, pred)
|
239 |
+
dist.all_gather(gathered_targets, target)
|
240 |
+
all_preds = torch.cat(gathered_preds, dim=0)
|
241 |
+
all_targets = torch.cat(gathered_targets, dim=0)
|
242 |
+
|
243 |
+
return all_preds, all_targets
|
244 |
+
|
245 |
+
|
246 |
+
def get_map(pred, target):
|
247 |
+
pred = torch.sigmoid(pred).numpy()
|
248 |
+
target = target.numpy()
|
249 |
+
return np.mean(average_precision_score(target, pred, average=None))
|
250 |
+
|
251 |
+
def get_acc(pred, target):
|
252 |
+
pred = torch.argmax(pred,1).numpy()
|
253 |
+
target = torch.argmax(target,1).numpy()
|
254 |
+
return accuracy_score(target, pred)
|
255 |
+
|
256 |
+
def get_mauc(pred, target):
|
257 |
+
pred = torch.sigmoid(pred).numpy()
|
258 |
+
target = target.numpy()
|
259 |
+
return np.mean(roc_auc_score(target, pred, average=None))
|
260 |
+
|
261 |
+
|
262 |
+
class LPMetrics(object):
|
263 |
+
def __init__(self, metric_names = ['map','acc','mauc']):
|
264 |
+
self.metrics = []
|
265 |
+
for name in metric_names:
|
266 |
+
self.metrics.append(self.get_metric(name))
|
267 |
+
self.metric_names = metric_names
|
268 |
+
|
269 |
+
def get_metric(self,name):
|
270 |
+
if name == 'map':
|
271 |
+
return get_map
|
272 |
+
elif name == 'acc':
|
273 |
+
return get_acc
|
274 |
+
elif name == 'mauc':
|
275 |
+
return get_mauc
|
276 |
+
else:
|
277 |
+
raise ValueError(f'the metric should be at least one of [map, acc, mauc]')
|
278 |
+
|
279 |
+
def evaluate_mertics(self, pred, target):
|
280 |
+
metric_dict = {}
|
281 |
+
for i in range(len(self.metric_names)):
|
282 |
+
metric_dict[self.metric_names[i]] = self.metrics[i](pred, target)
|
283 |
+
return metric_dict
|
284 |
+
|
285 |
+
|
286 |
+
def calc_celoss(pred, target):
|
287 |
+
target = torch.argmax(target, 1).long()
|
288 |
+
return nn.CrossEntropyLoss()(pred, target)
|
289 |
+
|
290 |
+
|
291 |
+
class LPLoss(nn.Module):
|
292 |
+
|
293 |
+
def __init__(self, loss_name):
|
294 |
+
super().__init__()
|
295 |
+
if loss_name == 'bce':
|
296 |
+
self.loss_func = nn.BCEWithLogitsLoss()
|
297 |
+
elif loss_name == 'ce':
|
298 |
+
self.loss_func = calc_celoss
|
299 |
+
elif loss_name == 'mse':
|
300 |
+
self.loss_func = nn.MSELoss()
|
301 |
+
else:
|
302 |
+
raise ValueError(f'the loss func should be at least one of [bce, ce, mse]')
|
303 |
+
|
304 |
+
def forward(self, pred, target):
|
305 |
+
loss = self.loss_func(pred, target)
|
306 |
+
return loss
|
307 |
+
|
ldm/modules/encoders/open_clap/model.py
ADDED
@@ -0,0 +1,913 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" CLAP Model
|
2 |
+
|
3 |
+
Adapted from CLIP: https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
|
4 |
+
Adapted to the Audio Task.
|
5 |
+
"""
|
6 |
+
|
7 |
+
from collections import OrderedDict
|
8 |
+
from dataclasses import dataclass
|
9 |
+
from email.mime import audio
|
10 |
+
from typing import Tuple, Union, Callable, Optional
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
import torch
|
14 |
+
import torch.nn.functional as F
|
15 |
+
from torch import nn
|
16 |
+
|
17 |
+
from .timm_model import TimmModel
|
18 |
+
import logging
|
19 |
+
from .utils import freeze_batch_norm_2d
|
20 |
+
|
21 |
+
from .pann_model import create_pann_model
|
22 |
+
from .htsat import create_htsat_model
|
23 |
+
from transformers import BertModel, RobertaModel, BartModel
|
24 |
+
from transformers.tokenization_utils_base import BatchEncoding
|
25 |
+
|
26 |
+
|
27 |
+
class MLPLayers(nn.Module):
|
28 |
+
def __init__(self, units=[512, 512, 512], nonlin=nn.ReLU(), dropout=0.1):
|
29 |
+
super(MLPLayers, self).__init__()
|
30 |
+
self.nonlin = nonlin
|
31 |
+
self.dropout = dropout
|
32 |
+
|
33 |
+
sequence = []
|
34 |
+
for u0, u1 in zip(units[:-1], units[1:]):
|
35 |
+
sequence.append(nn.Linear(u0, u1))
|
36 |
+
sequence.append(self.nonlin)
|
37 |
+
sequence.append(nn.Dropout(self.dropout))
|
38 |
+
sequence = sequence[:-2]
|
39 |
+
|
40 |
+
self.sequential = nn.Sequential(*sequence)
|
41 |
+
|
42 |
+
def forward(self, X):
|
43 |
+
X = self.sequential(X)
|
44 |
+
return X
|
45 |
+
|
46 |
+
|
47 |
+
class Bottleneck(nn.Module):
|
48 |
+
expansion = 4
|
49 |
+
|
50 |
+
def __init__(self, inplanes, planes, stride=1):
|
51 |
+
super().__init__()
|
52 |
+
|
53 |
+
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
|
54 |
+
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
|
55 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
56 |
+
|
57 |
+
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
|
58 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
59 |
+
|
60 |
+
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
|
61 |
+
|
62 |
+
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
|
63 |
+
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
64 |
+
|
65 |
+
self.relu = nn.ReLU(inplace=True)
|
66 |
+
self.downsample = None
|
67 |
+
self.stride = stride
|
68 |
+
|
69 |
+
if stride > 1 or inplanes != planes * Bottleneck.expansion:
|
70 |
+
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
|
71 |
+
self.downsample = nn.Sequential(
|
72 |
+
OrderedDict(
|
73 |
+
[
|
74 |
+
("-1", nn.AvgPool2d(stride)),
|
75 |
+
(
|
76 |
+
"0",
|
77 |
+
nn.Conv2d(
|
78 |
+
inplanes,
|
79 |
+
planes * self.expansion,
|
80 |
+
1,
|
81 |
+
stride=1,
|
82 |
+
bias=False,
|
83 |
+
),
|
84 |
+
),
|
85 |
+
("1", nn.BatchNorm2d(planes * self.expansion)),
|
86 |
+
]
|
87 |
+
)
|
88 |
+
)
|
89 |
+
|
90 |
+
def forward(self, x: torch.Tensor):
|
91 |
+
identity = x
|
92 |
+
|
93 |
+
out = self.relu(self.bn1(self.conv1(x)))
|
94 |
+
out = self.relu(self.bn2(self.conv2(out)))
|
95 |
+
out = self.avgpool(out)
|
96 |
+
out = self.bn3(self.conv3(out))
|
97 |
+
|
98 |
+
if self.downsample is not None:
|
99 |
+
identity = self.downsample(x)
|
100 |
+
|
101 |
+
out += identity
|
102 |
+
out = self.relu(out)
|
103 |
+
return out
|
104 |
+
|
105 |
+
|
106 |
+
class AttentionPool2d(nn.Module):
|
107 |
+
def __init__(
|
108 |
+
self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None
|
109 |
+
):
|
110 |
+
super().__init__()
|
111 |
+
self.positional_embedding = nn.Parameter(
|
112 |
+
torch.randn(spacial_dim**2 + 1, embed_dim) / embed_dim**0.5
|
113 |
+
)
|
114 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
115 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
116 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
117 |
+
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
118 |
+
self.num_heads = num_heads
|
119 |
+
|
120 |
+
def forward(self, x):
|
121 |
+
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(
|
122 |
+
2, 0, 1
|
123 |
+
) # NCHW -> (HW)NC
|
124 |
+
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
125 |
+
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
126 |
+
x, _ = F.multi_head_attention_forward(
|
127 |
+
query=x,
|
128 |
+
key=x,
|
129 |
+
value=x,
|
130 |
+
embed_dim_to_check=x.shape[-1],
|
131 |
+
num_heads=self.num_heads,
|
132 |
+
q_proj_weight=self.q_proj.weight,
|
133 |
+
k_proj_weight=self.k_proj.weight,
|
134 |
+
v_proj_weight=self.v_proj.weight,
|
135 |
+
in_proj_weight=None,
|
136 |
+
in_proj_bias=torch.cat(
|
137 |
+
[self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]
|
138 |
+
),
|
139 |
+
bias_k=None,
|
140 |
+
bias_v=None,
|
141 |
+
add_zero_attn=False,
|
142 |
+
dropout_p=0,
|
143 |
+
out_proj_weight=self.c_proj.weight,
|
144 |
+
out_proj_bias=self.c_proj.bias,
|
145 |
+
use_separate_proj_weight=True,
|
146 |
+
training=self.training,
|
147 |
+
need_weights=False,
|
148 |
+
)
|
149 |
+
|
150 |
+
return x[0]
|
151 |
+
|
152 |
+
|
153 |
+
class ModifiedResNet(nn.Module):
|
154 |
+
"""
|
155 |
+
A ResNet class that is similar to torchvision's but contains the following changes:
|
156 |
+
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
|
157 |
+
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
|
158 |
+
- The final pooling layer is a QKV attention instead of an average pool
|
159 |
+
"""
|
160 |
+
|
161 |
+
def __init__(self, layers, output_dim, heads, image_size=224, width=64):
|
162 |
+
super().__init__()
|
163 |
+
self.output_dim = output_dim
|
164 |
+
self.image_size = image_size
|
165 |
+
|
166 |
+
# the 3-layer stem
|
167 |
+
self.conv1 = nn.Conv2d(
|
168 |
+
3, width // 2, kernel_size=3, stride=2, padding=1, bias=False
|
169 |
+
)
|
170 |
+
self.bn1 = nn.BatchNorm2d(width // 2)
|
171 |
+
self.conv2 = nn.Conv2d(
|
172 |
+
width // 2, width // 2, kernel_size=3, padding=1, bias=False
|
173 |
+
)
|
174 |
+
self.bn2 = nn.BatchNorm2d(width // 2)
|
175 |
+
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
|
176 |
+
self.bn3 = nn.BatchNorm2d(width)
|
177 |
+
self.avgpool = nn.AvgPool2d(2)
|
178 |
+
self.relu = nn.ReLU(inplace=True)
|
179 |
+
|
180 |
+
# residual layers
|
181 |
+
self._inplanes = width # this is a *mutable* variable used during construction
|
182 |
+
self.layer1 = self._make_layer(width, layers[0])
|
183 |
+
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
|
184 |
+
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
|
185 |
+
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
|
186 |
+
|
187 |
+
embed_dim = width * 32 # the ResNet feature dimension
|
188 |
+
self.attnpool = AttentionPool2d(image_size // 32, embed_dim, heads, output_dim)
|
189 |
+
|
190 |
+
self.init_parameters()
|
191 |
+
|
192 |
+
def _make_layer(self, planes, blocks, stride=1):
|
193 |
+
layers = [Bottleneck(self._inplanes, planes, stride)]
|
194 |
+
|
195 |
+
self._inplanes = planes * Bottleneck.expansion
|
196 |
+
for _ in range(1, blocks):
|
197 |
+
layers.append(Bottleneck(self._inplanes, planes))
|
198 |
+
|
199 |
+
return nn.Sequential(*layers)
|
200 |
+
|
201 |
+
def init_parameters(self):
|
202 |
+
if self.attnpool is not None:
|
203 |
+
std = self.attnpool.c_proj.in_features**-0.5
|
204 |
+
nn.init.normal_(self.attnpool.q_proj.weight, std=std)
|
205 |
+
nn.init.normal_(self.attnpool.k_proj.weight, std=std)
|
206 |
+
nn.init.normal_(self.attnpool.v_proj.weight, std=std)
|
207 |
+
nn.init.normal_(self.attnpool.c_proj.weight, std=std)
|
208 |
+
|
209 |
+
for resnet_block in [self.layer1, self.layer2, self.layer3, self.layer4]:
|
210 |
+
for name, param in resnet_block.named_parameters():
|
211 |
+
if name.endswith("bn3.weight"):
|
212 |
+
nn.init.zeros_(param)
|
213 |
+
|
214 |
+
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
215 |
+
assert (
|
216 |
+
unlocked_groups == 0
|
217 |
+
), "partial locking not currently supported for this model"
|
218 |
+
for param in self.parameters():
|
219 |
+
param.requires_grad = False
|
220 |
+
if freeze_bn_stats:
|
221 |
+
freeze_batch_norm_2d(self)
|
222 |
+
|
223 |
+
def stem(self, x):
|
224 |
+
for conv, bn in [
|
225 |
+
(self.conv1, self.bn1),
|
226 |
+
(self.conv2, self.bn2),
|
227 |
+
(self.conv3, self.bn3),
|
228 |
+
]:
|
229 |
+
x = self.relu(bn(conv(x)))
|
230 |
+
x = self.avgpool(x)
|
231 |
+
return x
|
232 |
+
|
233 |
+
def forward(self, x):
|
234 |
+
x = self.stem(x)
|
235 |
+
x = self.layer1(x)
|
236 |
+
x = self.layer2(x)
|
237 |
+
x = self.layer3(x)
|
238 |
+
x = self.layer4(x)
|
239 |
+
x = self.attnpool(x)
|
240 |
+
|
241 |
+
return x
|
242 |
+
|
243 |
+
|
244 |
+
class LayerNorm(nn.LayerNorm):
|
245 |
+
"""Subclass torch's LayerNorm to handle fp16."""
|
246 |
+
|
247 |
+
def forward(self, x: torch.Tensor):
|
248 |
+
orig_type = x.dtype
|
249 |
+
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
|
250 |
+
return x.to(orig_type)
|
251 |
+
|
252 |
+
|
253 |
+
class QuickGELU(nn.Module):
|
254 |
+
# NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory
|
255 |
+
def forward(self, x: torch.Tensor):
|
256 |
+
return x * torch.sigmoid(1.702 * x)
|
257 |
+
|
258 |
+
|
259 |
+
class ResidualAttentionBlock(nn.Module):
|
260 |
+
def __init__(self, d_model: int, n_head: int, act_layer: Callable = nn.GELU):
|
261 |
+
super().__init__()
|
262 |
+
|
263 |
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
264 |
+
self.ln_1 = LayerNorm(d_model)
|
265 |
+
self.mlp = nn.Sequential(
|
266 |
+
OrderedDict(
|
267 |
+
[
|
268 |
+
("c_fc", nn.Linear(d_model, d_model * 4)),
|
269 |
+
("gelu", act_layer()),
|
270 |
+
("c_proj", nn.Linear(d_model * 4, d_model)),
|
271 |
+
]
|
272 |
+
)
|
273 |
+
)
|
274 |
+
self.ln_2 = LayerNorm(d_model)
|
275 |
+
|
276 |
+
def attention(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
277 |
+
return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0]
|
278 |
+
|
279 |
+
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
280 |
+
x = x + self.attention(self.ln_1(x), attn_mask=attn_mask)
|
281 |
+
x = x + self.mlp(self.ln_2(x))
|
282 |
+
return x
|
283 |
+
|
284 |
+
|
285 |
+
class Transformer(nn.Module):
|
286 |
+
def __init__(
|
287 |
+
self, width: int, layers: int, heads: int, act_layer: Callable = nn.GELU
|
288 |
+
):
|
289 |
+
super().__init__()
|
290 |
+
self.width = width
|
291 |
+
self.layers = layers
|
292 |
+
self.resblocks = nn.ModuleList(
|
293 |
+
[
|
294 |
+
ResidualAttentionBlock(width, heads, act_layer=act_layer)
|
295 |
+
for _ in range(layers)
|
296 |
+
]
|
297 |
+
)
|
298 |
+
|
299 |
+
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
300 |
+
for r in self.resblocks:
|
301 |
+
x = r(x, attn_mask=attn_mask)
|
302 |
+
return x
|
303 |
+
|
304 |
+
|
305 |
+
class VisualTransformer(nn.Module):
|
306 |
+
def __init__(
|
307 |
+
self,
|
308 |
+
image_size: int,
|
309 |
+
patch_size: int,
|
310 |
+
width: int,
|
311 |
+
layers: int,
|
312 |
+
heads: int,
|
313 |
+
output_dim: int,
|
314 |
+
act_layer: Callable = nn.GELU,
|
315 |
+
):
|
316 |
+
super().__init__()
|
317 |
+
self.image_size = image_size
|
318 |
+
self.output_dim = output_dim
|
319 |
+
self.conv1 = nn.Conv2d(
|
320 |
+
in_channels=3,
|
321 |
+
out_channels=width,
|
322 |
+
kernel_size=patch_size,
|
323 |
+
stride=patch_size,
|
324 |
+
bias=False,
|
325 |
+
)
|
326 |
+
|
327 |
+
scale = width**-0.5
|
328 |
+
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
329 |
+
self.positional_embedding = nn.Parameter(
|
330 |
+
scale * torch.randn((image_size // patch_size) ** 2 + 1, width)
|
331 |
+
)
|
332 |
+
self.ln_pre = LayerNorm(width)
|
333 |
+
|
334 |
+
self.text_branch = Transformer(width, layers, heads, act_layer=act_layer)
|
335 |
+
|
336 |
+
self.ln_post = LayerNorm(width)
|
337 |
+
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
|
338 |
+
|
339 |
+
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
340 |
+
assert (
|
341 |
+
unlocked_groups == 0
|
342 |
+
), "partial locking not currently supported for this model"
|
343 |
+
for param in self.parameters():
|
344 |
+
param.requires_grad = False
|
345 |
+
|
346 |
+
def forward(self, x: torch.Tensor):
|
347 |
+
x = self.conv1(x) # shape = [*, width, grid, grid]
|
348 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
349 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
350 |
+
x = torch.cat(
|
351 |
+
[
|
352 |
+
self.class_embedding.to(x.dtype)
|
353 |
+
+ torch.zeros(
|
354 |
+
x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device
|
355 |
+
),
|
356 |
+
x,
|
357 |
+
],
|
358 |
+
dim=1,
|
359 |
+
) # shape = [*, grid ** 2 + 1, width]
|
360 |
+
x = x + self.positional_embedding.to(x.dtype)
|
361 |
+
x = self.ln_pre(x)
|
362 |
+
|
363 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
364 |
+
x = self.text_branch(x)
|
365 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
366 |
+
|
367 |
+
x = self.ln_post(x[:, 0, :])
|
368 |
+
|
369 |
+
if self.proj is not None:
|
370 |
+
x = x @ self.proj
|
371 |
+
|
372 |
+
return x
|
373 |
+
|
374 |
+
|
375 |
+
@dataclass
|
376 |
+
class CLAPVisionCfg:
|
377 |
+
layers: Union[Tuple[int, int, int, int], int] = 12
|
378 |
+
width: int = 768
|
379 |
+
patch_size: int = 16
|
380 |
+
image_size: Union[Tuple[int, int], int] = 224
|
381 |
+
timm_model_name: str = (
|
382 |
+
None # a valid model name overrides layers, width, patch_size
|
383 |
+
)
|
384 |
+
timm_model_pretrained: bool = (
|
385 |
+
False # use (imagenet) pretrained weights for named model
|
386 |
+
)
|
387 |
+
timm_pool: str = (
|
388 |
+
"avg" # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '')
|
389 |
+
)
|
390 |
+
timm_proj: str = (
|
391 |
+
"linear" # linear projection for timm model output ('linear', 'mlp', '')
|
392 |
+
)
|
393 |
+
|
394 |
+
|
395 |
+
# Audio Config Class
|
396 |
+
@dataclass
|
397 |
+
class CLAPAudioCfp:
|
398 |
+
model_type: str = "PANN"
|
399 |
+
model_name: str = "Cnn14"
|
400 |
+
sample_rate: int = 48000
|
401 |
+
# Param
|
402 |
+
audio_length: int = 1024
|
403 |
+
window_size: int = 1024
|
404 |
+
hop_size: int = 1024
|
405 |
+
fmin: int = 50
|
406 |
+
fmax: int = 14000
|
407 |
+
class_num: int = 527
|
408 |
+
mel_bins: int = 64
|
409 |
+
clip_samples: int = 480000
|
410 |
+
|
411 |
+
|
412 |
+
@dataclass
|
413 |
+
class CLAPTextCfg:
|
414 |
+
context_length: int
|
415 |
+
vocab_size: int
|
416 |
+
width: int
|
417 |
+
heads: int
|
418 |
+
layers: int
|
419 |
+
model_type: str
|
420 |
+
|
421 |
+
|
422 |
+
class CLAP(nn.Module):
|
423 |
+
def __init__(
|
424 |
+
self,
|
425 |
+
embed_dim: int,
|
426 |
+
audio_cfg: CLAPAudioCfp,
|
427 |
+
text_cfg: CLAPTextCfg,
|
428 |
+
quick_gelu: bool = False,
|
429 |
+
enable_fusion: bool = False,
|
430 |
+
fusion_type: str = 'None',
|
431 |
+
joint_embed_shape: int = 512,
|
432 |
+
mlp_act: str = 'relu',
|
433 |
+
):
|
434 |
+
super().__init__()
|
435 |
+
if isinstance(audio_cfg, dict):
|
436 |
+
audio_cfg = CLAPAudioCfp(**audio_cfg)
|
437 |
+
if isinstance(text_cfg, dict):
|
438 |
+
text_cfg = CLAPTextCfg(**text_cfg)
|
439 |
+
|
440 |
+
self.audio_cfg = audio_cfg
|
441 |
+
self.text_cfg = text_cfg
|
442 |
+
self.enable_fusion = enable_fusion
|
443 |
+
self.fusion_type = fusion_type
|
444 |
+
self.joint_embed_shape = joint_embed_shape
|
445 |
+
self.mlp_act = mlp_act
|
446 |
+
|
447 |
+
|
448 |
+
self.context_length = text_cfg.context_length
|
449 |
+
|
450 |
+
# OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more
|
451 |
+
# memory efficient in recent PyTorch releases (>= 1.10).
|
452 |
+
# NOTE: timm models always use native GELU regardless of quick_gelu flag.
|
453 |
+
act_layer = QuickGELU if quick_gelu else nn.GELU
|
454 |
+
|
455 |
+
if mlp_act == 'relu':
|
456 |
+
mlp_act_layer = nn.ReLU()
|
457 |
+
elif mlp_act == 'gelu':
|
458 |
+
mlp_act_layer = nn.GELU()
|
459 |
+
else:
|
460 |
+
raise NotImplementedError
|
461 |
+
|
462 |
+
# audio branch
|
463 |
+
# audio branch parameters
|
464 |
+
if audio_cfg.model_type == "PANN":
|
465 |
+
self.audio_branch = create_pann_model(audio_cfg, enable_fusion, fusion_type)
|
466 |
+
elif audio_cfg.model_type == "HTSAT":
|
467 |
+
self.audio_branch = create_htsat_model(audio_cfg, enable_fusion, fusion_type)
|
468 |
+
else:
|
469 |
+
logging.error(f"Model config for {audio_cfg.model_type} not found")
|
470 |
+
raise RuntimeError(f"Model config for {audio_cfg.model_type} not found.")
|
471 |
+
|
472 |
+
|
473 |
+
# text branch
|
474 |
+
# text branch parameters
|
475 |
+
if text_cfg.model_type == "transformer":
|
476 |
+
self.text_branch = Transformer(
|
477 |
+
width=text_cfg.width,
|
478 |
+
layers=text_cfg.layers,
|
479 |
+
heads=text_cfg.heads,
|
480 |
+
act_layer=act_layer,
|
481 |
+
)
|
482 |
+
self.vocab_size = text_cfg.vocab_size
|
483 |
+
self.token_embedding = nn.Embedding(text_cfg.vocab_size, text_cfg.width)
|
484 |
+
self.positional_embedding = nn.Parameter(
|
485 |
+
torch.empty(self.context_length, text_cfg.width)
|
486 |
+
)
|
487 |
+
self.ln_final = LayerNorm(text_cfg.width)
|
488 |
+
self.text_transform = MLPLayers(units=[self.joint_embed_shape,
|
489 |
+
self.joint_embed_shape,
|
490 |
+
self.joint_embed_shape], dropout=0.1)
|
491 |
+
self.text_projection = nn.Sequential(
|
492 |
+
nn.Linear(text_cfg.width, self.joint_embed_shape),
|
493 |
+
mlp_act_layer,
|
494 |
+
nn.Linear(self.joint_embed_shape, self.joint_embed_shape)
|
495 |
+
)
|
496 |
+
elif text_cfg.model_type == "bert":
|
497 |
+
self.text_branch = BertModel.from_pretrained("bert-base-uncased")
|
498 |
+
self.text_transform = MLPLayers(units=[self.joint_embed_shape,
|
499 |
+
self.joint_embed_shape,
|
500 |
+
self.joint_embed_shape], dropout=0.1)
|
501 |
+
self.text_projection = nn.Sequential(
|
502 |
+
nn.Linear(768, self.joint_embed_shape),
|
503 |
+
mlp_act_layer,
|
504 |
+
nn.Linear(self.joint_embed_shape, self.joint_embed_shape)
|
505 |
+
)
|
506 |
+
elif text_cfg.model_type == "roberta":
|
507 |
+
self.text_branch = RobertaModel.from_pretrained('roberta-base')
|
508 |
+
self.text_transform = MLPLayers(units=[self.joint_embed_shape,
|
509 |
+
self.joint_embed_shape,
|
510 |
+
self.joint_embed_shape], dropout=0.1)
|
511 |
+
self.text_projection = nn.Sequential(
|
512 |
+
nn.Linear(768, self.joint_embed_shape),
|
513 |
+
mlp_act_layer,
|
514 |
+
nn.Linear(self.joint_embed_shape, self.joint_embed_shape)
|
515 |
+
)
|
516 |
+
elif text_cfg.model_type == "bart":
|
517 |
+
self.text_branch = BartModel.from_pretrained('facebook/bart-base')
|
518 |
+
self.text_transform = MLPLayers(units=[self.joint_embed_shape,
|
519 |
+
self.joint_embed_shape,
|
520 |
+
self.joint_embed_shape], dropout=0.1)
|
521 |
+
self.text_projection = nn.Sequential(
|
522 |
+
nn.Linear(768, self.joint_embed_shape),
|
523 |
+
mlp_act_layer,
|
524 |
+
nn.Linear(self.joint_embed_shape, self.joint_embed_shape)
|
525 |
+
)
|
526 |
+
else:
|
527 |
+
logging.error(f"Model config for {text_cfg.model_type} not found")
|
528 |
+
raise RuntimeError(f"Model config for {text_cfg.model_type} not found.")
|
529 |
+
self.text_branch_type = text_cfg.model_type
|
530 |
+
# text branch parameters
|
531 |
+
|
532 |
+
# audio branch parameters
|
533 |
+
self.audio_transform = MLPLayers(units=[self.joint_embed_shape,
|
534 |
+
self.joint_embed_shape,
|
535 |
+
self.joint_embed_shape], dropout=0.1)
|
536 |
+
|
537 |
+
# below here is text branch parameters
|
538 |
+
|
539 |
+
# ============================================================================================================
|
540 |
+
self.audio_projection = nn.Sequential(
|
541 |
+
nn.Linear(embed_dim, self.joint_embed_shape),
|
542 |
+
mlp_act_layer,
|
543 |
+
nn.Linear(self.joint_embed_shape, self.joint_embed_shape)
|
544 |
+
)
|
545 |
+
|
546 |
+
self.logit_scale_a = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
547 |
+
self.logit_scale_t = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
548 |
+
self.register_buffer("attn_mask", self.build_attention_mask(), persistent=False)
|
549 |
+
|
550 |
+
self.init_text_branch_parameters()
|
551 |
+
|
552 |
+
def init_text_branch_parameters(self):
|
553 |
+
if self.text_branch_type == "transformer":
|
554 |
+
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
555 |
+
nn.init.normal_(self.positional_embedding, std=0.01)
|
556 |
+
proj_std = (self.text_branch.width**-0.5) * (
|
557 |
+
(2 * self.text_branch.layers) ** -0.5
|
558 |
+
)
|
559 |
+
attn_std = self.text_branch.width**-0.5
|
560 |
+
fc_std = (2 * self.text_branch.width) ** -0.5
|
561 |
+
for block in self.text_branch.resblocks:
|
562 |
+
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
563 |
+
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
564 |
+
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
565 |
+
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
566 |
+
if self.text_branch_type == "bert" or self.text_branch_type == "roberta":
|
567 |
+
width = self.text_branch.embeddings.word_embeddings.weight.shape[-1]
|
568 |
+
elif self.text_branch_type == "bart":
|
569 |
+
width = self.text_branch.shared.weight.shape[-1]
|
570 |
+
else:
|
571 |
+
width = self.text_branch.width
|
572 |
+
nn.init.constant_(self.logit_scale_a, np.log(1 / 0.07))
|
573 |
+
nn.init.constant_(self.logit_scale_t, np.log(1 / 0.07))
|
574 |
+
|
575 |
+
# deprecated
|
576 |
+
# if hasattr(self.visual, 'init_parameters'):
|
577 |
+
# self.visual.init_parameters()
|
578 |
+
|
579 |
+
# if self.text_projection is not None:
|
580 |
+
# nn.init.normal_(self.text_projection, std=width**-0.5)
|
581 |
+
|
582 |
+
def build_attention_mask(self):
|
583 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
584 |
+
# pytorch uses additive attention mask; fill with -inf
|
585 |
+
mask = torch.empty(self.context_length, self.context_length)
|
586 |
+
mask.fill_(float("-inf"))
|
587 |
+
mask.triu_(1) # zero out the lower diagonal
|
588 |
+
return mask
|
589 |
+
|
590 |
+
def encode_audio(self, audio, device):
|
591 |
+
return self.audio_branch(audio, mixup_lambda=None, device=device) # mix lambda needs to add
|
592 |
+
|
593 |
+
# def list_of_dict_of_tensor2dict_of_tensor(self, x, device):
|
594 |
+
# tmp = {}
|
595 |
+
# for k in x[0].keys():
|
596 |
+
# tmp[k] = []
|
597 |
+
# for i in range(len(x)):
|
598 |
+
# tmp[k].append(x[i][k][:77])
|
599 |
+
# for k in x[0].keys():
|
600 |
+
# tmp[k] = torch.tensor(tmp[k]).to(device=device, non_blocking=True)
|
601 |
+
# return tmp
|
602 |
+
|
603 |
+
def encode_text(self, text, device):
|
604 |
+
if self.text_branch_type == "transformer":
|
605 |
+
text = text.to(device=device, non_blocking=True)
|
606 |
+
x = self.token_embedding(text) # [batch_size, n_ctx, d_model]
|
607 |
+
|
608 |
+
x = x + self.positional_embedding
|
609 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
610 |
+
x = self.text_branch(x, attn_mask=self.attn_mask)
|
611 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
612 |
+
x = self.ln_final(x)
|
613 |
+
|
614 |
+
# x.shape = [batch_size, n_ctx, transformer.width]
|
615 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
616 |
+
x = self.text_projection(x[torch.arange(x.shape[0]), text.argmax(dim=-1)])
|
617 |
+
elif self.text_branch_type == "bert":
|
618 |
+
# text = self.list_of_dict_of_tensor2dict_of_tensor(text, device)
|
619 |
+
# text = BatchEncoding(text)
|
620 |
+
x = self.text_branch(
|
621 |
+
input_ids=text["input_ids"].to(device=device, non_blocking=True),
|
622 |
+
attention_mask=text["attention_mask"].to(
|
623 |
+
device=device, non_blocking=True
|
624 |
+
),
|
625 |
+
token_type_ids=text["token_type_ids"].to(
|
626 |
+
device=device, non_blocking=True
|
627 |
+
),
|
628 |
+
)["pooler_output"]
|
629 |
+
x = self.text_projection(x)
|
630 |
+
elif self.text_branch_type == "roberta":
|
631 |
+
x = self.text_branch(
|
632 |
+
input_ids=text["input_ids"].to(device=device, non_blocking=True),
|
633 |
+
attention_mask=text["attention_mask"].to(
|
634 |
+
device=device, non_blocking=True
|
635 |
+
),
|
636 |
+
)["pooler_output"]
|
637 |
+
|
638 |
+
x = self.text_projection(x)
|
639 |
+
elif self.text_branch_type == "bart":
|
640 |
+
x = torch.mean(self.text_branch(
|
641 |
+
input_ids=text["input_ids"].to(device=device, non_blocking=True),
|
642 |
+
attention_mask=text["attention_mask"].to(
|
643 |
+
device=device, non_blocking=True
|
644 |
+
),
|
645 |
+
)["encoder_last_hidden_state"],axis=1)
|
646 |
+
x = self.text_projection(x)
|
647 |
+
else:
|
648 |
+
logging.error(f"Model type {self.text_branch_type} not found")
|
649 |
+
raise RuntimeError(f"Model type {self.text_branch_type} not found.")
|
650 |
+
return x
|
651 |
+
|
652 |
+
def forward(self, audio, text, device=None):
|
653 |
+
"""Forward audio and text into the CLAP
|
654 |
+
|
655 |
+
Parameters
|
656 |
+
----------
|
657 |
+
audio: torch.Tensor (batch_size, audio_length)
|
658 |
+
the time-domain audio input / the batch of mel_spec and longer list.
|
659 |
+
text: torch.Tensor () // need to add
|
660 |
+
the text token input
|
661 |
+
"""
|
662 |
+
if device is None:
|
663 |
+
if audio is not None:
|
664 |
+
device = audio.device
|
665 |
+
elif text is not None:
|
666 |
+
device = text.device
|
667 |
+
if audio is None and text is None:
|
668 |
+
# a hack to get the logit scale
|
669 |
+
return self.logit_scale_a.exp(), self.logit_scale_t.exp()
|
670 |
+
elif audio is None:
|
671 |
+
return self.encode_text(text, device=device)
|
672 |
+
elif text is None:
|
673 |
+
return self.audio_projection(self.encode_audio(audio, device=device)["embedding"])
|
674 |
+
audio_features = self.audio_projection(self.encode_audio(audio, device=device)["embedding"])
|
675 |
+
audio_features = F.normalize(audio_features, dim=-1)
|
676 |
+
|
677 |
+
text_features = self.encode_text(
|
678 |
+
text, device=device
|
679 |
+
)
|
680 |
+
# print("text_features", text_features)
|
681 |
+
# print("text_features.shape", text_features.shape)
|
682 |
+
# print("text_features.type", type(text_features))
|
683 |
+
text_features = F.normalize(text_features, dim=-1)
|
684 |
+
|
685 |
+
audio_features_mlp = self.audio_transform(audio_features)
|
686 |
+
text_features_mlp = self.text_transform(text_features)
|
687 |
+
# Four outputs: audio features (basic & MLP), text features (basic & MLP)
|
688 |
+
return (
|
689 |
+
audio_features,
|
690 |
+
text_features,
|
691 |
+
audio_features_mlp,
|
692 |
+
text_features_mlp,
|
693 |
+
self.logit_scale_a.exp(),
|
694 |
+
self.logit_scale_t.exp(),
|
695 |
+
)
|
696 |
+
|
697 |
+
def get_logit_scale(self):
|
698 |
+
return self.logit_scale_a.exp(), self.logit_scale_t.exp()
|
699 |
+
|
700 |
+
def get_textual_embedding(self, data):
|
701 |
+
|
702 |
+
device = next(self.parameters()).device
|
703 |
+
for k in data:
|
704 |
+
data[k] = data[k].to(device)
|
705 |
+
|
706 |
+
# if self.text_branch_type == "roberta":
|
707 |
+
text_embeds = self.text_branch(
|
708 |
+
input_ids=data["input_ids"].to(device=device, non_blocking=True),
|
709 |
+
attention_mask=data["attention_mask"].to(device=device, non_blocking=True),
|
710 |
+
)["last_hidden_state"]
|
711 |
+
|
712 |
+
text_embeds = self.text_projection(text_embeds)
|
713 |
+
|
714 |
+
text_embeds = F.normalize(text_embeds, dim=-1)
|
715 |
+
|
716 |
+
return text_embeds
|
717 |
+
|
718 |
+
def get_text_embedding(self, data):
|
719 |
+
"""Get the text embedding from the model
|
720 |
+
|
721 |
+
Parameters
|
722 |
+
----------
|
723 |
+
data: torch.Tensor
|
724 |
+
a tensor of text embedding
|
725 |
+
|
726 |
+
Returns
|
727 |
+
----------
|
728 |
+
text_embed: torch.Tensor
|
729 |
+
a tensor of text_embeds (N, D)
|
730 |
+
|
731 |
+
"""
|
732 |
+
device = next(self.parameters()).device
|
733 |
+
for k in data:
|
734 |
+
data[k] = data[k].to(device)
|
735 |
+
text_embeds = self.encode_text(data, device=device)
|
736 |
+
text_embeds = F.normalize(text_embeds, dim=-1)
|
737 |
+
|
738 |
+
return text_embeds
|
739 |
+
|
740 |
+
def get_audio_embedding(self, data):
|
741 |
+
"""Get the audio embedding from the model
|
742 |
+
|
743 |
+
Parameters
|
744 |
+
----------
|
745 |
+
data: a list of dict
|
746 |
+
the audio input dict list from 'get_audio_feature' method
|
747 |
+
|
748 |
+
Returns
|
749 |
+
----------
|
750 |
+
audio_embed: torch.Tensor
|
751 |
+
a tensor of audio_embeds (N, D)
|
752 |
+
|
753 |
+
"""
|
754 |
+
device = next(self.parameters()).device
|
755 |
+
input_dict = {}
|
756 |
+
keys = data[0].keys()
|
757 |
+
for k in keys:
|
758 |
+
input_dict[k] = torch.cat([d[k].unsqueeze(0) for d in data], dim=0).to(device)
|
759 |
+
|
760 |
+
audio_embeds = self.audio_projection(self.encode_audio(input_dict, device=device)["embedding"])
|
761 |
+
audio_embeds = F.normalize(audio_embeds, dim=-1)
|
762 |
+
|
763 |
+
return audio_embeds
|
764 |
+
|
765 |
+
|
766 |
+
|
767 |
+
def audio_infer(self, audio, hopsize=None, device=None):
|
768 |
+
"""Forward one audio and produce the audio embedding
|
769 |
+
|
770 |
+
Parameters
|
771 |
+
----------
|
772 |
+
audio: (audio_length)
|
773 |
+
the time-domain audio input, notice that it must be only one input
|
774 |
+
hopsize: int
|
775 |
+
the overlap hopsize as the sliding window
|
776 |
+
|
777 |
+
Returns
|
778 |
+
----------
|
779 |
+
output_dict: {
|
780 |
+
key: [n, (embedding_shape)] if "HTS-AT"
|
781 |
+
or
|
782 |
+
key: [(embedding_shape)] if "PANN"
|
783 |
+
}
|
784 |
+
the list of key values of the audio branch
|
785 |
+
|
786 |
+
"""
|
787 |
+
|
788 |
+
assert not self.training, "the inference mode must be run at eval stage"
|
789 |
+
output_dict = {}
|
790 |
+
# PANN
|
791 |
+
if self.audio_cfg.model_type == "PANN":
|
792 |
+
audio_input = audio.unsqueeze(dim=0)
|
793 |
+
output_dict[key] = self.encode_audio(audio_input, device=device)[key].squeeze(dim=0)
|
794 |
+
elif self.audio_cfg.model_type == "HTSAT":
|
795 |
+
# repeat
|
796 |
+
audio_len = len(audio)
|
797 |
+
k = self.audio_cfg.clip_samples // audio_len
|
798 |
+
if k > 1:
|
799 |
+
audio = audio.repeat(k)
|
800 |
+
audio_len = len(audio)
|
801 |
+
|
802 |
+
if hopsize is None:
|
803 |
+
hopsize = min(hopsize, audio_len)
|
804 |
+
|
805 |
+
if audio_len > self.audio_cfg.clip_samples:
|
806 |
+
audio_input = [
|
807 |
+
audio[pos : pos + self.audio_cfg.clip_samples].clone()
|
808 |
+
for pos in range(
|
809 |
+
0, audio_len - self.audio_cfg.clip_samples, hopsize
|
810 |
+
)
|
811 |
+
]
|
812 |
+
audio_input.append(audio[-self.audio_cfg.clip_samples :].clone())
|
813 |
+
audio_input = torch.stack(audio_input)
|
814 |
+
output_dict[key] = self.encode_audio(audio_input, device=device)[key]
|
815 |
+
else:
|
816 |
+
audio_input = audio.unsqueeze(dim=0)
|
817 |
+
output_dict[key] = self.encode_audio(audio_input, device=device)[key].squeeze(dim=0)
|
818 |
+
|
819 |
+
return output_dict
|
820 |
+
|
821 |
+
|
822 |
+
def convert_weights_to_fp16(model: nn.Module):
|
823 |
+
"""Convert applicable model parameters to fp16"""
|
824 |
+
|
825 |
+
def _convert_weights_to_fp16(l):
|
826 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
827 |
+
l.weight.data = l.weight.data.half()
|
828 |
+
if l.bias is not None:
|
829 |
+
l.bias.data = l.bias.data.half()
|
830 |
+
|
831 |
+
if isinstance(l, nn.MultiheadAttention):
|
832 |
+
for attr in [
|
833 |
+
*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]],
|
834 |
+
"in_proj_bias",
|
835 |
+
"bias_k",
|
836 |
+
"bias_v",
|
837 |
+
]:
|
838 |
+
tensor = getattr(l, attr)
|
839 |
+
if tensor is not None:
|
840 |
+
tensor.data = tensor.data.half()
|
841 |
+
|
842 |
+
for name in ["text_projection", "proj"]:
|
843 |
+
if hasattr(l, name):
|
844 |
+
attr = getattr(l, name)
|
845 |
+
if attr is not None:
|
846 |
+
attr.data = attr.data.half()
|
847 |
+
|
848 |
+
model.apply(_convert_weights_to_fp16)
|
849 |
+
|
850 |
+
|
851 |
+
# Ignore the state dict of the vision part
|
852 |
+
def build_model_from_openai_state_dict(state_dict: dict, model_cfg, enable_fusion: bool = False, fusion_type: str = 'None'):
|
853 |
+
|
854 |
+
embed_dim = model_cfg["embed_dim"]
|
855 |
+
audio_cfg = model_cfg["audio_cfg"]
|
856 |
+
text_cfg = model_cfg["text_cfg"]
|
857 |
+
context_length = state_dict["positional_embedding"].shape[0]
|
858 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
859 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
860 |
+
transformer_heads = transformer_width // 64
|
861 |
+
transformer_layers = len(
|
862 |
+
set(
|
863 |
+
k.split(".")[2]
|
864 |
+
for k in state_dict
|
865 |
+
if k.startswith(f"transformer.resblocks")
|
866 |
+
)
|
867 |
+
)
|
868 |
+
|
869 |
+
audio_cfg = CLAPAudioCfp(**audio_cfg)
|
870 |
+
text_cfg = CLAPTextCfg(**text_cfg)
|
871 |
+
|
872 |
+
model = CLAP(
|
873 |
+
embed_dim,
|
874 |
+
audio_cfg=audio_cfg,
|
875 |
+
text_cfg=text_cfg,
|
876 |
+
quick_gelu=True, # OpenAI models were trained with QuickGELU
|
877 |
+
enable_fusion=enable_fusion,
|
878 |
+
fusion_type=fusion_type
|
879 |
+
)
|
880 |
+
state_dict["logit_scale_a"] = state_dict["logit_scale"]
|
881 |
+
state_dict["logit_scale_t"] = state_dict["logit_scale"]
|
882 |
+
pop_keys = list(state_dict.keys())[::]
|
883 |
+
# pop the visual branch saved weights
|
884 |
+
for key in pop_keys:
|
885 |
+
if key.startswith("visual."):
|
886 |
+
state_dict.pop(key, None)
|
887 |
+
|
888 |
+
for key in ["logit_scale", "input_resolution", "context_length", "vocab_size"]:
|
889 |
+
state_dict.pop(key, None)
|
890 |
+
|
891 |
+
# not use fp16
|
892 |
+
# convert_weights_to_fp16(model)
|
893 |
+
model.load_state_dict(state_dict, strict=False)
|
894 |
+
return model.eval()
|
895 |
+
|
896 |
+
|
897 |
+
def trace_model(model, batch_size=256, device=torch.device("cpu")):
|
898 |
+
model.eval()
|
899 |
+
audio_length = model.audio_cfg.audio_length
|
900 |
+
example_audio = torch.ones((batch_size, audio_length), device=device)
|
901 |
+
example_text = torch.zeros(
|
902 |
+
(batch_size, model.context_length), dtype=torch.int, device=device
|
903 |
+
)
|
904 |
+
model = torch.jit.trace_module(
|
905 |
+
model,
|
906 |
+
inputs=dict(
|
907 |
+
forward=(example_audio, example_text),
|
908 |
+
encode_text=(example_text,),
|
909 |
+
encode_image=(example_audio,),
|
910 |
+
),
|
911 |
+
)
|
912 |
+
model.audio_cfg.audio_length = audio_length # Question: what does this do?
|
913 |
+
return model
|
ldm/modules/encoders/open_clap/model_configs/HTSAT-base.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 1024,
|
3 |
+
"audio_cfg": {
|
4 |
+
"audio_length": 1024,
|
5 |
+
"clip_samples": 480000,
|
6 |
+
"mel_bins": 64,
|
7 |
+
"sample_rate": 48000,
|
8 |
+
"window_size": 1024,
|
9 |
+
"hop_size": 480,
|
10 |
+
"fmin": 50,
|
11 |
+
"fmax": 14000,
|
12 |
+
"class_num": 527,
|
13 |
+
"model_type": "HTSAT",
|
14 |
+
"model_name": "base"
|
15 |
+
},
|
16 |
+
"text_cfg": {
|
17 |
+
"context_length": 77,
|
18 |
+
"vocab_size": 49408,
|
19 |
+
"width": 512,
|
20 |
+
"heads": 8,
|
21 |
+
"layers": 12
|
22 |
+
}
|
23 |
+
}
|
ldm/modules/encoders/open_clap/model_configs/HTSAT-large.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 2048,
|
3 |
+
"audio_cfg": {
|
4 |
+
"audio_length": 1024,
|
5 |
+
"clip_samples": 480000,
|
6 |
+
"mel_bins": 64,
|
7 |
+
"sample_rate": 48000,
|
8 |
+
"window_size": 1024,
|
9 |
+
"hop_size": 480,
|
10 |
+
"fmin": 50,
|
11 |
+
"fmax": 14000,
|
12 |
+
"class_num": 527,
|
13 |
+
"model_type": "HTSAT",
|
14 |
+
"model_name": "large"
|
15 |
+
},
|
16 |
+
"text_cfg": {
|
17 |
+
"context_length": 77,
|
18 |
+
"vocab_size": 49408,
|
19 |
+
"width": 512,
|
20 |
+
"heads": 8,
|
21 |
+
"layers": 12
|
22 |
+
}
|
23 |
+
}
|
ldm/modules/encoders/open_clap/model_configs/HTSAT-tiny-win-1536.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 768,
|
3 |
+
"audio_cfg": {
|
4 |
+
"audio_length": 1024,
|
5 |
+
"clip_samples": 480000,
|
6 |
+
"mel_bins": 64,
|
7 |
+
"sample_rate": 48000,
|
8 |
+
"window_size": 1536,
|
9 |
+
"hop_size": 480,
|
10 |
+
"fmin": 50,
|
11 |
+
"fmax": 14000,
|
12 |
+
"class_num": 527,
|
13 |
+
"model_type": "HTSAT",
|
14 |
+
"model_name": "tiny"
|
15 |
+
},
|
16 |
+
"text_cfg": {
|
17 |
+
"context_length": 77,
|
18 |
+
"vocab_size": 49408,
|
19 |
+
"width": 512,
|
20 |
+
"heads": 8,
|
21 |
+
"layers": 12
|
22 |
+
}
|
23 |
+
}
|
ldm/modules/encoders/open_clap/model_configs/HTSAT-tiny.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 768,
|
3 |
+
"audio_cfg": {
|
4 |
+
"audio_length": 1024,
|
5 |
+
"clip_samples": 480000,
|
6 |
+
"mel_bins": 64,
|
7 |
+
"sample_rate": 48000,
|
8 |
+
"window_size": 1024,
|
9 |
+
"hop_size": 480,
|
10 |
+
"fmin": 50,
|
11 |
+
"fmax": 14000,
|
12 |
+
"class_num": 527,
|
13 |
+
"model_type": "HTSAT",
|
14 |
+
"model_name": "tiny"
|
15 |
+
},
|
16 |
+
"text_cfg": {
|
17 |
+
"context_length": 77,
|
18 |
+
"vocab_size": 49408,
|
19 |
+
"width": 512,
|
20 |
+
"heads": 8,
|
21 |
+
"layers": 12
|
22 |
+
}
|
23 |
+
}
|
ldm/modules/encoders/open_clap/model_configs/PANN-10.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 1024,
|
3 |
+
"audio_cfg": {
|
4 |
+
"audio_length": 1024,
|
5 |
+
"clip_samples": 480000,
|
6 |
+
"mel_bins": 64,
|
7 |
+
"sample_rate": 48000,
|
8 |
+
"window_size": 1024,
|
9 |
+
"hop_size": 480,
|
10 |
+
"fmin": 50,
|
11 |
+
"fmax": 14000,
|
12 |
+
"class_num": 527,
|
13 |
+
"model_type": "PANN",
|
14 |
+
"model_name": "Cnn10"
|
15 |
+
},
|
16 |
+
"text_cfg": {
|
17 |
+
"context_length": 77,
|
18 |
+
"vocab_size": 49408,
|
19 |
+
"width": 512,
|
20 |
+
"heads": 8,
|
21 |
+
"layers": 12
|
22 |
+
}
|
23 |
+
}
|
ldm/modules/encoders/open_clap/model_configs/PANN-14-fmax-18k.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 2048,
|
3 |
+
"audio_cfg": {
|
4 |
+
"audio_length": 1024,
|
5 |
+
"clip_samples": 480000,
|
6 |
+
"mel_bins": 64,
|
7 |
+
"sample_rate": 48000,
|
8 |
+
"window_size": 1024,
|
9 |
+
"hop_size": 480,
|
10 |
+
"fmin": 50,
|
11 |
+
"fmax": 18000,
|
12 |
+
"class_num": 527,
|
13 |
+
"model_type": "PANN",
|
14 |
+
"model_name": "Cnn14"
|
15 |
+
},
|
16 |
+
"text_cfg": {
|
17 |
+
"context_length": 77,
|
18 |
+
"vocab_size": 49408,
|
19 |
+
"width": 512,
|
20 |
+
"heads": 8,
|
21 |
+
"layers": 12
|
22 |
+
}
|
23 |
+
}
|
ldm/modules/encoders/open_clap/model_configs/PANN-14-fmax-8k-20s.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 2048,
|
3 |
+
"audio_cfg": {
|
4 |
+
"audio_length": 1024,
|
5 |
+
"clip_samples": 960000,
|
6 |
+
"mel_bins": 64,
|
7 |
+
"sample_rate": 48000,
|
8 |
+
"window_size": 1024,
|
9 |
+
"hop_size": 360,
|
10 |
+
"fmin": 50,
|
11 |
+
"fmax": 8000,
|
12 |
+
"class_num": 527,
|
13 |
+
"model_type": "PANN",
|
14 |
+
"model_name": "Cnn14"
|
15 |
+
},
|
16 |
+
"text_cfg": {
|
17 |
+
"context_length": 77,
|
18 |
+
"vocab_size": 49408,
|
19 |
+
"width": 512,
|
20 |
+
"heads": 8,
|
21 |
+
"layers": 12
|
22 |
+
}
|
23 |
+
}
|
ldm/modules/encoders/open_clap/model_configs/PANN-14-tiny-transformer.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 2048,
|
3 |
+
"audio_cfg": {
|
4 |
+
"audio_length": 1024,
|
5 |
+
"clip_samples": 480000,
|
6 |
+
"mel_bins": 64,
|
7 |
+
"sample_rate": 48000,
|
8 |
+
"window_size": 1024,
|
9 |
+
"hop_size": 480,
|
10 |
+
"fmin": 50,
|
11 |
+
"fmax": 14000,
|
12 |
+
"class_num": 527,
|
13 |
+
"model_type": "PANN",
|
14 |
+
"model_name": "Cnn14"
|
15 |
+
},
|
16 |
+
"text_cfg": {
|
17 |
+
"context_length": 77,
|
18 |
+
"vocab_size": 49408,
|
19 |
+
"width": 512,
|
20 |
+
"heads": 8,
|
21 |
+
"layers": 4
|
22 |
+
}
|
23 |
+
}
|