Spaces:
Sleeping
Sleeping
File size: 46,350 Bytes
0902a5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 |
import einops
import torch
import torch as th
import torch.nn as nn
from ldm.modules.diffusionmodules.util import (
conv_nd,
linear,
zero_module,
timestep_embedding,
)
from einops import rearrange, repeat
from torchvision.utils import make_grid
from ldm.modules.attention import SpatialTransformer
from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock
from ldm.models.diffusion.ddpm import LatentDiffusion
from ldm.util import log_txt_as_img, exists, instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.modules.ema import LitEma
from contextlib import contextmanager, nullcontext
from cldm.model import load_state_dict
import numpy as np
from torch.optim.lr_scheduler import LambdaLR, CosineAnnealingLR, OneCycleLR
def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self
class ControlledUnetModel(UNetModel):
def forward(self, x, timesteps=None, context=None, control=None, only_mid_control=False, context_glyph= None, **kwargs):
hs = []
with torch.no_grad():
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb)
h = x.type(self.dtype)
for module in self.input_blocks:
h = module(h, emb, context)
hs.append(h)
h = self.middle_block(h, emb, context)
if control is not None:
h += control.pop()
for i, module in enumerate(self.output_blocks):
if only_mid_control or control is None:
h = torch.cat([h, hs.pop()], dim=1)
else:
h = torch.cat([h, hs.pop() + control.pop()], dim=1)
h = module(h, emb, context if context_glyph is None else context_glyph)
h = h.type(x.dtype)
return self.out(h)
class ControlNet(nn.Module):
def __init__(
self,
image_size,
in_channels,
model_channels,
hint_channels,
num_res_blocks,
attention_resolutions,
dropout=0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=2,
use_checkpoint=False,
use_fp16=False,
num_heads=-1,
num_head_channels=-1,
num_heads_upsample=-1,
use_scale_shift_norm=False,
resblock_updown=False,
use_new_attention_order=False,
use_spatial_transformer=False, # custom transformer support
transformer_depth=1, # custom transformer support
context_dim=None, # custom transformer support
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
legacy=True,
disable_self_attentions=None,
num_attention_blocks=None,
disable_middle_self_attn=False,
use_linear_in_transformer=False,
):
super().__init__()
if use_spatial_transformer:
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
if context_dim is not None:
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
from omegaconf.listconfig import ListConfig
if type(context_dim) == ListConfig:
context_dim = list(context_dim)
if num_heads_upsample == -1:
num_heads_upsample = num_heads
if num_heads == -1:
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
if num_head_channels == -1:
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
self.dims = dims
self.image_size = image_size
self.in_channels = in_channels
self.model_channels = model_channels
if isinstance(num_res_blocks, int):
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
else:
if len(num_res_blocks) != len(channel_mult):
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
"as a list/tuple (per-level) with the same length as channel_mult")
self.num_res_blocks = num_res_blocks
if disable_self_attentions is not None:
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
assert len(disable_self_attentions) == len(channel_mult)
if num_attention_blocks is not None:
assert len(num_attention_blocks) == len(self.num_res_blocks)
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
f"attention will still not be set.")
self.attention_resolutions = attention_resolutions
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.use_checkpoint = use_checkpoint
self.dtype = th.float16 if use_fp16 else th.float32
self.num_heads = num_heads
self.num_head_channels = num_head_channels
self.num_heads_upsample = num_heads_upsample
self.predict_codebook_ids = n_embed is not None
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
self.input_blocks = nn.ModuleList(
[
TimestepEmbedSequential(
conv_nd(dims, in_channels, model_channels, 3, padding=1)
)
]
)
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)])
self.input_hint_block = TimestepEmbedSequential(
conv_nd(dims, hint_channels, 16, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 16, 16, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 16, 32, 3, padding=1, stride=2),
nn.SiLU(),
conv_nd(dims, 32, 32, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 32, 96, 3, padding=1, stride=2),
nn.SiLU(),
conv_nd(dims, 96, 96, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 96, 256, 3, padding=1, stride=2),
nn.SiLU(),
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1))
)
self._feature_size = model_channels
input_block_chans = [model_channels]
ch = model_channels
ds = 1
for level, mult in enumerate(channel_mult):
for nr in range(self.num_res_blocks[level]):
layers = [
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=mult * model_channels,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = mult * model_channels
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
# num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
if exists(disable_self_attentions):
disabled_sa = disable_self_attentions[level]
else:
disabled_sa = False
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
layers.append(
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer(
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint
)
)
self.input_blocks.append(TimestepEmbedSequential(*layers))
self.zero_convs.append(self.make_zero_conv(ch))
self._feature_size += ch
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
out_ch = ch
self.input_blocks.append(
TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
down=True,
)
if resblock_updown
else Downsample(
ch, conv_resample, dims=dims, out_channels=out_ch
)
)
)
ch = out_ch
input_block_chans.append(ch)
self.zero_convs.append(self.make_zero_conv(ch))
ds *= 2
self._feature_size += ch
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
# num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
self.middle_block = TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint
),
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
)
self.middle_block_out = self.make_zero_conv(ch)
self._feature_size += ch
def make_zero_conv(self, channels):
return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0)))
def forward(self, x, hint, timesteps, context, **kwargs):
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb)
guided_hint = self.input_hint_block(hint, emb, context)
outs = []
h = x.type(self.dtype)
for module, zero_conv in zip(self.input_blocks, self.zero_convs):
if guided_hint is not None:
h = module(h, emb, context)
h += guided_hint
guided_hint = None
else:
h = module(h, emb, context)
outs.append(zero_conv(h, emb, context))
h = self.middle_block(h, emb, context)
outs.append(self.middle_block_out(h, emb, context))
return outs
class ControlLDM(LatentDiffusion):
def __init__(self,
control_stage_config,
control_key, only_mid_control,
sd_locked = True, concat_textemb = False,
trans_textemb=False, trans_textemb_config = None,
learnable_conscale = False, guess_mode=False,
sep_lr = False, decoder_lr = 1.0**-4,
add_glyph_control = False, glyph_control_config = None, glycon_wd = 0.2, glycon_lr = 1.0**-4, glycon_sched = "lambda",
glyph_control_key = "centered_hint", sep_cond_txt = False, exchange_cond_txt = False,
max_step = None, multiple_optimizers = False, deepspeed = False, trans_glyph_lr = 1.0**-5,
*args, **kwargs
): #sep_cap_for_2b = False
use_ema = kwargs.pop("use_ema", False)
ckpt_path = kwargs.pop("ckpt_path", None)
reset_ema = kwargs.pop("reset_ema", False)
only_model= kwargs.pop("only_model", False)
reset_num_ema_updates = kwargs.pop("reset_num_ema_updates", False)
keep_num_ema_updates = kwargs.pop("keep_num_ema_updates", False)
ignore_keys = kwargs.pop("ignore_keys", [])
super().__init__(*args, use_ema=False, **kwargs)
self.control_model = instantiate_from_config(control_stage_config)
self.control_key = control_key
self.only_mid_control = only_mid_control
self.learnable_conscale = learnable_conscale
conscale_init = [1.0] * 13 if not guess_mode else [(0.825 ** float(12 - i)) for i in range(13)]
if learnable_conscale:
# self.control_scales = nn.Parameter(torch.ones(13), requires_grad=True)
self.control_scales = nn.Parameter(torch.Tensor(conscale_init), requires_grad=True)
else: # TODO: register the buffer
self.control_scales = conscale_init #[1.0] * 13
self.sd_locked = sd_locked
self.concat_textemb = concat_textemb
# update
self.trans_textemb = False
if trans_textemb and trans_textemb_config is not None:
self.trans_textemb = True
self.instantiate_trans_textemb_model(trans_textemb_config)
# self.sep_cap_for_2b = sep_cap_for_2b
self.sep_lr = sep_lr
self.decoder_lr = decoder_lr
self.sep_cond_txt = sep_cond_txt
self.exchange_cond_txt = exchange_cond_txt
# update (4.18)
self.multiple_optimizers = multiple_optimizers
self.add_glyph_control = False
self.glyph_control_key = glyph_control_key
self.freeze_glyph_image_encoder = True
self.glyph_image_encoder_type = "CLIP"
self.max_step = max_step
self.trans_glyph_embed = False
self.trans_glyph_lr = trans_glyph_lr
if deepspeed:
try:
from deepspeed.ops.adam import FusedAdam, DeepSpeedCPUAdam
self.optimizer = DeepSpeedCPUAdam #FusedAdam
except:
print("could not import FuseAdam from deepspeed")
self.optimizer = torch.optim.AdamW
else:
self.optimizer = torch.optim.AdamW
if add_glyph_control and glyph_control_config is not None:
self.add_glyph_control = True
self.glycon_wd = glycon_wd
self.glycon_lr = glycon_lr
self.glycon_sched = glycon_sched
self.instantiate_glyph_control_model(glyph_control_config)
if self.glyph_control_model.trans_glyph_emb_model is not None:
self.trans_glyph_embed = True
self.use_ema = use_ema
if self.use_ema: #TODO: trainable glyph Image encoder
# assert self.sd_locked == True
self.model_ema = LitEma(self.control_model, init_num_updates= 0)
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
if not self.sd_locked: # Update
self.model_diffoutblock_ema = LitEma(self.model.diffusion_model.output_blocks, init_num_updates= 0)
print(f"Keeping diffoutblock EMAs of {len(list(self.model_diffoutblock_ema.buffers()))}.")
self.model_diffout_ema = LitEma(self.model.diffusion_model.out, init_num_updates= 0)
print(f"Keeping diffout EMAs of {len(list(self.model_diffout_ema.buffers()))}.")
if not self.freeze_glyph_image_encoder:
self.model_glyphcon_ema = LitEma(self.glyph_control_model.image_encoder, init_num_updates=0)
print(f"Keeping glyphcon EMAs of {len(list(self.model_glyphcon_ema.buffers()))}.")
if self.trans_glyph_embed:
self.model_transglyph_ema = LitEma(self.glyph_control_model.trans_glyph_emb_model, init_num_updates=0)
print(f"Keeping glyphcon EMAs of {len(list(self.model_transglyph_ema.buffers()))}.")
if ckpt_path is not None:
ema_num_updates = self.init_from_ckpt(ckpt_path, ignore_keys, only_model=only_model)
self.restarted_from_ckpt = True
# if reset_ema:
# assert self.use_ema
if self.use_ema and reset_ema:
print(
f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
self.model_ema = LitEma(self.control_model, init_num_updates= ema_num_updates if keep_num_ema_updates else 0)
if not self.sd_locked: # Update
self.model_diffoutblock_ema = LitEma(self.model.diffusion_model.output_blocks, init_num_updates= ema_num_updates if keep_num_ema_updates else 0)
self.model_diffout_ema = LitEma(self.model.diffusion_model.out, init_num_updates= ema_num_updates if keep_num_ema_updates else 0)
if not self.freeze_glyph_image_encoder:
self.model_glyphcon_ema = LitEma(self.glyph_control_model.image_encoder, init_num_updates= ema_num_updates if keep_num_ema_updates else 0)
if self.trans_glyph_embed:
self.model_transglyph_ema = LitEma(self.glyph_control_model.trans_glyph_emb_model, init_num_updates= ema_num_updates if keep_num_ema_updates else 0)
if reset_num_ema_updates:
print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
assert self.use_ema
self.model_ema.reset_num_updates()
if not self.sd_locked: # Update
self.model_diffoutblock_ema.reset_num_updates()
self.model_diffout_ema.reset_num_updates()
if not self.freeze_glyph_image_encoder:
self.model_glyphcon_ema.reset_num_updates()
if self.trans_glyph_embed:
self.model_transglyph_ema.reset_num_updates()
# self.freeze_unet()
@contextmanager
def ema_scope(self, context=None):
if self.use_ema: # TODO: fix the bug while adding transemb_model or trainable control scales
self.model_ema.store(self.control_model.parameters())
self.model_ema.copy_to(self.control_model)
if not self.sd_locked: # Update
self.model_diffoutblock_ema.store(self.model.diffusion_model.output_blocks.parameters())
self.model_diffoutblock_ema.copy_to(self.model.diffusion_model.output_blocks)
self.model_diffout_ema.store(self.model.diffusion_model.out.parameters())
self.model_diffout_ema.copy_to(self.model.diffusion_model.out)
if not self.freeze_glyph_image_encoder:
self.model_glyphcon_ema.store(self.glyph_control_model.image_encoder.parameters())
self.model_glyphcon_ema.copy_to(self.glyph_control_model.image_encoder)
if self.trans_glyph_embed:
self.model_transglyph_ema.store(self.glyph_control_model.trans_glyph_emb_model.parameters())
self.model_transglyph_ema.copy_to(self.glyph_control_model.trans_glyph_emb_model)
if context is not None:
print(f"{context}: Switched ControlNet to EMA weights")
try:
yield None
finally:
if self.use_ema:
self.model_ema.restore(self.control_model.parameters())
if not self.sd_locked: # Update
self.model_diffoutblock_ema.restore(self.model.diffusion_model.output_blocks.parameters())
self.model_diffout_ema.restore(self.model.diffusion_model.out.parameters())
if not self.freeze_glyph_image_encoder:
self.model_glyphcon_ema.restore(self.glyph_control_model.image_encoder.parameters())
if self.trans_glyph_embed:
self.model_transglyph_ema.restore(self.glyph_control_model.trans_glyph_emb_model.parameters())
if context is not None:
print(f"{context}: Restored training weights of ControlNet")
@torch.no_grad()
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
if path.endswith("model_states.pt"):
sd = torch.load(path, map_location='cpu')["module"]
else:
# sd = load_state_dict(path, location='cpu') # abandoned
sd = torch.load(path, map_location="cpu")
if "state_dict" in list(sd.keys()):
sd = sd["state_dict"]
keys_ = list(sd.keys())[:]
for k in keys_:
if k.startswith("module."):
nk = k[7:]
sd[nk] = sd[k]
del sd[k]
keys = list(sd.keys())
for k in keys:
for ik in ignore_keys:
if k.startswith(ik):
print("Deleting key {} from state_dict.".format(k))
del sd[k]
# missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
# sd, strict=False)
if not only_model:
missing, unexpected = self.load_state_dict(sd, strict=False)
elif path.endswith(".bin"):
missing, unexpected = self.model.diffusion_model.load_state_dict(sd, strict=False)
elif path.endswith(".ckpt"):
missing, unexpected = self.model.load_state_dict(sd, strict=False)
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
if len(missing) > 0:
print(f"Missing Keys:\n {missing}")
if len(unexpected) > 0:
print(f"\nUnexpected Keys:\n {unexpected}")
if "model_ema.num_updates" in sd and "model_ema.num_updates" not in unexpected:
return sd["model_ema.num_updates"].item()
else:
return 0
def instantiate_trans_textemb_model(self, config):
model = instantiate_from_config(config)
params = []
for i in range(model.emb_num):
if model.trans_trainable[i]:
params += list(model.trans_list[i].parameters())
else:
for param in model.trans_list[i].parameters():
param.requires_grad = False
self.trans_textemb_model = model
self.trans_textemb_params = params
# add
def instantiate_glyph_control_model(self, config):
model = instantiate_from_config(config)
# params = []
self.freeze_glyph_image_encoder = model.freeze_image_encoder #image_encoder.freeze_model
self.glyph_control_model = model
self.glyph_image_encoder_type = model.image_encoder_type
# self.glyph_control_optim = torch.optim.AdamW([
# {"params": gain_or_bias_params, "weight_decay": 0.}, # "lr": self.glycon_lr},
# {"params": rest_params, "weight_decay": self.glycon_wd} #, "lr": self.glycon_lr},
# ],
# lr = self.glycon_lr
# )
# params += list(model.image_encoder.parameters())
@torch.no_grad()
def get_input(self, batch, k, bs=None, *args, **kwargs):
x, c = super().get_input(batch, self.first_stage_key, *args, **kwargs)
control = batch[self.control_key]
if bs is not None:
control = control[:bs]
control = control.to(self.device)
control = einops.rearrange(control, 'b h w c -> b c h w')
control = control.to(memory_format=torch.contiguous_format).float()
if self.add_glyph_control:
assert self.glyph_control_key in batch.keys()
glyph_control = batch[self.glyph_control_key]
if bs is not None:
glyph_control = glyph_control[:bs]
glycon_samples = []
for glycon_sample in glyph_control:
glycon_sample = glycon_sample.to(self.device)
glycon_sample = einops.rearrange(glycon_sample, 'b h w c -> b c h w')
glycon_sample = glycon_sample.to(memory_format=torch.contiguous_format).float()
glycon_samples.append(glycon_sample)
# return x, dict(c_crossattn=[c], c_concat=[control])
return x, dict(c_crossattn=[c] if not isinstance(c, list) else c, c_concat=[control], c_glyph=glycon_samples)
return x, dict(c_crossattn=[c] if not isinstance(c, list) else c, c_concat=[control])
def apply_model(self, x_noisy, t, cond, *args, **kwargs):
assert isinstance(cond, dict)
diffusion_model = self.model.diffusion_model
#update
embdim_list = []
for c in cond["c_crossattn"]:
embdim_list.append(c.shape[-1])
embdim_list = np.array(embdim_list)
if np.sum(embdim_list != diffusion_model.context_dim):
assert self.trans_textemb
if self.trans_textemb:
assert self.trans_textemb_model
cond_txt_list = self.trans_textemb_model(cond["c_crossattn"])
# if len(cond_txt_list) == 2:
# print("cond_txt_2 max: {}".format(torch.max(torch.abs(cond_txt_list[1]))))
else:
cond_txt_list = cond["c_crossattn"]
assert len(cond_txt_list) > 0
if self.sep_cond_txt:
cond_txt = cond_txt_list[0]
cond_txt_2 = None if len(cond_txt_list) == 1 else cond_txt_list[1]
else:
if len(cond_txt_list) > 1:
cond_txt = cond_txt_list[0] # input text embedding of the pretrained SD
if not self.concat_textemb:
# currently len(cond_txt_list) <= 2
cond_txt_2 = torch.cat(cond_txt_list[1:], 1) # input text embedding of the ControlNet branch
else:
cond_txt_2 = torch.cat(cond_txt_list, 1)
if self.exchange_cond_txt:
txt_buffer = cond_txt
cond_txt = cond_txt_2
cond_txt_2 = txt_buffer
print("len cond_txt_list: {} | cond_txt_1 shape: {} | cond_txt_2 shape: {}".format(len(cond_txt_list), cond_txt.shape, cond_txt_2.shape))
else:
cond_txt = torch.cat(cond_txt_list, 1)
cond_txt_2 = None
context_glyph = None
if self.add_glyph_control:
assert "c_glyph" in cond.keys()
if cond["c_glyph"] is not None:
context_glyph = self.glyph_control_model(cond["c_glyph"], text_embed = cond_txt_list[-1] if len(cond_txt_list) == 3 else cond_txt)
else:
context_glyph = cond_txt_list[-1] if len(cond_txt_list) == 3 else cond_txt
# if cond_txt_2 is None:
# print("cond_txt_2 is None")
if cond['c_concat'] is None:
eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=None, only_mid_control=self.only_mid_control, context_glyph = context_glyph)
else:
control = self.control_model(x=x_noisy, hint=torch.cat(cond['c_concat'], 1), timesteps=t, context=cond_txt if cond_txt_2 is None else cond_txt_2)
control = [c * scale for c, scale in zip(control, self.control_scales)]
eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=control, only_mid_control=self.only_mid_control, context_glyph=context_glyph)
return eps
@torch.no_grad()
def get_unconditional_conditioning(self, N):
return self.get_learned_conditioning([""] * N)
# Maybe not useful: modify the codes to fit the separate input captions
# @torch.no_grad()
# def get_unconditional_conditioning(self, N):
# return self.get_learned_conditioning([""] * N) if not self.sep_cap_for_2b else self.get_learned_conditioning([[""] * N, [""] * N])
# TODO: adapt to new model
@torch.no_grad()
def log_images(self, batch, N=4, n_row=2, sample=False, ddim_steps=50, ddim_eta=0.0, return_keys=None,
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
plot_diffusion_rows=False, unconditional_guidance_scale=9.0, unconditional_guidance_label=None,
use_ema_scope=True,
**kwargs):
use_ddim = ddim_steps is not None
log = dict()
z, c = self.get_input(batch, self.first_stage_key, bs=N)
c_cat, c = c["c_concat"][0][:N], c["c_crossattn"][0][:N]
N = min(z.shape[0], N)
n_row = min(z.shape[0], n_row)
log["reconstruction"] = self.decode_first_stage(z)
log["control"] = c_cat * 2.0 - 1.0
log["conditioning"] = log_txt_as_img((512, 512), batch[self.cond_stage_key], size=16)
if plot_diffusion_rows:
# get diffusion row
diffusion_row = list()
z_start = z[:n_row]
for t in range(self.num_timesteps):
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
t = t.to(self.device).long()
noise = torch.randn_like(z_start)
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
diffusion_row.append(self.decode_first_stage(z_noisy))
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
log["diffusion_row"] = diffusion_grid
if sample:
# get denoise row
samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
batch_size=N, ddim=use_ddim,
ddim_steps=ddim_steps, eta=ddim_eta)
x_samples = self.decode_first_stage(samples)
log["samples"] = x_samples
if plot_denoise_rows:
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
log["denoise_row"] = denoise_grid
if unconditional_guidance_scale > 1.0:
uc_cross = self.get_unconditional_conditioning(N)
uc_cat = c_cat # torch.zeros_like(c_cat)
uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
batch_size=N, ddim=use_ddim,
ddim_steps=ddim_steps, eta=ddim_eta,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=uc_full,
)
x_samples_cfg = self.decode_first_stage(samples_cfg)
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
return log
# TODO: adapt to new model
@torch.no_grad()
def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
ddim_sampler = DDIMSampler(self)
b, c, h, w = cond["c_concat"][0].shape
shape = (self.channels, h // 8, w // 8)
samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size, shape, cond, verbose=False, **kwargs)
return samples, intermediates
# add
def training_step(self, batch, batch_idx, optimizer_idx=0):
loss = super().training_step(batch, batch_idx, optimizer_idx)
if self.use_scheduler and not self.sd_locked and self.sep_lr:
decoder_lr = self.optimizers().param_groups[1]["lr"]
self.log('decoder_lr_abs', decoder_lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
if self.trans_glyph_embed and self.freeze_glyph_image_encoder:
trans_glyph_embed_lr = self.optimizers().param_groups[2]["lr"]
self.log('trans_glyph_embed_lr_abs', trans_glyph_embed_lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
return loss
def configure_optimizers(self):
lr = self.learning_rate
params = list(self.control_model.parameters())
if self.trans_textemb:
params += self.trans_textemb_params #list(self.trans_textemb_model.parameters())
if self.learnable_conscale:
params += [self.control_scales]
params_wlr = []
decoder_params = None
if not self.sd_locked:
decoder_params = list(self.model.diffusion_model.output_blocks.parameters())
decoder_params += list(self.model.diffusion_model.out.parameters())
if not self.sep_lr:
params.extend(decoder_params)
decoder_params = None
params_wlr.append({"params": params, "lr": lr})
if decoder_params is not None:
params_wlr.append({"params": decoder_params, "lr": self.decoder_lr})
# if not self.sep_lr:
# opt = torch.optim.AdamW(params, lr=lr)
# else:
# opt = torch.optim.AdamW(
# [
# {"params": params},
# {"params": decoder_params, "lr": self.decoder_lr}
# ], lr=lr
# )
if not self.freeze_glyph_image_encoder:
if self.glyph_image_encoder_type == "CLIP":
# assert self.sep_lr
# follow the training codes in the OpenClip repo
# https://github.com/mlfoundations/open_clip/blob/main/src/training/main.py#L303
exclude = lambda n, p: p.ndim < 2 or "bn" in n or "ln" in n or "bias" in n or 'logit_scale' in n
include = lambda n, p: not exclude(n, p)
# named_parameters = list(model.image_encoder.named_parameters())
named_parameters = list(self.glyph_control_model.image_encoder.named_parameters())
gain_or_bias_params = [p for n, p in named_parameters if exclude(n, p) and p.requires_grad]
rest_params = [p for n, p in named_parameters if include(n, p) and p.requires_grad]
self.glyph_control_params_wlr = [
{"params": gain_or_bias_params, "weight_decay": 0., "lr": self.glycon_lr},
{"params": rest_params, "weight_decay": self.glycon_wd, "lr": self.glycon_lr},
]
if not self.freeze_glyph_image_encoder and not self.multiple_optimizers:
params_wlr.extend(self.glyph_control_params_wlr)
if self.trans_glyph_embed:
trans_glyph_params = list(self.glyph_control_model.trans_glyph_emb_model.parameters())
params_wlr.append({"params": trans_glyph_params, "lr": self.trans_glyph_lr})
# opt = torch.optim.AdamW(params_wlr)
opt = self.optimizer(params_wlr)
opts = [opt]
if not self.freeze_glyph_image_encoder and self.multiple_optimizers:
glyph_control_opt = self.optimizer(self.glyph_control_params_wlr) #torch.optim.AdamW(self.glyph_control_params_wlr)
opts.append(glyph_control_opt)
# updated
schedulers = []
if self.use_scheduler:
assert 'target' in self.scheduler_config
scheduler_func = instantiate_from_config(self.scheduler_config)
print("Setting up LambdaLR scheduler...")
schedulers = [
{
'scheduler': LambdaLR(
opt,
lr_lambda= [scheduler_func.schedule] * len(params_wlr) #if not self.sep_lr else [scheduler_func.schedule, scheduler_func.schedule]
),
'interval': 'step',
'frequency': 1
}]
if not self.freeze_glyph_image_encoder and self.multiple_optimizers:
if self.glycon_sched == "cosine" and self.max_step is not None:
glyph_scheduler = CosineAnnealingLR(glyph_control_opt, T_max=self.max_step) #: max_step
elif self.glycon_sched == "onecycle" and self.max_step is not None:
glyph_scheduler = OneCycleLR(
glyph_control_opt,
max_lr=self.glycon_lr,
total_steps=self.max_step, #: max_step
pct_start=0.0001,
anneal_strategy="cos" #'linear'
)
# elif self.glycon_sched == "lambda":
else:
glyph_scheduler = LambdaLR(
glyph_control_opt,
lr_lambda = [scheduler_func.schedule] * len(self.glyph_control_params_wlr)
)
schedulers.append(
{
"scheduler": glyph_scheduler,
"interval": 'step',
'frequency': 1
}
)
return opts, schedulers
# TODO: adapt to new model
def low_vram_shift(self, is_diffusing):
if is_diffusing:
self.model = self.model.cuda()
self.control_model = self.control_model.cuda()
self.first_stage_model = self.first_stage_model.cpu()
self.cond_stage_model = self.cond_stage_model.cpu()
else:
self.model = self.model.cpu()
self.control_model = self.control_model.cpu()
self.first_stage_model = self.first_stage_model.cuda()
self.cond_stage_model = self.cond_stage_model.cuda()
# ema
def on_train_batch_end(self, *args, **kwargs):
if self.use_ema:
self.model_ema(self.control_model)
if not self.sd_locked: # Update
self.model_diffoutblock_ema(self.model.diffusion_model.output_blocks)
self.model_diffout_ema(self.model.diffusion_model.out)
if not self.freeze_glyph_image_encoder:
self.model_glyphcon_ema(self.glyph_control_model.image_encoder)
if self.trans_glyph_embed:
self.model_transglyph_ema(self.glyph_control_model.trans_glyph_emb_model)
if self.log_all_grad_norm:
zeroconvs = list(self.control_model.input_hint_block.named_parameters())[-2:]
zeroconvs.extend(
list(self.control_model.zero_convs.named_parameters())
)
for item in zeroconvs:
self.log(
"zero_convs/{}_norm".format(item[0]),
item[1].cpu().detach().norm().item(),
prog_bar=False, logger=True, on_step=True, on_epoch=False
)
self.log(
"zero_convs/{}_max".format(item[0]),
torch.max(item[1].cpu().detach()).item(), #TODO: lack torch.abs
prog_bar=False, logger=True, on_step=True, on_epoch=False
)
gradnorm_list = []
for param_group in self.trainer.optimizers[0].param_groups:
for p in param_group['params']:
# assert p.requires_grad and p.grad is not None
if p.requires_grad and p.grad is not None:
grad_norm_v = p.grad.cpu().detach().norm().item()
gradnorm_list.append(grad_norm_v)
# for name, p in self.named_parameters():
# if p.requires_grad and p.grad is not None:
# grad_norm_v = p.grad.detach().norm().item()
# gradnorm_list.append(grad_norm_v)
# if "textemb_merge_model" in name:
# self.log("all_gradients/{}_norm".format(name),
# gradnorm_list[-1],
# prog_bar=False, logger=True, on_step=True, on_epoch=False
# )
# # if grad_norm_v > 0.1:
# # print("the norm of gradient w.r.t {} > 0.1: {:.2f}".format
# # (
# # name, grad_norm_v
# # ))
if len(gradnorm_list):
self.log("all_gradients/grad_norm_mean",
np.mean(gradnorm_list),
prog_bar=False, logger=True, on_step=True, on_epoch=False
)
self.log("all_gradients/grad_norm_max",
np.max(gradnorm_list),
prog_bar=False, logger=True, on_step=True, on_epoch=False
)
self.log("all_gradients/grad_norm_min",
np.min(gradnorm_list),
prog_bar=False, logger=True, on_step=True, on_epoch=False
)
self.log("all_gradients/param_num",
len(gradnorm_list),
prog_bar=False, logger=True, on_step=True, on_epoch=False
)
if self.trans_textemb:
for name, p in self.trans_textemb_model.named_parameters():
if p.requires_grad and p.grad is not None:
self.log(
"trans_textemb_gradient_norm/{}".format(name),
p.grad.cpu().detach().norm().item(),
prog_bar=False, logger=True, on_step=True, on_epoch=False
)
self.log(
"trans_textemb_params/{}_norm".format(name),
p.cpu().detach().norm().item(),
prog_bar=False, logger=True, on_step=True, on_epoch=False
)
self.log(
"trans_textemb_params/{}_abs_max".format(name),
torch.max(torch.abs(p.cpu().detach())).item(),
prog_bar=False, logger=True, on_step=True, on_epoch=False
)
if self.trans_glyph_embed:
for name, p in self.glyph_control_model.trans_glyph_emb_model.named_parameters():
if p.requires_grad and p.grad is not None:
self.log(
"trans_glyph_embed_gradient_norm/{}".format(name),
p.grad.cpu().detach().norm().item(),
prog_bar=False, logger=True, on_step=True, on_epoch=False
)
self.log(
"trans_glyph_embed_params/{}_norm".format(name),
p.cpu().detach().norm().item(),
prog_bar=False, logger=True, on_step=True, on_epoch=False
)
self.log(
"trans_glyph_embed_params/{}_abs_max".format(name),
torch.max(torch.abs(p.cpu().detach())).item(),
prog_bar=False, logger=True, on_step=True, on_epoch=False
)
if self.learnable_conscale:
for i in range(len(self.control_scales)):
self.log(
"control_scale/control_{}".format(i),
self.control_scales[i],
prog_bar=False, logger=True, on_step=True, on_epoch=False
)
del gradnorm_list
del zeroconvs
# def freeze_unet(self):
# # Have some bugs
# self.model.eval()
# # self.model.train = disabled_train
# for param in self.model.parameters():
# param.requires_grad = False
# if not self.sd_locked:
# self.model.diffusion_model.output_blocks.train()
# self.model.diffusion_model.out.train()
# for param in self.model.diffusion_model.out.parameters():
# param.requires_grad = True
# for param in self.model.diffusion_model.output_blocks.parameters():
# param.requires_grad = True |